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1 Introduction
Simultaneous Padé approximation (or Hermite-Padé approximation) has been

studied for a long time. Making use of this approximation, Hermite [1] proved
that e is transcendental in 1873. This approximation was systematically reintro-
duced for general vectors of approximated functions in [2]. Most of the studies of
simultaneous Padé approximation were concentrated on diagonal sequences (for
more information, see some important papers [3, 4, 5, 6] and some survey papers
[7, 8] in this direction). There are very few papers [9, 10, 11, 12, 13] dedicated
to the study of row sequences. The pioneering one in this direction is the work
of Graves-Morris and Saff [10] where they proved an analogue of the Montessus
de Ballore theorem. The other significant work in this direction is due to Cacoq,
de la Calle, and López [9] where they proved some results on the inverse problem
of row sequences. In last few years, these simulaneous Padé approximants were
generalized in various forms such as orthogonal Hermite-Padé approximants, mul-
tipoint Hermite-Padé approximants, simultaneous Padé-Faber approximants, and
simultaneous Padé-orthogonal approximants (see [14, 15, 16, 17, 18, 19]).

In this paper, we study convergences of two generalizations of simultaneous
Padé approximation. The first approximation is based on orthogonal polynomials
on a general compact set and is called simultaneous Padé-orthogonal approxi-
mation. The concept of simultaneous Padé-orthogonal approximation was first
introduced by Cocoq and López in [20]. In their paper, those simultaneous Padé-
orthogonal approximants are called simultaneous Fourier-Padé approximants and
are constructed from orthogonal polynomial on the unit circle. They obtained
convergence of row sequences of simultaneous Padé-orthogonal approximants. In
[14], the definition of Cocoq and López was extended to more general compact
set and convergence theorem for row sequences of the corresponding appriximants
was proved. Simultaneous Padé-orthogonal approximation is defined as follows.

Let E be an infinite compact subset of the complex plane C such that C \ E
is simply connected. Denote by K the collection of these compact sets. Let µ be
a finite positive Borel measure with an infinite support supp(µ) contained in E.
We write µ ∈M(E) and define the associated inner product

〈g, h〉µ :=
∫
g(ζ)h(ζ)dµ(ζ), g, h ∈ L2(µ).

Let
pn(z) := κnz

n + · · · , κn > 0, n = 0, 1, 2, . . . ,

be the orthonormal polynomial of degree n with respect to µ with positive leading
coefficient; that is 〈pn, pm〉µ = δn,m. Define

H(E)d := {(F1, F2, . . . , Fd) : Fα ∈ H(E) for all α = 1, 2, . . . , d},

where H(E) is the space of all functions holomorphic in some neighborhood of E.
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Definition 1.1. Let E ∈ K, F = (F1, F2, . . . , Fd) ∈ H(E)d and µ ∈ M(E). Fix
a multi-index m = (m1,m2, . . . ,md) ∈ Nd0 \ {0} where 0 is the zero vector in Nd0.
Set |m| := m1 +m2 + · · ·+md. Then, for each n ≥ max{m1,m2, . . . ,md}, there
exist polynomials qµn,m, pµn,m,α, where α = 1, 2, . . . , d, such that

deg(pµn,m,α) ≤ n−mα, deg(qµn,m) ≤ |m|, qµn,m 6≡ 0,

〈qµn,mFα − pµn,m,α, pj〉µ = 0, j = 0, 1, . . . , n.
The vector of rational functions

Rµ
n,m = (Rµn,m,1, R

µ
n,m,2, . . . , R

µ
n,m,d)

:= (pµn,m,1/q
µ
n,m, p

µ
n,m,2/q

µ
n,m, . . . , p

µ
n,m,d/q

µ
n,m)

is called an (n,m) simultaneous Padé-orthogonal approximant of F with respect
to µ.

Indeed, finding qµn,m is equivalent to solving a system of |m| homogeneous
linear equations with |m|+1 unknowns. Then, qµn,m always exists. Since qµn,m 6≡ 0,
we normalize qµn,m to be a “monic” polynomial. Moreover, for each α = 1, 2, . . . , d,
pµn,m,α is uniquely determined by qµn,m. Therefore, for any pair (n,m), a vector of
rational functions Rµ

n,m always exists but may not be unique.
Now, we introduce a definition of poles for a vector of functions.

Definition 1.2. Let Ω := (Ω1,Ω2, . . . ,Ωd) be a system of domains such that for
each α = 1, 2, . . . , d, Fα is meromorphic in Ωα. We say that the point λ is a pole
of F in Ω of order τ if there exists an index α ∈ {1, 2, . . . , d} such that λ ∈ Ωα
and it is a pole of Fα of order τ , and for β 6= α either λ is a pole of Fβ of order
less than or equal to τ or λ /∈ Ωβ . When Ω := (Ω,Ω, . . . ,Ω), we say that λ is a
pole of F in Ω.

