Connections of (m, n)-bi-quasi Hyperideals in Semihyperrings

Bundit Pibaljommee † and Warud Nakkhasen ${ }^{\ddagger, 1}$
${ }^{\dagger}$ Department of Mathematics, Faculty of Science
Khon Kaen University, Khon Kaen 40002, Thailand
e-mail : banpib@kku.ac.th
${ }^{\ddagger}$ Department of Mathematics, Faculty of Science
Mahasarakham University, Maha Sarakham 44150, Thailand
e-mail: warud.n@msu.ac.th

Abstract

We introduce the concept of left (resp. right) (m, n)-bi-quasi hyperideals of semihyperrings as a generalization of n-bi-hyperideals, where m and n are positive integers. Then, we characterize regular semihyperrings using their left (resp. right) (m, n)-bi-quasi hyperideals. Moreover, we study the connections between left (resp. right) (m, n)-bi-quasi hyperideals and some many types of hyperideals in semihyperrings.

Keywords : semihyperring; m-bi-hyperideal; (m, n)-quasi hyperideal; (m, n)-biquasi hyperideal.
2010 Mathematics Subject Classification : 16Y60; 20M12; 20N20.

1 Introduction

In 1958, Iséki [1] introduced the notion of quasi-ideals for semirings without zero and proved results on semirings using their quasi-ideals. The concept of biideals of associative rings was introduced by Lajos and Szász [2]. Any quasi-ideal is a generalization of a left and a right ideal, while every bi-ideal is a generalization of a quasi-ideal. Later, Chinram [3] introduced a generalization of quasi-ideals in semirings called (m, n)-quasi-ideals and studied characterizations of regular semirings using their (m, n)-quasi-ideals. Then, Munir and Shafiq 4 introduced and

[^0]investigated some properties of the notion of m-bi-ideals in semirings as a generalization of bi-ideals. In 2018, Rao 5 introduced the concepts of left (resp. right) bi-quasi ideals of semirings which are generalizations of bi-ideals and quasi-ideals of semirings.

Algebraic hyperstructure was introduced in 1934 by Marty [6], at the $8^{\text {th }}$ Congress of Scandinavian Mathematicians. In a classical algebraic structure, composition of two elements is an element, while in an algebraic hyperstructure, the composition of two elements is a nonempty set. This theory was studied in the following decades and nowadays by many mathematicians (see, e.g., 7, [8, 9], [10]).

The concept of semihyperrins, which both the sum and the product are hyperoperations, was defined by Vougiouklis [11 as a generalization of semirings. Omidi and Davvaz [12] generalized the notions of m-left and n-right hyperideals in ordered semihyperrings to be (m, n)-quasi-hyperideals. Afterword, Nakkhasen and Pibaljommee [13] introduced the concept of m-bi-hyperideals and characterized regular semihyperrings by their m-bi-hyperideals. In this paper, we introduce the concept of left and right (m, n)-bi-quasi hyperideals of semihyperrings which is a generalization of n-bi-hyperideals and (m, n)-quasi-hyperideals of semihyperrings and characterize regular semihyperrings using left (resp. right) (m, n)-bi-quasi hyperideals. In addition, we investigate the connections between left (resp. right) (m, n)-bi-quasi hyperideals and some many types of hyperideals in semihyperrings.

2 Preliminaries

Let H be a nonempty set. A hyperoperation on H is a mapping $\circ: H \times H \rightarrow$ $\mathcal{P}^{*}(H)$, where $\mathcal{P}^{*}(H)$ denotes the set of all nonempty subsets of H (see, e.g., [7], [8], [9], [10]). Then the structure (H, \circ) is called a hypergroupoid. If $A, B \in \mathcal{P}^{*}(H)$ and $x \in H$, then we denote

$$
A \circ B=\bigcup_{a \in A, b \in B} a \circ b, A \circ x=A \circ\{x\} \text { and } x \circ B=\{x\} \circ B
$$

A hypergroupoid (H, \circ) is called a semihypergroup if for every $x, y, z \in H$, $(x \circ y) \circ z=x \circ(y \circ z)$, which means that

$$
\bigcup_{u \in x \circ y} u \circ z=\bigcup_{v \in y \circ z} x \circ v
$$

A hyperstructure $(S,+, \cdot)$ is called a semihyperring [11] if it satisfies the following conditions:
(i) $(S,+)$ is a semihypergroup;
(ii) (S, \cdot) is a semihypergroup;
(iii) $x \cdot(y+z)=x \cdot y+x \cdot z$ and $(y+z) \cdot x=y \cdot x+z \cdot x$, for all $x, y, z \in S$.

