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Abstract : We consider row sequences of three generalized Hermite-Padé ap-
proximations (orthogonal Hermite-Padé approximation, Hermite-Padé-Faber ap-
proximation, and multipoint Hermite-Padé approximation) of a vector of the ap-
proximated functions F and prove that if F has a system pole of order ν, then
such system pole attracts at least ν zeros of denominators of these approximants
at the rate of a geometric progression. Moreover, the rates of these attractions are
estimated.
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1 Introduction

The purpose of this paper is to prove a direct statement of Gonchar’s theorem
(see Theorem A below) for three generalized Hermite-Padé approximations. Let
us recall the definition of classical Padé approximants and state a known result on
row sequences of classical Padé approximants related to our study in this paper. In
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what follows, N := {1, 2, 3, . . .}, N0 := N∪{0}, and Pn is the set of all polynomials
of degree at most n.

Definition 1.1. Let F (z) =
∑∞
k=0 fkz

k be a formal power series. Fix (n,m) ∈
N0 × N0. Then, there exist P ∈ Pn and Q ∈ Pm such that Q 6≡ 0 and

(QF − P )(z) = O(zn+m+1), as z → 0.

The rational function Rn,m := P/Q is called the (n,m) classical Padé approximant
of F.

It is well-known that for any (n,m) ∈ N0 × N0, Rn,m always exists and is
unique. For a given pair (n,m) ∈ N0 × N0, we write

Rn,m =
Pn,m
Qn,m

,

where Qn,m is the monic polynomial that has no common zero with Pn,m.
Let F (z) =

∑∞
k=0 fkz

k be a formal power series. Denote by R0(F ) the radius
of the largest disk centered at the origin to which F can be extended analytically
and by Rm(F ) the radius of the largest disk centered at the origin to which F can
be extended so that F has at most m poles counting multiplicities.

Let us define two indicators of the asymptotic behavior of the zeros of Qn,m.
Fix m ∈ N. Let

Pn,m := {λn,1, λn,2, . . . , λn,mn}, mn ≤ m, n ∈ N0,

denote the collection of zeros of Qn,m (repeated according to their multiplicity).
Define

|z − w|1 := min{1, |z − w|}, z, w ∈ C.

Fix λ ∈ C. The first indicator is defined by

∆(λ) := lim sup
n→∞

mn∏
j=1

|λn,j − λ|1/n1 = lim sup
n→∞

∏
|λn,j−λ|<1

|λn,j − λ|1/n.

Clearly, 0 ≤ ∆(λ) ≤ 1 (when mn = 0 or |λn,j − λ| ≥ 1 for all j = 1, 2, . . . ,mn,
the product is taken to be 1). The second indicator, a nonnegative integer σ(λ),
is defined as follows. We suppose that for each n, the points in

Pn,m = {λn,1, λn,2, . . . , λn,mn} (1.1)

are enumerated in nondecreasing distance to the point λ. We set

δj(λ) := lim sup
n→∞

|λn,j − λ|1/n1 . (1.2)

These numbers are defined by (1.2) for j = 1, 2, . . . ,m′,m′ = lim infn→∞mn; for
j = m′ + 1, . . . , n, we define δj(λ) = 1. We have 0 ≤ δj(λ) ≤ 1. If ∆(λ) = 1 (in
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that case all δj(λ) = 1), then σ(λ) = 0. If ∆(λ) < 1, then for some ν, 1 ≤ ν ≤ m,
we have that δ1(λ) ≤ . . . ≤ δν(λ) < 1 and δν+1(λ) = 1 or ν = m; in this case we
take σ(λ) = ν. Set

B(a,R) := {z ∈ C : |z − a| < R}.

The following theorem proved by Gonchar [1, Theorem 1] concerns the rela-
tion between the location of a pole of the approximated function and the rate of
attraction of such pole to poles of classical Padé approximants.

Theorem A. Let F (z) =
∑∞
k=0 fkz

k be a formal power series, m ∈ N be fixed,
and λ 6= 0 be a given point in C. The following statements are equivalent:

(a) λ ∈ B(0, Rm(F )) and F has a pole at λ.