The second approximation is based on Faber polynomials defined as follows.
Let E ∈ K and Φ be the exterior conformal mapping from C \ E onto C \ {w ∈
C : |w| ≤ 1} satisfying Φ(∞) = ∞ and Φ′(∞) > 0. For each ρ > 1, we define a
level curve with respect to E of index ρ and a canonical domain with respect to E
of index ρ by

Γρ := {z ∈ C : |Φ(z)| = ρ} and Dρ := E ∪ {z ∈ C : |Φ(z)| < ρ},

respectively. Let F ∈ H(E)d. Denote by ρ|m|(F) the index ρ > 1 of the largest
canonical domain Dρ to which F has at most |m| poles. The Faber polynomial of
degree n for E is defined by the formula

Φn(z) := 1
2πi

∫
Γρ

Φn(t)
t− z

dt, z ∈ Dρ, n = 0, 1, 2, . . . (1.1)

and the Faber coefficient of F ∈ H(E) with respect to Φn is given by

[F ]n := 1
2πi

∫
Γρ

F (t)Φ′(t)
Φn+1(t) dt, (1.2)

where ρ ∈ (1, ρ0(F )).
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Definition 1.3. Let E ∈ K and F = (F1, F2, . . . , Fd) ∈ H(E)d. Fix a multi-
index m = (m1,m2, . . . ,md) ∈ Nd0 \ {0}. Set |m| := m1 + m2 + · · · + md. Then,
for each n ≥ max{m1,m2, . . . ,md}, there exist polynomials qEn,m, pEn,m,α, where
α = 1, 2, . . . , d, such that

deg(pEn,m,α) ≤ n−mα, deg(qEn,m) ≤ |m|, qEn,m 6≡ 0,

[qEn,mFα − pEn,m,α]j = 0, j = 0, 1, . . . , n.

The vector of rational functions

RE
n,m = (REn,m,1, R

E
n,m,2, . . . , R

E
n,m,d)

:= (pEn,m,1/q
E
n,m, p

E
n,m,2/q

E
n,m, . . . , p

E
n,m,d/q

E
n,m)

is called an (n,m) simultaneous Padé-Faber approximant of F corresponding to
E.

Using the same line of reasoning, for any pair (n,m), we normalize qEn,m to
be a “monic” polynomial and a vector of rational functions RE

n,m always exists
but may not be unique. In [15] and [16], the idea of simultaneous Padé-Faber
approximants was introduced and analogues of Montessus de Ballore’s theorem
for simultaneous Padé-Faber approximants were proved.

Next, let us introduce the concept of convergence in Hausdorff content. Let B
be a subset of the complex plane C. By U(B), we denote the class of all coverings
of B by at most a countable set of disks. Let β > 0 and set

hβ(B) := inf


∞∑
j=1
|Uj |β : {Uj} ∈ U(B)

 ,

where |Uj | is the radius of the disk Uj . This notation hβ(B) is called the β-
dimensional Hausdorff content of the set B. This set function is not a measure
but it is subadditive and monotonic. Clearly, if B is a disk, then hβ(B) = |B|β .

Definition 1.4. Let {gn}n∈N be a sequence of complex valued functions defined
on a domain D ⊂ C and g another complex function defined on D. We say that
{gn}n∈N converges in β-dimensional Hausdorff content to the function g inside D
if for every compact subset K of D and for each ε > 0, we have

lim
n→∞

hβ{z ∈ K : |gn(z)− g(z)| > ε} = 0.

Such a convergence will be denoted by hβ − limn→∞ gn = g in D.

In this paper, we prove convergences in Hausdorff content of those two gener-
alizations when the sequences of indices {(n,mn)} satisfy the limit below

lim
n→∞

|mn| lnn
n

= 0. (1.3)
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This type of sequences was introduced by Gonchar [21] for Padé (α, β)-approximants.
We prove results analogous to Theorem 2 in [21] for two generalizations of simul-
taneous Padé approximants. As consequences of our main theorems, we give al-
ternate proofs of the Montessus de Ballore type theorem for those generalizations.

The outline of this paper is as follows. Section 2 contains our main results.
We collect needed auxiliary lemmas in Section 3. Section 4 is dedicated to the
proofs of all results in Section 2.

2 Main Results
Before we state our results about the convergence of simultaneous Padé-orthogonal

approximants, we need to define a class of measures and some more notation.
A class of measures that we are interested is R(E) ⊂ M(E). We write µ ∈
R(E) when the corresponding sequence of orthonormal polynomials has ratio
asymptotics; that is

lim
n→∞

pn(z)
pn+1(z) = 1

Φ(z) ,

uniformly on each compact subset of C \ E. Moreover, we restrict ourselves to a
smaller collection of compact sets E defined as follows. Denote by K1 the collection
of all sets E ∈ K such that the inverse function of Φ can be extended continuously
to C \ {w ∈ C : |w| < 1}.

The following theorem is our main result on simultaneous Padé-orthogonal
approximants which is an analogue of Theorem 2 in [21].

Theorem 2.1. Let E ∈ K1, ρ > 1, µ ∈ R(E), and F = (F1, F2, . . . , Fd) ∈ H(E)d
be a vector of functions meromorphic in Dρ. Suppose that for each α = 1, 2, . . . , d,
Fα has exactly ν(Fα, Dρ) poles (counting multiplicities) in Dρ and the sequence
{mn} := {(mn,1,mn,2, . . . ,mn,d)} satisfies the following conditions

lim inf
n→∞

mn,α ≥ ν(Fα, Dρ), α = 1, 2, . . . , d

and
lim
n→∞

|mn| lnn
n

= 0.

Then for any fixed numbers β > 0 and α = 1, 2, . . . , d, each sequence {Rµn,mn,α}
converges in β-dimensional Hausdorff content to Fα inside Dρ as n→∞.