A nonempty subset T of a semihyperring $(S,+, \cdot)$ is called a subsemihyperring of S if for all $x, y \in T, x+y \subseteq T$ and $x \cdot y \subseteq T$. For more convenient, we write S instead of a semihyperring $(S,+, \cdot)$ and $A B$ instead of $A \cdot B$, for any nonempty subsets A and B of S.

Next, we review some concepts in semihyperrings which will be used in later section. For a semihyperring S and $m \in \mathbb{N}$, we denote $S^{m}=S S \cdots S$ (m times), in addition, for every $m, n \in \mathbb{N}$ such that $m \geq n$, we conclude that $S^{m} \subseteq S^{n}$.

A subsemihyperring A of a semihyperring S is called an m-left (resp. n-right) hyperideal [12] of S if it satisfies $S^{m} A \subseteq A$ (resp. $A S^{n} \subseteq A$), where m (resp. $n)$ is a positive integer. A subsemihyperring Q of a semihyperring S is called an (m, n)-quasi-hyperideal [12] of S if it satisfies $\left(S^{m} Q\right) \cap\left(Q S^{n}\right) \subseteq Q$, where m and n are positive integers. A subsemihyperring B of a semihyperring S is called an m-bi-hyperideal [13] of S if it satisfies $B S^{m} B \subseteq B$, where m is a positive integer.

3 Connections of (m, n)-bi-quasi hyperideals

In this section, we introduce the concept of left (resp. right) (m, n)-bi-quasi hyperideals of semihyperrings. Then, we characterize regular semihyperrings using their left (resp. right) (m, n)-bi-quasi hyperideals, and we present the connections between left (resp. right) (m, n)-bi-quasi hyperideals and some many types of hyperideals in semihyperrings.

Definition 3.1. A subsemihyperring A of a semihyperring S is called a left (resp. right) (m, n)-bi-quasi hyperideal of S if it satisfies $\left(S^{m} A\right) \cap\left(A S^{n} A\right) \subseteq A$ (resp. $\left(A S^{m}\right) \cap\left(A S^{n} A\right) \subseteq A$), where m and n are positive integers.

If A is both a left and a right (m, n)-bi-quasi hyperideal of a semihyperring S, then A is called an (m, n)-bi-quasi hyperideal of S.

Example 3.2. Let $S=\left\{\left.\left[\begin{array}{cccc}0 & u & v & w \\ 0 & 0 & x & y \\ 0 & 0 & 0 & z \\ 0 & 0 & 0 & 0\end{array}\right] \right\rvert\, u, v, w, x, y, z \in \mathbb{N} \cup\{0\}\right\}$. Then $(S,+, \cdot)$ is a semiring under usual addition and multiplication of matrices, see [4. For every $A, B \in S$, we define

$$
A \leq B \text { iff } a_{i j} \leq b_{i j},
$$

where $i, j \in\{1,2,3,4\}$. Next, we define hyperoperations \oplus and \odot on S by letting $A, B \in S$,

$$
\begin{aligned}
& A \oplus B=\{X \in S \mid X \leq A+B\}, \\
& A \odot B=\{X \in S \mid X \leq A \cdot B\} .
\end{aligned}
$$

We can show that $(S, \oplus \odot)$ is a semihyperring. Now, let

$$
M=\left\{\left.\left[\begin{array}{llll}
0 & a & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & b \\
0 & 0 & 0 & 0
\end{array}\right] \right\rvert\, a, b \in \mathbb{N} \cup\{0\}\right\} .
$$