(b) ∆(λ) < 1 (or equivalently σ(λ) ≥ 1).

If either (a) or (b) holds, then

∆(λ) =
|λ|

Rm(F )
and σ(λ) = ν,

where ν is the order of the pole at λ.

The direct part of this theorem refers to the statement: if F has a pole at
λ ∈ B(0, Rm(F )) of order ν, then

∆(λ) ≤ |λ|
Rm(F )

and σ(λ) ≥ ν.

On the other hand, the inverse result in this theorem is the statement: if
∆(λ) < 1, then F has a pole at λ ∈ B(0, Rm(F )),

∆(λ) ≥ |λ|
Rm(f)

, and ν ≥ σ(λ),

where ν is the order of the pole at λ.
The aim of this paper is to prove analogues of the direct part of Theorem A

for orthogonal Hermite-Padé approximation, Hermite-Padé-Faber approximation,
and multipoint Hermite-Padé approximation defined as follows.

Let E be an infinite compact subset of the complex plane C such that C \ E
is simply connected. In the whole paper, E will be described as above.

Let us define the first approximation constructed from orthogonal polynomials
on a general compact set E. Let µ be a finite positive Borel measure with infinite
support supp(µ) contained in E. We write µ ∈ M(E) and define the associated
inner product,

〈g, h〉µ :=

∫
g(ζ)h(ζ)dµ(ζ), g, h ∈ L2(µ).

Let
pn(z) := κnz

n + · · · , κn > 0, n = 0, 1, 2, . . . ,
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be the orthonormal polynomial of degree n with respect to µ with positive leading
coefficient; that is, 〈pn, pm〉µ = δn,m. Denote by H(E) the space of all functions
holomorphic in some neighborhood of E. We define

H(E)d := {(F1, F2, . . . , Fd) : F` ∈ H(E), ` = 1, 2, . . . , d}.

The definition of orthogonal Hermite-Padé approximants is the following:

Definition 1.2. Let F = (F1, F2, . . . , Fd) ∈ H(E)d and µ ∈ M(E). Fix a multi-
index m = (m1,m2, . . . ,md) ∈ Nd and n ∈ N. Set |m| := m1 + m2 + . . . + md.
Then, there exists Qµn,m ∈ P|m| such that Qµn,m 6≡ 0 and 〈Qµn,mzkF`, pn〉µ = 0 for
all k = 0, 1, . . . ,m` − 1 and ` = 1, 2, . . . , d. The corresponding vector of rational
functions

Rµ
n,m := (Rµn,m,1, R

µ
n,m,2, . . . , R

µ
n,m,d)

=

(∑n−1
j=0 〈Qµn,mF1, pj〉µpj

Qµn,m
,

∑n−1
j=0 〈Qµn,mF2, pj〉µpj

Qµn,m
, . . . ,

∑n−1
j=0 〈Qµn,mFd, pj〉µpj

Qµn,m

)
is called an (n,m) orthogonal Hermite-Padé approximant of F with respect to µ.

Now, we want to define the second approximation constructed from Faber
polynomials associated with E. Let Φ be the unique Riemann mapping function
from C\E to the exterior of the closed unit disk verifying Φ(∞) =∞, Φ′(∞) > 0.
For each ρ > 1, the level curve of index ρ and the canonical domain of index ρ are
defined by

Γρ := {z ∈ C : |Φ(z)| = ρ} and Dρ := E ∪ {z ∈ C : |Φ(z)| < ρ},

respectively. Given F ∈ H(E), we denote by ρ0(F ) the largest index ρ such that
F extends as a holomorphic function to Dρ and by ρm(F ) the largest index ρ
such that F extends as a meromorphic function with at most m poles counting
multiplicities in Dρ.

The Faber polynomial of E of degree n is

Φn(z) :=
1

2πi

∫
Γρ

Φn(t)

t− z
dt, z ∈ Dρ, n = 0, 1, 2, . . . .

The n-th Faber coefficient of F ∈ H(E) with respect to Φn is defined by the
formula

[F ]n :=
1

2πi

∫
Γρ

F (t)Φ′(t)

Φn+1(t)
dt,

where ρ ∈ (1, ρ0(F )).