As a consequence of Theorem 2.1, we can prove a Montessus de Ballore type
theorem for simultaneous Padé-orthogonal approximants which was earlier proved
in [14, Theorem 2.4] stated below. Given F = (F1, F2, . . . , Fd) ∈ H(E)d and a
multi-index m := (m1,m2, . . . ,md) ∈ Nd0 \ {0}, we define

Dm(F) := (Dρm1
(F1), Dρm2

(F2), . . . , Dρmd
(Fd)).
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Corollary 2.2. Let E ∈ K1, µ ∈ R(E), and F = (F1, F2, . . . , Fd) ∈ H(E)d. For
each α = 1, 2, . . . , d, suppose that Fα has poles of total multiplicity mα in Dρmα (Fα)
at the points λα,1, λα,2, . . . , λα,mα and F has exactly |m| poles in Dm(F) where
m := (m1,m2, . . . ,md). Then, Rµ

n,m is uniquely determined for all sufficiently
large n and for any α = 1, 2, . . . , d, {Rµn,m,α} converges uniformly to Fα on each
compact subset of Dρmα (Fα)\{λα,1, λα,2, . . . , λα,mα} as n→∞. Moreover, for each
α = 1, 2, . . . , d and for any compact subset K of Dρmα (Fα)\{λα,1, λα,2, . . . , λα,mα},

lim sup
n→∞

‖Fα −Rµn,m,α‖
1/n
K ≤ ‖Φ‖K

ρmα(Fα) ,

where ‖ · ‖K denotes the sup-norm on K and if K ⊂ E, then ‖Φ‖K is replaced by
1.

Corollary 2.3. Let E ∈ K1, µ ∈ R(E), and F = (F1, F2, . . . , Fd) ∈ H(E)d. For
each α = 1, 2, . . . , d, denote by

Dρ∞(Fα) :=
∞⋃
j=0

Dρj(Fα)

the maximal canonical domain in which Fα can be continued to a meromorphic
function. Assume that

lim inf
n→∞

mn,α =∞, α = 1, 2, . . . , d

and
lim
n→∞

|mn| lnn
n

= 0.

Then for any fixed numbers β > 0 and α = 1, 2, . . . , d, each sequence {Rµn,mn,α}
converges in β-dimensional Hausdorff content to Fα inside Dρ∞(Fα) as n→∞.

Note that the scalar case of the above two results were obtained in [22].
Similar results for simultaneous Padé-Faber approximants are stated below.

Theorem 2.4. Let E ∈ K, ρ > 1 and F = (F1, F2, . . . , Fd) ∈ H(E)d be a vector
of functions meromorphic in Dρ. Suppose that for each α = 1, 2, . . . , d, Fα has
exactly ν(Fα, Dρ) poles (counting multiplicities) in Dρ and the sequence {mn} :=
{(mn,1,mn,2, . . . ,mn,d)} satisfies the following conditions

lim inf
n→∞

mn,α ≥ ν(Fα, Dρ), α = 1, 2, . . . , d

and
lim
n→∞

|mn| lnn
n

= 0.

Then for any fixed numbers β > 0 and α = 1, 2, . . . , d, each sequence {REn,mn,α}
converges in β-dimensional Hausdorff content to Fα inside Dρ as n→∞.
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The following corollary coincides with Theorem 1 in [15].

Corollary 2.5. Let E ∈ K and F = (F1, F2, . . . , Fd) ∈ H(E)d. For each α =
1, 2, . . . , d, suppose that Fα has poles of total multiplicity mα in Dρmα (Fα) at the
points λα,1, λα,2, . . . , λα,mα and F has exactly |m| poles in Dm(F) where m :=
(m1,m2, . . . ,md). Then, RE

n,m is uniquely determined for all sufficiently large n
and for any α = 1, 2, . . . , d, {REn,m,α} converges uniformly to Fα on each compact
subset of Dρmα (Fα) \ {λα,1, λα,2, . . . , λα,mα} as n → ∞. Moreover, for each α =
1, 2, . . . , d and for any compact subset K of Dρmα (Fα) \ {λα,1, λα,2, . . . , λα,mα},

lim sup
n→∞

‖Fα −REn,m,α‖
1/n
K ≤ ‖Φ‖K

ρmα(Fα) ,

where ‖ · ‖K denotes the sup-norm on K and if K ⊂ E; then ‖Φ‖K is replaced by
1.

Corollary 2.6. Let E ∈ K and F = (F1, F2, . . . , Fd) ∈ H(E)d. Assume that

lim inf
n→∞

mn,α =∞, α = 1, 2, . . . ,

and
lim
n→∞

|mn| lnn
n

= 0.

Then for any fixed numbers β > 0 and α = 1, 2, . . . , d, each sequence {REn,mn,α}
converges in β-dimensional Hausdorff content to Fα inside Dρ∞(Fα) as n→∞.

3 Auxiliary Lemmas
In this section, we keep all needed notations and lemmas. Let E ∈ K and

µ ∈M(E). We define the n-th Fourier coefficient of G ∈ H(E) with respect to pn
by

〈G〉n := 〈G, pn〉µ =
∫
G(z)pn(z)dµ(z).

We say that µ ∈ Reg1(E) ⊂M(E) when

lim
n→∞

|pn(z)|1/n = |Φ(z)|, (3.1)

uniformly on each compact subset of C\E. The following two lemmas (see, e.g., [17,
Lemma 2.1] and [23]) concern the formulas for computing ρ0(G) and the domain
of convergence of orthogonal and Faber polynomial expansions of holomorphic
functions.

Lemma 3.1. Let E ∈ K, G ∈ H(E) and µ ∈ Reg1(E). Then,

ρ0(G) =
(

lim sup
n→∞

|〈G〉n|1/n
)−1

.