It is not difficult to check that M is a subsemihyperring of S. We consider

$$
M \cdot S \cdot M=\left\{\left.\left[\begin{array}{cccc}
0 & 0 & 0 & m \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \right\rvert\, m \in \mathbb{N} \cup\{0\}\right\}
$$

It follows that $M \odot S \odot M=\{X \in S \mid X \leq M \cdot S \cdot M\} \nsubseteq M$. Next, we consider

$$
S^{3}=\left\{\left.\left[\begin{array}{llll}
0 & 0 & 0 & n \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \right\rvert\, n \in \mathbb{N} \cup\{0\}\right\} .
$$

This implies that

$$
S^{3} \cdot M=\left\{\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]\right\} .
$$

Thus,

$$
S^{3} \odot M=\left\{X \in S \mid X \leq S^{3} \cdot M\right\}=\left\{\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]\right\} .
$$

Hence, $\left(S^{3} \odot M\right) \cap(M \odot S \odot M) \subseteq M$. Therefore, M is a left (3,1)-bi-quasi hyperideal of S, but it is not a 1-bi-hyperidea; of S.

Throughout this paper, we always assume that m and n are any positive integers.

Theorem 3.3. Every n-left hyperideal of a semihyperring S is an (m, n)-bi-quasi hyperideal of S.

Proof. Let A be an n-left hyperideal of a semihyperring S. Then A is a subsemihyperring of S and $S^{n} A \subseteq A$. Thus,

$$
\begin{aligned}
& \left(S^{m} A\right) \cap\left(A S^{n} A\right) \subseteq A S^{n} A \subseteq A A \subseteq A, \\
& \left(A S^{m}\right) \cap\left(A S^{n} A\right) \subseteq A S^{n} A \subseteq A A \subseteq A .
\end{aligned}
$$

Hence, A is an (m, n)-bi-quasi hyperideal of S.

Theorem 3.4. Every n-right hyperideal of a semihyperring S is an (m, n)-bi-quasi hyperideal of S.

Remark 3.5. Let S be a semihyperring. Then,
(i) every m-left hyperideal of S is a left (m, n)-bi-quasi hyperideal of S;
(ii) every m-right hyperideal of S is a right (m, n)-bi-quasi hyperideal of S.

Theorem 3.6. Every (m, n)-quasi-hyperideal of a semihyperring S is a left (m, n) -bi-quasi hyperideal of S.

Proof. Let Q be an (m, n)-quasi-hyperideal of a semihyperring S. Then Q is a subsemihyperring of S and $\left(S^{m} Q\right) \cap\left(Q S^{n}\right) \subseteq Q$. So, $\left(S^{m} Q\right) \cap\left(Q S^{n} Q\right) \subseteq$ $\left(S^{m} Q\right) \cap\left(Q S^{n}\right) \subseteq Q$. Hence, Q is a left (m, n)-bi-quasi hyperideal of S.

Theorem 3.7. Every n-bi-hyperideal of a semihyperring S is an (m, n)-bi-quasi hyperideal of S.

Proof. Let B be an n-bi-hyperideal of a semihyperring S. Then B is a subsemihyperring of S and $B S^{n} B \subseteq B$. Consider $\left(S^{m} B\right) \cap\left(B S^{n} B\right) \subseteq B S^{n} B \subseteq B$ and $\left(B S^{m}\right) \cap\left(B S^{n} B\right) \subseteq B S^{n} B \subseteq B$. Hence, B is an (m, n)-bi-quasi hyperideal of S.

We note that arbitrary intersection of left (resp. right) (m, n)-bi-quasi hyperideals of a semihyperring S is not empty, then it is also a left (resp. right) (m, n)-bi-quasi hyperideal. If follows that arbitrary intersection of (m, n)-biquasi hyperideals of a semihyperring S is not empty, then it is also an (m, n) -bi-quasi hyperideal.

A semihyperring S is called regular (see, [14], [15]) if for each $a \in S$, there exists $x \in S$ such that $a \in$ axa.

Theorem 3.8 ([14). Let S be a semihyperring. The following conditions are equivalent:
(i) S is regular;
(ii) $a \in a S a$, for every $a \in S$;
(iii) $A \subseteq A S A$, for all $\emptyset \neq A \subseteq S$.