Definition 1.3. Let F = (F1, F2, . . . , Fd) ∈ H(E)d. Fix m = (m1,m2, . . . ,md) ∈
Nd and n ∈ N. Set |m| := m1 +m2 + . . .+md. Then, there exists QEn,m ∈ P|m| such

that QEn,m 6≡ 0 and [QEn,mz
kF`]n = 0 for all k = 0, 1, . . . ,m`−1 and ` = 1, 2, . . . , d.

The corresponding vector of rational functions

RE
n,m := (REn,m,1, R

E
n,m,2, . . . , R

E
n,m,d)
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=

(∑n−1
j=0 [QEn,mF1]jΦj

QEn,m
,

∑n−1
j=0 [QEn,mF2]jΦj

QEn,m
, . . . ,

∑n−1
j=0 [QEn,mFd]jΦj

QEn,m

)
is called an (n,m) Hermite-Padé-Faber approximant of F with respect to E.

Let α ⊂ E be a table of points; more precisely, α = {αn,k}, k = 1, . . . , n,
n = 1, 2, . . .. We propose the following definition.

Definition 1.4. Let F = (F1, F2 . . . , Fd) ∈ H(E)d. Fix a multi-index m =
(m1,m2, . . . ,md) ∈ Nd and n ∈ N. Set |m| := m1 + m2 + · · · + md. Then, there
exist Qαn,m ∈ P|m| and Pαn,m,` ∈ Pn−1, ` = 1, 2, . . . , d such that Qαn,m 6≡ 0 and for
all ` = 1, 2, . . . , d,

(Qαn,mF` − Pαn,m,`)/an+1 ∈ H(E),

where an(z) =
∏n
k=1(z − αn,k). The corresponding vector of rational functions

Rα
n,m =

(
Rαn,m,1, . . . , R

α
n,m,d

)
=

(
Pαn,m,1

Qαn,m
,
Pαn,m,2

Qαn,m
, . . . ,

Pαn,m,d

Qαn,m

)
is called an (n,m) multipoint Hermite-Padé approximant of F with respect α.

Finding Qµn,m, Q
E
n,m, or Qαn,m is equivalent to solving |m|+ 1 unknowns from

|m| linear system of equations. Then, Qµn,m, Q
E
n,m, and Qαn,m always exist but they

may not be unique. Since Qµn,m, Q
E
n,m, and Qαn,m are not the zero function, we

normalize them to be “monic” polynomials. Moreover, we would like to emphasize
that for any (n,m) ∈ N× Nd, Rµ

n,m,R
E
n,m, and Rα

n,m may not be unique. These
vectors of rational approximants were recently introduced in [2, 3, 4] to solve
a problem about locating |m| system poles of the vector of the approximated
functions nearest E.

Before we summarize the results in [2, 3, 4], we need to define some notations
and state one more definition. We say that µ ∈ Reg1(E) when

lim
n→∞

|pn(z)|1/n = |Φ(z)| (1.3)

uniformly on compact subsets of C\E. The second kind functions defined as follows

sn(z) :=

∫
pn(ζ)

z − ζ
dµ(ζ), z ∈ C \ supp(µ).

play an important role in our proof. The measure µ ∈ Reg2(E) if and only if

lim
n→∞

|sn(z)|1/n = |Φ(z)|−1 (1.4)

uniformly on compact subsets of C \ E. The classes Reg1(E) and Reg2(E) are
more or less the same in some cases (see the details in [2, Section 1]). In particular,
if E is convex, then Reg1(E) = Reg2(E) and these two classes coincide with the
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regular class in the usual sense (see [7, Definition 3.1.2] for the definition of the
regular class in the usual sense). Define

Reg1,2(E) := Reg1(E) ∩Reg2(E).

We say that µ ∈ Regm1,2(E) if it is in Reg1,2(E) and there exists a positive constant
c such that

κn−m
κn

≥ c, n ≥ n0.

There are many examples of measures in Regm1,2(E) (see [5, 6, 8] and references
therein).