Moreover, the series
∑∞
n=0〈G〉npn(z) converges to G(z) uniformly on each compact

subset of Dρ0(G).
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Lemma 3.2. Let E ∈ K and G ∈ H(E). Then,

ρ0(G) =
(

lim sup
n→∞

|[G]n|1/n
)−1

.

Moreover, the series
∑∞
n=0[G]nΦn(z) converges to G(z) uniformly on each compact

subset of Dρ0(G).

The second type functions sn defined by

sn(z) :=
∫
pn(ζ)
z − ζ

dµ(ζ), z ∈ C \ supp(µ),

are very useful in our proofs. The next lemma (see [24, Lemma 3.1]) is the asymp-
totic relation between the orthogonal polynomials pn and the second type functions
sn.

Lemma 3.3. Let E ∈ K1. If µ ∈ R(E), then

lim
n→∞

pn(z)sn(z) = Φ′(z)
Φ(z) ,

uniformly on each compact subset of C \ E. Consequently, for any compact set
K ⊂ C \ E, there exists n0 ∈ N such that sn(z) 6= 0 for all z ∈ K and n ≥ n0.

A simple relation (see [17, Lemma 2.2]) used frequently in this paper is con-
tained in

Lemma 3.4. Let E ∈ K, G ∈ H(E), k ∈ N0, and ρ ∈ (1, ρ0(G)). Then,

〈G〉k = 1
2πi

∫
Γρ
G(w)sk(w)dw. (3.2)

The following lemma (see [25, page 43] or [26, page 583] for its proof) gives an
estimate of Faber polynomials on on a level curve.

Lemma 3.5. Let ρ > 1 be fixed. Then, there exists c > 0 such that

‖Φn‖Γρ ≤ cρ
n, n ≥ 0. (3.3)

Indeed, by the maximum modulus principle, the inequalities (3.3) can be replaced
by the inequalities

‖Φn‖Dρ ≤ cρ
n, n ≥ 0. (3.4)

The following lemma is about the uniqueness of the common denominators of
generalized simultaneous Padé approximants to polynomial expansions.
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Lemma 3.6. Let (n,m) ∈ N × Nd0 \ {0} be fixed. Then the following assertions
hold:

(b) If for all qµn,m in Definition 1.1, deg qµn,m = |m|, then qµn,m is unique.

(b) If for all qEn,m in Definition 1.3, deg qEn,m = |m|, then qEn,m is unique.

Proof of Lemma 3.6. Without loss of generality, we may consider only in the case
of qµn,m. From Definition 1.1, a polynomial c|m|z|m|+c|m|−1z

|m|−1+. . .+c0 is qµn,m
if and only if it is monic and the coefficients c|m|, c|m|−1, . . . , c0 satisfy the following
system of |m| linear equations: for all α = 1, 2, . . . , d and j = n − mα + 1, j =
n−mα + 2, . . . , n,

|m|∑
k=0

ck〈zkFα〉j = 0. (3.5)

Suppose for a contradiction that there are 2 distinct monic polynomials q1
and q2 of degree |m| which satisfy all conditions of qµn,m. Then there exists a
polynomial q := q1 − q2 6= 0 of degree less than |m|. Obviously, all coefficients of
q satisfies (3.5). By normalize q to be a monic polynomial, a contradiction on the
degree of qµn,m occurs.

The determinant of the matrix in the following lemma will be used in our
proofs of the main theorems.

Lemma 3.7. Let Φ be the exterior conformal mapping from C \E onto C \ {w ∈
C : |w| ≤ 1} satisfying Φ(∞) =∞ and Φ′(∞) > 0. Assume that λ1, λ2, . . . , λq are
distinct points in C \ E and τj ≥ 0 for all j = 1, 2, . . . , q. Define m :=

∑q
j=1 τj

and the m×m matrix as follows

∆ :=


(
Φm−1) (λj) · · ·

(
Φm−1)(τj−1) (λj)(

Φm−2) (λj) · · ·
(
Φm−2)(τj−1) (λj)

... · · ·
...

1 · · · 0


j=1,2,...,q

, (3.6)

where the subindex on the determinant means that the indicated group of columns
are successively written for j = 1, 2, . . . , q. Then,

det(∆) =
q∏
j=1

(τj − 1)!!(Φ′(λj))τj(τj−1)/2
∏

1≤i<j≤q
(Φ(λj)− Φ(λi))τjτi , (3.7)

where n!! stands for 0!1! · · ·n!.

The proof of the above lemma is similar to the one of Theorem 1 in [27].
The final lemma proved by Gonchar (see [21, Lemma 1]) allows us to derive

uniform convergence on compact subsets of the region under consideration from
convergence in h1-content under appropriate assumptions.



10 Thai J. Math. (Special Issue, 2020)/ M. Wajasat and N. Bosuwan

Lemma 3.8. Suppose that h1-limn→∞ gn = g in D. Then the following assertions
hold true:

(i) If the functions gn, n ∈ N, are holomorphic in D, then the sequence {gn}n∈N
converges uniformly inside D and g is holomorphic in D.

(ii) If each of the functions gn is meromorphic in D and has no more than
k < +∞ poles in this domain, then the limit function g is also meromorphic
and has no more than k poles in D.

(iii) If each function gn is meromorphic and has no more than k < +∞ poles
in D and the function g is meromorphic and has exactly k poles in D,
then all gn, n ≥ N, also have k poles in D; the poles of gn tend to the poles
λ1, λ2, . . . , λk of g (taking account of their orders) and the sequence {gn}n∈N
tends to g uniformly inside the domain D′ = D \ {λ1, λ2, . . . , λk}.