Theorem 3.9 ([13]). Let S be a semihyperring and $m_{1}, m_{2} \in \mathbb{N}$ such that $m=$ $\max \left\{m_{1}, m_{2}\right\}$. Then S is regular if and only if $R \cap L=R S^{m} L$ for any m_{1}-left hyperideal L and m_{2}-right hyperideal R of S.

Theorem 3.10. Let S be a semihyperring and $n \geq m$. Then S is regular if and only if $A=\left(S^{m} A\right) \cap\left(A S^{n} A\right)$ for every left (m, n)-bi-quasi hyperideal A of S.

Proof. Assume that S is regular. Let A be a left (m, n)-bi-quasi hyperideal of S. Then $\left(S^{m} A\right) \cap\left(A S^{n} A\right) \subseteq A$. By Theorem 3.8, we have that

$$
\begin{aligned}
& A \subseteq(A S) A \subseteq(A S A S) A \subseteq \cdots \subseteq(\underbrace{A S \cdots A S}_{m \text { terms }}) A \subseteq S^{m} A \\
& A \subseteq A S A \subseteq A(S A) S A \subseteq A(S A S A) S A \\
& \subseteq \cdots \subseteq A(\underbrace{S A \cdots S A}_{n \text { terms }}) S A \subseteq A S^{n+1} A \subseteq A S^{n} A
\end{aligned}
$$

It follows that, $A \subseteq\left(S^{m} A\right) \cap\left(A S^{n} A\right)$. Hence, $A=\left(S^{m} A\right) \cap\left(A S^{n} A\right)$.
Conversely, assume that $A=\left(S^{m} A\right) \cap\left(A S^{n} A\right)$ for every left (m, n)-bi-quasi hyperideal A of S. Let L be an m-left hyperideal and R be an n-right hyperideal of S. By Theorem 3.4 and Remark 3.5, we have that L and R are left (m, n)-biquasi hyperideals of S. Then $R \cap L$ is a left (m, n)-bi-quasi hyperideal of S, By assumption, $R \cap L=\left[S^{m}(R \cap L)\right] \cap\left[(R \cap L) S^{n}(R \cap L)\right] \subseteq(R \cap L) S^{n}(R \cap L) \subseteq R S^{n} L$. On the other hand, $R S^{n} L \subseteq R \cap L$. Thus, $R \cap L=R S^{n} L$. By Theorem 3.9. S is regular.

Theorem 3.11. Let S be a semihyperring and $n \geq m$. Then S is regular if and only if $A=\left(A S^{m}\right) \cap\left(A S^{n} A\right)$ for every right (m, n)-bi-quasi hyperideal A of S.

Theorem 3.12. Let S be a semihyperring. Then S is regular if and only if $A \cap L \subseteq A S^{k} L$ for every m-left hyperideal L and (m, n)-bi-quasi hyperideal A of S, where $k=\max \{m, n\}$.

Proof. Assume that S is regular. Let L be an m-left hyperideal, A be an (m, n) -bi-quasi hyperideal of S and $k=\max \{m, n\}$. Let $a \in A \cap L$. By Theorem 3.8, we have $a \in a S a \subseteq a(S a) S a \subseteq a(S a S a) S a \subseteq \cdots \subseteq a(\underbrace{S a \cdots S a}_{k \text { terms }}) S a \subseteq a S^{k+1} a \subseteq$
$A S^{k} L$. Hence, $A \cap L \subseteq A S^{k} L$. Conversely, let L be an m-left hyperideal and R be an n-right hyperideal of S. By Theorem [3.4, we have that R is an (m, n) -bi-quasi hyperideal of S. By assumption, $R \cap L \subseteq R S^{k} L$, where $k=\max \{m, n\}$. It is easy to show that $R S^{k} L \subseteq R \cap L$. Thus, $R \cap L=R S^{k} L$. By Theorem 3.9, S is regular.

Theorem 3.13. Let S be a semihyperring. Then S is regular if and only if $R \cap L \subseteq R S^{k} A$ for every m-right hyperideal R and (m, n)-bi-quasi hyperideal A of S, where $k=\max \{m, n\}$.