Let α ⊂ E be a table of interpolation points (α = {αn,k}, k = 1, . . . , n,
n = 1, 2, . . .). Recall that an(z) :=

∏n
k=1(z − αn,k). It is well known that there

exist tables of points α satisfying the condition

lim
n→∞

|an(z)|1/n = c|Φ(z)|, (1.5)

or the stronger condition

lim
n→∞

an(z)/cnΦn(z) = G(z) 6= 0, (1.6)

uniformly on compact subsets of C \ E, where c denotes some positive constant,
see [9, Chapters 8-9]. It is easy to check that (1.6) ⇒ (1.5). The following is a
definition of system pole.

Definition 1.5. Given F = (F1, F2, . . . , Fd) ∈ H(E)d and m = (m1,m2, . . . ,md) ∈
Nd, we say that ξ ∈ C is a system pole of order τ of F with respect to m if τ is the
largest positive integer such that for each t = 1, 2, . . . , τ, there exists at least one
polynomial combination of the form

d∑
`=1

v`F`, deg(v`) < m`, ` = 1, 2, . . . , d, (1.7)

which is holomorphic in a neighborhood of D|Φ(ξ)| except for a pole at z = ξ of
exact order t.

To each system pole ξ of F with respect to m, we define a characteristic index as
follows. Let τ be the order of ξ as a system pole of F. For each t = 1, . . . , τ, denote
by ρξ,t(F,m) the largest of all the numbers ρt(G) (the index of the largest canonical
domain containing at most t poles of G), where G is a polynomial combination
of type (1.7) that is holomorphic in a neighborhood of D|Φ(ξ)| except for a pole
at z = ξ of order t. There is only a finite number of such possible values so the
maximum is indeed attained. Then, we define

ρξ(F,m) := min
k=1,...,τ

ρξ,k(F,m).

Combining Theorem 1.2 in [2], Corollary 1.6. in [3], and Theorem 1.3 [4], we
arrive at the following theorem.
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Theorem B. Let F = (F1, F2, . . . , Fd) ∈ H(E)d, m ∈ Nd be a fixed multi-index,

µ ∈ Reg
|m|
1,2 (E), and α satisfy the condition (1.6). Denote by QF

m the monic
polynomial whose zeros are the system poles of F with respect to m taking account
of their order and by P(F,m) the set of all zeros of QF

m. Then, the following
assertions are equivalent:

(a) F has exactly |m| system poles with respect to m counting multiplicities.

(b) The polynomials Qµn,m of F are uniquely determined for all sufficiently large

n, and there exists a polynomial Q̂|m| of degree |m| such that

lim sup
n→∞

‖Qµn,m − Q̂|m|‖1/n = θ̂ < 1.

(c) The polynomials QEn,m of F are uniquely determined for all sufficiently large

n, and there exists a polynomial Q̃|m| of degree |m| such that

lim sup
n→∞

‖QEn,m − Q̃|m|‖1/n = θ̃ < 1.

(d) The polynomials Qαn,m of F are uniquely determined for all sufficiently large

n, and there exists a polynomial Q̌|m| of degree |m| such that

lim sup
n→∞

‖Qαn,m − Q̌|m|‖1/n = θ̌ < 1.

The norm ‖ · ‖ in (b), (c), and (d) denotes (for example) the norm induced in the
space of polynomials of degree at most |m| by the maximum of the absolute value
of the coefficients. Moreover, if one of the assertions (a), (b), (c), or (d) takes
place, then Q̂|m| = Q̃|m| = Q̌|m| = QF

m,

θ̂ = θ̃ = θ̌ = max

{
|Φ(ξ)|

ρξ(F,m)
: ξ ∈ P(F,m)

}
. (1.8)

Since the space of all polynomials of degree at most |m| has a finite dimension,
all of its norms are equivalent. This implies that the norm in (b), (c), and (d) can
be replaced by any norm. The estimates of the rates of convergences of (Rµ

n,m)n∈N,

(RE
n,m)n∈N, and (Rα

n,m)n∈N can be found in [2, Theorem 1.2], [3, Theorem 1.3],
and [4, Theorem 1.4.], respectively. Moreover, we would like to emphasize that

in Theorem B the assumption that µ ∈ Reg
|m|
1,2 (E) is only for the convergence

of (Qµn,m)n∈N and the assumption that α satisfies the condition (1.6) is only for
the convergence of (Qαn,m)n∈N. In other words, (a) and (c) are equivalent without

assuming that µ ∈ Reg
|m|
1,2 (E) or α satisfies the condition (1.6).