4 Proofs of main results
Proof of Theorem 2.1. We normalize the polynomials qµn,mn in terms of its zeros
λn,j such that

Qµn,mn
(z) :=

∏
|λn,j |≤1

(z − λn,j)
∏

|λn,j |>1

(
1− z

λn,j

)
(4.1)

and for each α = 1, 2, . . . , d,

Rµn,mn,α = pµn,mn,α

qµn,mn

= Pµn,mn,α

Qµn,mn

.

With this normalization, we can estimate upper and lower bounds on the normal-
ized Qµn,mn .

Let α ∈ {1, 2, . . . , d} be fixed. Denote by mα := ν(Fα, Dρ) the number of
poles of Fα in Dρ. We fix ε > 0 and cover each pole of Fα in Dρmα (Fα) with an
open disk of radius (ε/(6mα))1/β and denote by Jβ0,ε(Fα,mα) the union of these
disks. We cover each zero of Qµn,mn with an open disk of radius (ε/(6|mn|n2))1/β

and denote by Jβn,ε(F) the union of these disks. For each k > 0, we set

Jβε (Fα,mα; k) := Jβ0,ε(Fα,mα)
⋃ ∞⋃

n=k
Jβn,ε(F)

 .

By using the monotonicity and subadditivity of hβ , it easy to check that for any
k > 0,

hβ(Jβε (Fα,mα; k)) < ε

and Jβε1
(Fα,mα; k) ⊂ Jβε2

(Fα,mα; k) for ε1 < ε2. For any set B ⊂ Dρmα (Fα),
we put B(ε; k) := B \ Jβε (Fα,mα; k). It is easy to check that if for any compact
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subset K ⊂ Dρmα (Fα) and ε > 0, there exists k ∈ N such that {gn}n∈N converges
uniformly to g on K(ε; k), then hβ − limn→∞ gn = g in Dρmα (Fα).

Due to the normalization in (4.1), for any compact subset K ⊂ Dρmα (Fα),
ε > 0 be fixed, and k > 0, there exist positive constants C1 > 0 and C2 > 0
independent of n such that for all sufficiently large n,∥∥∥Qµn,mn

∥∥∥
K
≤ C |mn|

1 , (4.2)

and
min

z∈K\Jβε (Fα,mα;k)
|Qµn,mn

(z)| ≥ (C2|mn|n2)−2|mn|/β . (4.3)

Since µ ∈ R(E), it follows that

lim
n→∞

pn(z)
pn+l(z)

= 1
Φ(z)l , l = 0, 1, 2, . . . , (4.4)

uniformly on each compact subset of C \ E. Then from (4.4) and Lemma 3.3, we
obtain

lim
n→∞

sn+l(z)
sn(z) = lim

n→∞

pn(z)
pn+l(z)

pn+l(z)sn+l(z)
pn(z)sn(z) = 1

Φ(z)l
Φ(z)′/Φ(z)
Φ(z)′/Φ(z) = 1

Φ(z)l ,

(4.5)
uniformly on each compact subset of C \ E. Moreover, it follows from (4.4) and
(4.5) that

lim
n→∞

|pn(z)|1/n = |Φ(z)|, (4.6)

and
lim
n→∞

|sn(z)|1/n = 1
|Φ(z)| , (4.7)

uniformly on each compact subset of C \ E, respectively.
Define

QFα(z) :=
q∏
j=1

(z − λj)τj ,

where λ1, λ2, . . . , λq are distinct poles of Fα in Dρmα (Fα) and τ1, τ2, . . . , τq are their
multiplicities. From the definition of simultaneous Padé-orthogonal approximants
and Lemma 3.1, we have

Qµn,mn
(z)Fα(z)− Pµn,mn,α(z) =

∞∑
k=n+1

a
(α)
k,npk(z), z ∈ Dρ0(Fα), (4.8)

where
a

(α)
k,n := 〈Qµn,mn

Fα〉k, k = 0, 1, 2, . . . ,
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and a
(α)
k,n = 0, for all k = n −mn,α + 1, n −mn,α + 2, . . . , n. Multiplying (4.8) by

QFα(z) and expanding the result in terms of the orthogonal system {pν}∞ν=0 such
that for z ∈ Dρmα (Fα),

QFα(z)Qµn,mn
(z)Fα(z)−QFα(z)Pµn,mn,α(z) =

∞∑
k=n+1

QFα(z)a(α)
k,npk(z)

=
∞∑
ν=0

b(α)
ν,npν(z) =

n+|mn|−mn,α∑
ν=0

b(α)
ν,npν(z) +

∞∑
ν=n+|mn|−mn,α+1

b(α)
ν,npν(z). (4.9)

Let K be a compact subset of Dρmα (Fα) and set

σ := max{‖Φ‖K , 1} (4.10)

(σ = 1 when K ⊂ E). Choose δ > 0 sufficiently small such that

ρ1 := ρmα(Fα)− δ > ρmα−1(Fα), ρ1 − δ > 1, and σ + δ

ρ1 − δ
< 1. (4.11)

First, we approximate
∑∞
ν=n+|mn|−mn,α+1 |b

(α)
ν,n||pν(z)| on Dσ. Due to the

inequality in (4.2) and Lemma 3.4, it follows that for ν ≥ n+ |mn| −mn,α + 1,

|b(α)
ν,n| = |〈QFαQµn,mn

Fα −QFαPµn,mn,α〉ν | = |〈Q
FαQµn,mn

Fα〉ν |

=

∣∣∣∣∣ 1
2πi

∫
Γρ1

QFα(z)Qµn,mn
(z)Fα(z)sv(z)dz

∣∣∣∣∣ ≤ c1C |mn|
1 ‖sν‖Γρ1

,
(4.12)

where the constant c1 does not depend on n (from now on, we will denote some
constants that do not depend on n by c2, c3, . . .). By using (4.7), there exists
n0 ∈ N such that