Theorem 3.14. Let S be a regular semihyperring and A be a nonempty set of S. Then the following statements hold:
(i) if A is an m-left hyperideal of S, then A is a right (m, n)-bi-quasi hyperideal of S;
(ii) if A is an m-right hyperideal of S, then A is a left (m, n)-bi-quasi hyperideal of S;
(iii) if A is an (m, n)-quasi-hyperideal of S, then A is a right (m, n)-bi-quasi hyperideal of S.

Proof. (i) Assume that A is an m-left hyperideal of S. By Theorem 3.8, we have $\left(A S^{m}\right) \cap\left(A S^{n} A\right) \subseteq A S^{n} A \subseteq(A S) A \subseteq(A S A S) A \subseteq \cdots \subseteq(\underbrace{A S \cdots A S}_{m \text { terms }}) A \subseteq$ $S^{m} A \subseteq A$. Hence, A is a right (m, n)-bi-quasi hyperideal of S.
(ii) The proof is similar to (i).
(iii) Assume that A is an (m, n)-quasi-hyperideal of S. By Theorem 3.8 we have

$$
\begin{gathered}
A S^{m} \subseteq A S \subseteq A S(A S) \subseteq A S(A S A S) \subseteq \cdots \subseteq A S(\underbrace{A S \cdots A S}_{n \text { terms }}) \subseteq A S^{n+1} \subseteq A S^{n}, \\
A S^{n} A \subseteq(A S) A \subseteq(A S A S) A \subseteq \cdots \subseteq(\underbrace{A S \cdots A S}_{m \text { terms }}) ~ \\
\hline S
\end{gathered}
$$

This implies that $\left(A S^{m}\right) \cap\left(A S^{n} A\right) \subseteq\left(S^{m} A\right) \cap\left(A S^{n}\right) \subseteq A$. Therefore, A is a right (m, n)-bi-quasi hyperideal of S.

Theorem 3.15. Let S be a regular semihyperring and A be a nonempty subset of S. Then the following statements are equivalent:
(i) A is an (m, n)-bi-quasi hyperideal of S;
(ii) A is an m-bi-hyperideal of S;
(iii) A is an n-bi-hyperideal of S;
(iv) A is an (m, n)-quasi-hyperideal of S.

Proof. $(i) \Rightarrow(i i)$: Assume that A is an (m, n)-bi-quasi hyperideal of S. Clearly, $A S^{m} S \subseteq S^{m} A$. By Theorem 3.8, we have $A S^{m} A \subseteq A S A \subseteq A(S A) S A \subseteq$ $A(S A S A) S A \subseteq \cdots \subseteq A(\underbrace{S A \cdots S A}_{n \text { terms }}) S A \subseteq A S^{n+1} A \subseteq A S^{n} A$. It follows that $A S^{m} A \subseteq\left(S^{m} A\right) \cap\left(A S^{n} A\right) \subseteq A$. Therefore, A is an m-bi-hyperideal of S.
$(i i) \Rightarrow(i i i)$: Assume that A is an m-bi-hyperideal of S. By Theorem 3.8, we have $A S^{n} A \subseteq A S A \subseteq A(S A) S A \subseteq A(S A S A) S A \subseteq \cdots \subseteq A(\underbrace{S A \cdots S A}_{m \text { terms }}) S A \subseteq$ $A S^{m+1} A \subseteq A S^{m} A \subseteq A$. Hence, A is an n-bi-hyperideal of S.
$(i i i) \Rightarrow(i v)$: Assume that A is an n-bi-hyperideal of S. Let $a \in\left(S^{m} A\right) \cap$ $\left(A S^{n}\right)$. By Theorem 3.8, we have $a \in a S a \subseteq\left(A S^{n}\right) S\left(S^{m} A\right) \subseteq A S^{n} A \subseteq A$. That is, $\left(S^{m} A\right) \cap\left(A S^{n}\right) \subseteq A$. Hence, A is an (m, n)-quasi-hyperideal of S.
$(i v) \Rightarrow(i)$: Assume that A is an (m, n)-quasi-hyperideal of S. By Theorem 3.6, we have that A is a left (m, n)-bi-quasi-hyperideal of S. By Theorem 3.8, we have