In the current paper, we are interested in studying further about the rates of
convergences of zeros of Qµn,m, Q

E
n,m, and Qαn,m (when m is fixed and n→∞) to

the system poles of F ∈ H(E)d.
An outline of this paper is as follows. The main results in this paper are stated

in Section 2. The proofs of the main results are in Section 3.
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2 Main Results

Given ξ ∈ C and m ∈ Nd, the notations ∆µ, σµ, δµj , ∆E , σE , δEj , ∆α, σα, and
δαj in Theorem 2.1 and Corollary 2.1 are defined as in Section 1 taking for n ∈ N,

Pµn,m := {ξ̂n,1, ξ̂n,2, . . . , ξ̂n,(µ,m)n}, (µ,m)n ≤ |m|,

PEn,m := {ξ̃n,1, ξ̃n,2, . . . , ξ̃n,(E,m)n}, (E,m)n ≤ |m|,

Pαn,m := {ξ̌n,1, ξ̌n,2, . . . , ξ̌n,(α,m)n}, (α,m)n ≤ |m|,

to be the collections of zeros of Qµn,m, Q
E
n,m, and Qαn,m enumerated in nondecreas-

ing distance to ξ, respectively,

Theorem 2.1. Let F ∈ H(E)d and fix m ∈ Nd. Assume that ξ is a system pole
of order ν of F with respect to m. Then, the following are true.

(a) If µ ∈ Reg2(E), then

∆µ(ξ) ≤ |Φ(ξ)|
ρξ(F,m)

and σµ(ξ) ≥ ν.

(b)

∆E(ξ) ≤ |Φ(ξ)|
ρξ(F,m)

and σE(ξ) ≥ ν.

(c) If α satisfies the condition (1.5), then

∆α(ξ) ≤ |Φ(ξ)|
ρξ(F,m)

and σα(ξ) ≥ ν.

Corollary 2.1. Let F ∈ H(E)d and fix m ∈ Nd. Assume that ξ is a system pole
of order ν of F with respect to m. Then, the following are true.

(a) Assume further that µ ∈ Reg2(E) and lim infn→∞ |ξ − ξ̂n,ν+1| > 0. Then,

δµ1 (ξ) ≤ δµ2 (ξ) ≤ . . . ≤ δµν (ξ) ≤
(
|Φ(ξ)|

ρξ(F,m)

)1/ν

. (2.1)

In particular, δµ1 (ξ) = δµ2 (ξ) = . . . = δµν (ξ) = (|Φ(ξ)|/ρξ(F,m))
1/ν

if and
only if ∆µ(ξ) = |Φ(ξ)|/ρξ(F,m).

(b) Assume further that lim infn→∞ |ξ − ξ̃n,ν+1| > 0. Then,

δE1 (ξ) ≤ δE2 (ξ) ≤ . . . ≤ δEν (ξ) ≤
(
|Φ(ξ)|

ρξ(F,m)

)1/ν

. (2.2)

In particular, δE1 (ξ) = δE2 (ξ) = . . . = δEν (ξ) = (|Φ(ξ)|/ρξ(F,m))
1/ν

if and
only if ∆E(ξ) = |Φ(ξ)|/ρξ(F,m).
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(c) Assume further that α satisfies the condition (1.5) and lim infn→∞ |ξ −
ξ̌n,ν+1| > 0. Then,

δα1 (ξ) ≤ δα2 (ξ) ≤ . . . ≤ δαν (ξ) ≤
(
|Φ(ξ)|

ρξ(F,m)

)1/ν

. (2.3)

In particular, δα1 (ξ) = δα2 (ξ) = . . . = δαν (ξ) = (|Φ(ξ)|/ρξ(F,m))
1/ν

if and
only if ∆α(ξ) = |Φ(ξ)|/ρξ(F,m).