‖sν‖Γρ1
≤ c2

(ρ1 − δ)ν
, ν ≥ n0 (4.13)

Moreover, from (4.6), it follows from maximum modulus principle that

‖pν‖Dσ ≤ c3(σ + δ)ν , ν ≥ 0. (4.14)

Therefore, by (4.12), (4.13), and (4.14), for n > n0,
∞∑

ν=n+|mn|−mn,α+1

|b(α)
ν,n||pν(z)| ≤

∞∑
ν=n+|mn|−mn,α+1

c4C
|mn|
1

(
σ + δ

ρ1 − δ

)ν
≤ c5C |mn|

1

(
σ + δ

ρ1 − δ

)n
, z ∈ Dσ.

(4.15)

Next, we approximate
∑n+|mn|−mn,α
ν=0 |b(α)

ν,n||pν(z)| on Dσ. To approximate
|b(α)
ν,n|, we need to approximate |a(α)

k,n| first. Let ρ2 ∈ (1, ρ0(Fα)). Using Lemma 3.4
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when G = Qµn,mnFα, we have

a
(α)
k,n = 〈Qµn,mn

Fα〉k = 1
2πi

∫
Γρ2

Qµn,mn
(z)Fα(z)sk(z)dz.

Define
γ

(α)
k,n := 1

2πi

∫
Γρ1

Qµn,mn
(z)Fα(z)sk(z)dz.

Notice that for each k ≥ 0, Qµn,mnFαsk is meromorphic on Dρ1 \ Dρ2 and
has poles at λ1, λ2, . . . , λq with multiplicities at most τ1, τ2, . . . , τq, respectively.
Applying Cauchy’s residue theorem, we obtain

γ
(α)
k,n − a

(α)
k,n =

q∑
j=1

Res(Qµn,mn
Fαsk, λj). (4.16)

Recall that the limit formula for the residue of Qµn,mnFαsk at λj is

Res(Qµn,mn
Fαsk, λj) = 1

(τj − 1)! lim
z→λj

(
(z − λj)τjQµn,mn

Fαsk

)(τj−1)
(z).

Using Leibniz’s rule and the fact that for n sufficiently large sn(z) 6= 0 for z ∈ C\E
(see Lemma 3.3), we can transform the expression under the limit sign as follows

((z − λj)τjQµn,mn
Fαsk)(τj−1)(z)

=
τj−1∑
t=0

(
τj − 1
t

)
((z − λj)τjFαQµn,mn

sn)(τj−1−t)(z)
(
sk
sn

)(t)
(z).

For j = 1, 2, . . . , q and t = 0, 1, . . . , τj − 1, set

βn(j, t) := 1
(τj − 1)!

(
τj − 1
t

)
lim
z→λj

((z − λj)τjFαQµn,mn
sn)(τj−1−t)(z)

(notice that βn(j, t) do not depend on k and α). Thus, we can rewrite (4.16) as

γ
(α)
k,n − a

(α)
k,n =

q∑
j=1

τj−1∑
t=0

βn(j, t)
(
sk
sn

)(t)
(λj). (4.17)

Since a(α)
k,n = 0, k = n −mn,α + 1, n −mn,α + 2, . . . , n, it follows from (4.17) and

the assumption that mn,α ≥ mα (for n sufficiently large),

γ
(α)
k,n =

q∑
j=1

τj−1∑
t=0

βn(j, t)
(
sk
sn

)(t)
(λj), k = n−mα + 1, n−mα + 2, . . . , n. (4.18)
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Now, we consider (4.18) as a system of mα linear equations on the mα unknowns
βn(j, t) and the determinant ∆n corresponding this system is∣∣∣∣∣∣∣∣∣∣∣∣∣

(
sn−mα+1

sn

)
(λj) · · ·

(
sn−mα+1

sn

)(τj−1)
(λj)(

sn−mα+2
sn

)
(λj) · · ·

(
sn−mα+2

sn

)(τj−1)
(λj)

... · · ·
...

1 · · · 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
j=1,2,...,q

,

where the subindex on the determinant means that the indicated group of columns
are successively written for j = 1, 2, . . . , q. Using (4.5), we have

lim
n→∞

∆n = ∆ :=

∣∣∣∣∣∣∣∣∣∣∣

(
Φmα−1) (λj) · · ·

(
Φmα−1)(τj−1) (λj)(

Φmα−2) (λj) · · ·
(
Φmα−2)(τj−1) (λj)

... · · ·
...

1 · · · 0

∣∣∣∣∣∣∣∣∣∣∣
j=1,2,...,q

.