$$
\begin{aligned}
& A S^{m} \subseteq A S \subseteq A S(A S) \subseteq A S(A S A S) \subseteq \cdots \subseteq A S(\underbrace{A S \cdots A S}_{n \text { terms }}) \subseteq A S^{n+1} \subseteq A S^{n}, \\
& A S^{n} A \subseteq(A S) A \subseteq(A S A S) A \subseteq \cdots \subseteq(\underbrace{A S \cdots A S}_{m \text { terms }}) A \subseteq S^{m} A .
\end{aligned}
$$

Thus, $\left(A S^{m}\right) \cap\left(A S^{n} A\right) \subseteq\left(S^{m} A\right) \cap\left(A S^{n}\right) \subseteq A$. Hence, A is a right (m, n)-biquasi hyperideal of S. Therefore, A is an (m, n)-bi-quasi hyperideal of S.

The following example, we show that any (m, n)-quasi-hyperideal in a regular semihyperring is not necessary an m-left hyperideal and an n-right hyperideal.
Example 3.16. Let $S=\left\{\left.\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \right\rvert\, a, b, c, d \in \mathbb{N} \cup\{0\}\right\}$. Then $(S,+, \cdot)$ is a semiring under usual the matrix addition and the matrix multiplication. For any $A, B \in S$, we define $A \leq B$ iff $a_{i j} \leq b_{i j}$, where $i, j=\{1,2\}$. Next, we define hyperoperations \oplus and \odot on S by letting $A, B \in S$,

$$
\begin{aligned}
& A \oplus B=\{X \in S \mid X \leq A+B\}, \\
& A \odot B=\{X \in S \mid X \leq A \cdot B\} .
\end{aligned}
$$

We can show that (S, \oplus, \odot) is a semihyperring. Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in S$, where $a, b, c, d \in \mathbb{N} \cup\{0\}$. Choose $X=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right] \in S$. Then

$$
A \cdot X \cdot A=\left[\begin{array}{ll}
a^{2}+a b+a c+b c & a b+b^{2}+a d+b d \\
a c+a d+c^{2}+c d & b c+b d+c d+d^{2}
\end{array}\right] .
$$

Consider $a \leq a^{2}+a b+a c+b c, b \leq a b+b^{2}+a d+b d, c \leq a c+a d+c^{2}+c d$, and $d \leq b c+b d+c d+d^{2}$. This implies that $A \leq A \cdot X \cdot A$. Thus, $A \in A \odot X \odot A$. Hence, S is a regular semihyperring. Now, let

$$
Q=\left\{\left.\left[\begin{array}{ll}
0 & 0 \\
0 & x
\end{array}\right] \right\rvert\, x \in \mathbb{N} \cup\{0\}\right\} .
$$

It is easy to show that Q is a subsemihyperring of S. Consider

$$
\begin{aligned}
S^{3} Q & =\left\{\left.\left[\begin{array}{ll}
0 & m \\
0 & n
\end{array}\right] \right\rvert\, m, n \in \mathbb{N} \cup\{0\}\right\}, \\
Q S^{2} & =\left\{\left.\left[\begin{array}{ll}
0 & 0 \\
k & l
\end{array}\right] \right\rvert\, k, l \in \mathbb{N} \cup\{0\}\right\} .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& S^{3} \odot Q=\left\{X \in S \mid X \leq S^{3} \cdot Q\right\} \nsubseteq Q, \\
& Q \odot S^{2}=\left\{X \in S \mid X \leq Q \cdot S^{2}\right\} \nsubseteq Q .
\end{aligned}
$$

On the other hand, $\left(S^{3} \odot Q\right) \cap\left(Q \odot S^{2}\right)=\left\{\left.\left[\begin{array}{ll}0 & 0 \\ 0 & y\end{array}\right] \right\rvert\, y \in \mathbb{N} \cup\{0\}\right\}=Q$. Therefore, Q is a (3,2)-quasi-hyperideal of S, but it is not a 3 -left hyperideal and is not a 2 -right hyperideal of S.