3 Proofs of Main Results

Before we give a proof of Theorem 2.1, let us state the main lemma (see [2,
Equation (18)], [3, Equation (2.5)], and [4, Lemma 2.1]).

For each n ∈ N, let qµn,m, q
E
n,m, and qαn,m be the polynomials Qµn,m, Q

E
n,m, and

Qαn,m normalized so that

|m|∑
k=0

|λ̂n,k| = 1, qµn,m(z) =

|m|∑
k=0

λ̂n,kz
k,

|m|∑
k=0

|λ̃n,k| = 1, qEn,m(z) =

|m|∑
k=0

λ̃n,kz
k,

|m|∑
k=0

|λ̌n,k| = 1, qαn,m(z) =

|m|∑
k=0

λ̌n,kz
k,

respectively.

Lemma 3.1. Let F ∈ H(E)d and fix m ∈ Nd. Assume that ξ is a system pole of
order ν of F with respect to m. Then, the following are true.

(a) If µ ∈ Reg2(E), then for all j = 0, 1, . . . , ν − 1,

lim sup
n→∞

|(qµn,m)(j)(ξ)|1/n ≤ |Φ(ξ)|
ρξ(F,m)

.

(b) For all j = 0, 1, . . . , ν − 1,

lim sup
n→∞

|(qEn,m)(j)(ξ)|1/n ≤ |Φ(ξ)|
ρξ(F,m)

.

(c) If α satisfies the condition (1.5), then for all j = 0, 1, . . . , ν − 1,

lim sup
n→∞

|(qαn,m)(j)(ξ)|1/n ≤ |Φ(ξ)|
ρξ(F,m)

.
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Proof of Theorem 2.1. We will show that

∆µ(ξ) ≤ |Φ(ξ)|
ρξ(F,m)

, σµ(ξ) ≥ ν. (3.1)

The proofs of

∆E(ξ) ≤ |Φ(ξ)|
ρξ(F,m)

, σE(ξ) ≥ ν, (3.2)

∆α(ξ) ≤ |Φ(ξ)|
ρξ(F,m)

σα(ξ) ≥ ν. (3.3)

are identical to the proof of (3.1). So, we skip the proofs of (3.2) and (3.3). From
Lemma 3.1, we have for all j = 0, 1, . . . , ν − 1,

lim sup
n→∞

|(qµn,m)(j)(ξ)|1/n ≤ |Φ(ξ)|
ρξ(F,m)

. (3.4)

Now, we want to show that

lim
n→∞

ξ̂n,j = ξ, j = 1, 2, . . . , ν, (3.5)

i.e., there exist at least ν zeros of Qµn,m converge to ξ. By the normalization of
qµn,m, it suffices to show that for any subsequence of indices Ω such that

lim
n∈Ω

qµn,m = qΩ,

qΩ is a non-null polynomial with a zero of order at least ν at ξ. Due to the
normalization of qµn,m, qΩ 6≡ 0. Computing Taylor’s expansion of qµn,m around ξ,
we obtain

qµn,m(z) =

|m|∑
k=0

(qµn,m)(k)(ξ)

k!
(z − ξ)k.

Applying (3.4) and the Weierstrass approximation theorem for derivatives, we have

qΩ(z) = lim
n∈Ω

qµn,m(z) = lim
n∈Ω

|m|∑
k=0

(qµn,m)(k)(ξ)

k!
(z − ξ)k =

|m|∑
k=ν

(qΩ)(k)(ξ)

k!
(z − ξ)k,

which implies what we wanted.
Let ε > 0 be sufficiently small so that B(ξ, 2ε) contains no other system pole of

F with respect to m. Let ξ̂n,1, . . . , ξ̂n,σn be the zeros of qµn,m contained in B(ξ, 2ε).
By (3.5), we have ν ≤ σn ≤ |m| for all sufficiently large n. In the sequel, we only
consider such values of n. Set

Q̂n(z) :=

σn∏
j=1

(z − ξ̂n,j).
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It is easy to check that the functions Q̂n/q
µ
n,m are holomorphic in B(ξ, 2ε) and

uniformly bounded on any compact subset of B(ξ, 2ε), in particular on B(ξ, ε).
Therefore, by Cauchy’s integral formula, for any j = 0, 1, . . . , ν − 1, the sequence
((Q̂n/q