Using Lemma 3.7, we can conclude that the determinant ∆c6 6= 0.
To avoid long expressions, we define for all j = 1, 2, . . . , q, and t = 0, 1, . . . , τj−

1,

hj,t :=

j−1∑
l=0

τl

+ t+ 1,

where τ0 = 0. Applying Cramer’s rule to (4.18), we have

βn(j, t) = ∆n(j, t)
∆n

= 1
∆n

mα∑
y=1

γ
(α)
n−mα+y,nCn[y, hj,t],

where ∆n(j, t) is the determinant obtained from ∆n by replacing hth
j,t column with

the column

[γ(α)
n−mα+1,n, γ

(α)
n−mα+2,n, · · · , γ(α)

n,n]T

and Cn[y, h] is the determinant of the (y, h)th cofacter matrix of ∆n(j, t). Substi-
tuting βn(j, t) in (4.17), we obtain for k ≥ n+ 1,

γ
(α)
k,n − a

(α)
k,n = 1

∆n

q∑
j=1

τj−1∑
t=0

mα∑
y=1

γ
(α)
n−mα+y,nCn[y, hj,t]

(
sk
sn

)(t)
(λj). (4.19)

Define
B(λ, r) := {z ∈ C : |z − λ| < r}.
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Let ε > 0 be sufficiently small such that B(λj , ε) ⊂ {z ∈ C : |Φ(z)| > ρ2} for all
j = 1, 2, . . . , q and B(λj , ε) ∩ B(λk, ε) = ∅ for all k 6= j. Using Cauchy’s integral
formula, we obtain(

sk
sn

)(`)
(λj) = `!

2πi

∫
|z−λj |=ε

sk(z)
sn(z)(z − λj)`+1 dz. (4.20)

Applying (4.5) on (4.20), there exists a constant c7 such that for sufficiently large
n,∣∣∣∣∣
(
sk
sn

)(`)
(λj)

∣∣∣∣∣ ≤ c7

ρk−n2
, j = 1, 2, . . . , q, ` = 0, 1, . . . , τj − 1, k ≥ n+ 1. (4.21)

Moreover, by using Cauchy’s integral formula as before, there exists a constant
c8 such that for all k = n − mα + 1, n − mα + 2, . . . , n, j = 1, 2, . . . , q, and
` = 0, 1, . . . , τj − 1, ∣∣∣∣∣

(
sk
sn

)(`)
(λj)

∣∣∣∣∣ ≤ c8 (4.22)

for all sufficiently large n. From (4.22), we have

|Cn(g, h)| ≤ c9, g, h = 1, 2, . . . ,mα. (4.23)

Using (4.21), (4.22), (4.23), and |∆| = |c6| > 0, it follows from (4.19) that

|a(α)
k,n| ≤ |γ

(α)
k,n|+

c10

ρk−n2

mα∑
y=1
|γ(α)
n−mα+y,n|, k ≥ n+ 1. (4.24)

By the definition of γ(α)
k,n, for all sufficiently large n, we have

|γ(α)
k,n| ≤

c11C
|mn|
1

(ρ1 − δ)k
.

This implies that

|a(α)
k,n| ≤

c12C
|mn|
1

ρk−n2 (ρ1 − δ)n
, k ≥ n+ 1. (4.25)

Recall that b(α)
ν,n =

∑∞
k=n+1 a

(α)
k,n〈QFαpk〉ν . By Cauchy-Schwarz inequality and

the orthonormality of {pk}∞k=0, we have for all ν ≥ 0 and k ≥ 0,

|〈QFαpk〉ν | = |〈QFαpk, pν〉µ| ≤
∥∥∥QFα∥∥∥

E
〈pk, pk〉1/2µ 〈pν , pν〉1/2µ ≤

∥∥∥QFα∥∥∥
E
≤ c13.

(4.26)
Then,

|b(α)
ν,n| ≤

∞∑
k=n+1

|a(α)
k,n||〈Q

Fαpk〉ν | ≤
c14C

|mn|
1

(ρ1 − δ)n
.
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Combining the above inequality and (4.14), for sufficiently large n,

n+|mn|−mn,α∑
ν=0

|b(α)
ν,n||pν(z)| ≤

n+|mn|−mn,α∑
ν=0

c15C
|mn|
1

(σ + δ)ν

(ρ1 − δ)n

≤ c16(n+ |mn| −mn,α + 1)C̃ |mn|
1

(
σ + δ

ρ1 − δ

)n
(4.27)

where C̃1 := C1(σ + δ) and z ∈ Dσ.
Combining (4.15) and (4.27), it follows from (4.9) that for sufficiently large n,

|QFα(z)Qµn,mn
(z)Fα(z)− Pµn,mn,α(z)| ≤ c17C̃

|mn|
1 θn, z ∈ Dσ, (4.28)

where θ is an arbitrary constant which satisfies

σ + δ

ρ1 − δ
< θ < 1.

Let β > 0 and ε > 0 be fixed. By the definition of Jβε (Fα,mα; k) and (4.3),
the inequality (4.28) implies that for sufficiently large n,

|Fα(z)−Rµn,mn,α(z)| ≤ c18C̃
|mn|
1 θn

|QF
mα(z)Qµn,mn(z)|

≤ c18C̃
|mn|
1 θn

(
6mα

ε

)mα/β
(C2|mn|n2)2|mn|/β ,

for all z ∈ Dσ \ Jβε (Fα,mα; k) and k sufficiently large. Then, for sufficiently large
n and k, ∥∥∥Fα −Rµn,mn,α

∥∥∥1/n

Dσ\Jβε (Fα,mα;k)

≤

(
c18

(
6mα

ε

)mα/β)1/n

θ(C̃1/2
1 C

1/β
2 |mn|1/β(n)2/β)2|mn|/n

≤ c1/n18 θe(c19+ 3
β log(n))(2|mn|/n),

which implies that

lim sup
n→∞

∥∥∥Fα −Rµn,mn,α

∥∥∥1/n

Dσ\Jβε (Fα,mα;k)
≤ θ,

for sufficiently large k.
Letting δ → 0 and ρ1 → ρmα(Fα), we have

σ

ρmα(Fα) < θ < 1.