Finally, we conclude the connections between left (resp. right) (m, n)-biquasi hyperideals and many types of hyperideals in semihyperrings as the following
figure:

Figure 1: The connections of hyperideals in semihyperrings
where:

$$
\begin{aligned}
& L B Q_{(m, n)} \text { denotes the set of all left }(m, n) \text {-bi-quasi hyperideals; } \\
& R B Q_{(m, n)} \text { denotes the set of all right }(m, n) \text {-bi-quasi hyperideals; } \\
& B_{m} \text { denotes the set of all } m \text {-bi-hyperideals; } \\
& B_{n} \text { denotes the set of all } n \text {-bi-hyperideals; } \\
& Q_{(m, n)} \text { denotes the set of all }(m, n) \text {-quasi-hyperideals; } \\
& L_{m} \text { denotes the set of all } m \text {-left hyperideals; } \\
& L_{n} \text { denotes the set of all } n \text {-left hyperideals; } \\
& R_{m} \text { denotes the set of all } m \text {-right hyperideals; } \\
& R_{n} \text { denotes the set of all } n \text {-right hyperideals; } \\
& \longrightarrow \text { denotes the normal implication; } \\
& \longrightarrow-- \text { denotes the implication with regular semihyperring as an assumption. }
\end{aligned}
$$

References

[1] K. Iséki, Quasiideals in semirings without zero, Proceeding of the Japan Academy 34 (2) (1958) 79-81.
[2] S. Lajos, A. Szász, On the bi-ideals in associative rings, Proceeding of the Japan Academy 46 (6) (1970) 505-507.
[3] R. Chinram, A note on (m, n)-quasi-ideals in semirings, International Journal of Pure and Applied Mathematical 49 (1) (2008) 45-52.
[4] M. Munir, A. Shafiq, A generalization of bi ideals in semirings, Bulletin of the International Mathematical Virtual Institute 8 (2018) 123-133.
[5] M.M.K. Rao, Left bi-quasi ideals of semirings, Bulletin of the International Mathematical Virtual Institute 8 (2018) 45-53.
[6] F. Marty, Sur une generalization de la notion de group, Proceeding of $8^{\text {th }}$ Congress des Mathematician Scandinave (1934) 45-49.
[7] P. Corsini, Prolegomena of hypergroup theory $\left(2^{e d}\right)$, Aviani Editore, Italy, 1993.
[8] P. Corsini, V. Leoreanu, Applications of hyperstructure theory, Kluwer Academic Publishers, Netherlands, 2003.
[9] B. Davvaz, V. Leoreanu-Fotea, Hyperring theory and applications, International Academic Press, USA, 2007.
[10] T. Vougiouklis, Hyperstructures and their representations, Hadronic Press, USA, 1994.
[11] T. Vougiouklis, On some representation of hypergroups, Ann. Sci. Univ. Clermont-Ferrand II Math. 26 (1990) 21-29.
[12] S. Omidi, B. Davvaz, Contribution to study special kinds of hyperideals in ordered semihyperrings, Journal of Taibah University for Science 11 (2017) 1083-1094.
[13] W. Nakkhasen, B. Pibaljommee, On m-bi-hyperideals in semihyperrings, Songklanakarin Journal of Science and Technology 41 (6) (2019) 1241-1247.
[14] B. Davvaz, S. Omidi, Basic notions and properties of ordered semihyperrings, Categories and General Algebraic Structures with Applications 4 (1) (2016) 43-62.
[15] X. Haung, Y. Yin, J. Zhan, Characterizations of semihyperrings by their $\left(\epsilon_{\gamma}, \epsilon_{\gamma} \vee q_{\delta}\right)$-fuzzy hyperideals, J. Appl. Math. 2013 (2013) 1-13.
(Received 23 May 2019)
(Accepted 24 December 2019)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

[^0]: ${ }^{1}$ Corresponding author.
 Copyright (c) 2020 by the Mathematical Association of Thailand. All rights reserved.