µ
n,m)(j))n∈N is bounded on B(ξ, ε). Using Leibniz’s formula and the inequal-

ities in (3.4), we obtain

lim sup
n→∞

|Q̂(j)
n (ξ)|1/n = lim sup

n→∞

∣∣∣∣∣∣
(
qµn,m

Q̂n
qµn,m

)(j)

(ξ)

∣∣∣∣∣∣
1/n

= lim sup
n→∞

∣∣∣∣ j∑
k=0

(
j

k

)
(qµn,m)(k)(ξ)

(
Q̂n
qµn,m

)(j−k)

(ξ)

∣∣∣∣1/n ≤ |Φ(ξ)|
ρξ(F,m)

< 1, (3.6)

for each j = 0, . . . , ν − 1.
Finally, we want to show that

∆µ(ξ) ≤ |Φ(ξ)|
ρξ(F,m)

and σµ(ξ) ≥ ν. (3.7)

Using (3.6) for j = 0 and the ordering imposed on the indexing of zeros of Qµn,m,
it follows that

∆µ(ξ) = lim sup
n→∞

|Qµn,m(ξ)|1/n1 = lim sup
n→∞

|Q̂n(ξ)|1/n ≤ |Φ(ξ)|
ρξ(F,m)

< 1

and
lim sup
n→∞

|ξ − ξ̂n,1|1/n < 1

so that σµ(ξ) ≥ 1. Assume that for each j = 1, . . . , k, where k ≤ ν − 1,

lim sup
n→∞

|ξ − ξ̂n,j |1/n < 1, (3.8)

and let us show that it is also true for k + 1. Consider Q̂
(k)
n (ξ). Notice that one

of the terms thus obtained is
∏σn
j=k+1(ξ − ξ̂n,j) and each one of the other terms

contains at least one factor of the form (ξ− ξ̂n,j) for some j = 1, . . . , k. Combining
(3.6) for j = k and (3.8), it follows that

lim sup
n→∞

∣∣ σn∏
j=k+1

(ξ − ξ̂n,j)
∣∣1/n < 1,

and due to the ordering of the indices, we get

lim sup
n→∞

|ξ − ξ̂n,k+1|1/n < 1.

Therefore, σµ(ξ) ≥ ν.
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Proof of Corollary 2.1. Again we will prove only (a). The proofs of (b) and (c)
are the same as the one of (a).

Let us use the same notation defined in the proof of Theorem 2.1. By our
assumption, we can assume that

Q̂n(z) =

ν∏
j=1

(z − ξ̂n,j).

Recall that for each j = 0, 1, . . . , ν − 1,

lim sup
n→∞

|Q̂(j)
n (ξ)|1/n ≤ |Φ(ξ)|

ρξ(F,m)
.

Combining these inequalities and the expression,

Q̃n(z) = (z − ξ)ν +

ν−1∑
k=0

Q̃
(k)
n (ξ)

k!
(z − ξ)k,

we have

lim sup
n→∞

‖(z − ξ)ν − Q̃n(z)‖1/n
B(ξ,2ε)

≤ |Φ(ξ)|
ρξ(F,m)

.

In particular, if we replace z by ξ̂n,ν , then

δµν (ξ) = lim sup
n→∞

|ξ̂n,ν − ξ|1/n ≤
(
|Φ(ξ)|

ρξ(F,m)

)1/ν

.

This clearly implies (2.1).
By Theorem 2.1, ∆µ(ξ) ≤ |Φ(ξ)|/ρξ(F,m) is always true. Since lim infn→∞ |ξ−

ξ̂n,ν+1| > 0, ∆µ(ξ) = δµ1 (ξ)δµ2 (ξ) . . . δµν (ξ). Therefore, δµ1 (ξ) = δµ2 (ξ) = . . . =

δµν (ξ) = (|Φ(ξ)|/ρξ(F,m))
1/ν

if and only if ∆µ(ξ) = |Φ(ξ)|/ρξ(F,m).
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