Convergence in Hausdorff Content of Generalized Simultaneous... 17

Since θ is arbitrary, we let θ → σ/ρmα(Fα), for sufficiently large k,

lim sup
n→∞

∥∥∥Fα −Rµn,mn,α

∥∥∥1/n

K(ε;k)
≤ lim sup

n→∞

∥∥∥Fα −Rµn,mn,α

∥∥∥1/n

Dσ(ε;k)

= lim sup
n→∞

∥∥∥Fα −Rµn,mn,α

∥∥∥1/n

Dσ\Jβε (Fα,mα;k)
≤ σ

ρmα(Fα) < 1. (4.29)

This implies that for any β > 0 and α = 1, 2, . . . , d, each sequence {Rµn,mn,α}
converges in β-dimentional Hausdorff content to Fα inside Dρmα (Fα), as n →
∞.

Proof of Corollary 2.2. By the assumption of Corollary 2.2, for each α = 1, 2, . . . , d,
mn,α = ν(Fα, Dρ). Then, the conditions in Theorem 2.1 are obtained. By Theo-
rem 2.1, we get h1 − limn→∞Rµn,mn,α = Fα in Dρmα (Fα). Since degQµn,m ≤ |m|,
by applying Lemma 3.8, the inequality must becomes equality and each pole of
Fα attracts as many zeros of Qµn,m as its order otherwise a contradiction on multi-
plicities of poles must occur. Therefore, for all sufficiently large n, Qµn,m is unique
by Lemma 3.6. This implies that for such n, Rµ

n,m is unique.
LetK ⊂ Dρmα (Fα)\{λα,1, λα,2, . . . , λα,mα} be a compact set and σ := max{‖Φ‖K , 1}.

Since all points λα,1, λα,2, . . . , λα,mα attract all zeros of Qµn,m, for sufficiently small
ε > 0 and for sufficiently large k,

K ∈ Dσ \ Jβε (Fα,mα; k).

By the inequality (4.29),

lim sup
n→∞

∥∥∥Fα −Rµn,m,α

∥∥∥1/n

K
≤ lim sup

n→∞

∥∥∥Fα −Rµn,m,α

∥∥∥1/n

Dσ\Jβε (Fα,mα;k)
≤ σ

ρmα(Fα) .

(4.30)
This implies that the sequence {Rµn,m,α} converges uniformly to Fα on each com-
pact subset of Dρmα (Fα) \ {λ1, λ2, . . . , λq} as n→∞.

Proof of Corollary 2.3. Let α ∈ {1, 2, . . . , d} be fixed and let K be a compact
subset of Dρ∞(Fα). Let ε > 0 and β > 0 be fixed. Since K is compact, K ⊂ Dρt(Fα)
for some t ∈ N0. By the assumption on mn,α, it is clear that limn→∞mn,α ≥
ν(Fα, Dρt(Fα)). Applying Theorem 2.1, we have hβ − limn→∞Rµn,mn,α = Fα in
Dρt(Fα). Thus,

lim
n→∞

hβ{z ∈ K : |Rµn,mn,α(z)− Fα(z)| > ε} = 0.

Proof of Theorem 2.4. Let QEn,mn
be the polynomial qEn,mn

normalized as in (4.1).
And we have for all α = 1, 2, . . . , d,

REn,mn,α =
pEn,mn,α

qEn,mn

=
PEn,mn,α

QEn,mn

.
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Let α ∈ {1, 2, . . . , d} be fixed. Denote by mα := ν(Fα, Dρ) the number of poles
of Fα in Dρ. Note that the notations Jβε (Fα,mα; k) and B(ε; k) are defined as in
the proof of Theorem 2.1 by replacing Qµn,mn with QEn,mn

. Then, for any compact
subset K ⊂ Dρmα (Fα), for any ε > 0, and k > 0, there exist positive constants
C1 > 0 and C2 > 0 independent of n such that for all sufficiently large n,∥∥∥QEn,mn

∥∥∥
K
≤ C |mn|

1 , (4.31)

and
min

z∈K\Jβε (Fα,mα;k)
|QEn,mn

(z)| ≥ (C2|mn|(n)2)−2|mn|/β . (4.32)

Define

QFα(z) :=
q∏
j=1

(
z − λj

)τj
,

where λ1, λ2, . . . , λq are distinct poles of Fα in Dρ and τ1, τ2, . . . , τq are their
multiplicities, respectively. From the definition of simultaneous Padé-Faber ap-
proximants and Lemma 3.2, we have

QEn,mn
(z)Fα(z)− PEn,mn,α(z) =

∞∑
k=n+1

a
(α)
k,nΦk(z), z ∈ Dρ0(Fα), (4.33)

where
a

(α)
k,n := [QEn,mn

Fα]k, k = 0, 1, 2, . . . ,

and a
(α)
k,n = 0, for all k = n−mn,α + 1, n−mn,α + 2, . . . , n. Multiplying (4.33) by

QFα(z) and expanding the result in terms of the Faber polynomial system {Φν}∞ν=0
such that for z ∈ Dρmα (Fα),

QFα(z)QEn,mn
(z)Fα(z)−QFα(z)PEn,mn,α(z) =

∞∑
k=n+1

QFα(z)a(α)
k,nΦk(z)

=
∞∑
ν=0

b(α)
ν,nΦν(z) =

n+|mn|−mn,α∑
ν=0

b(α)
ν,nΦν(z) +

∞∑
ν=n+|mn|−mn,α+1

b(α)
ν,nΦν(z). (4.34)

Let K be a compact subset of Dρmα (Fα) and set

σ := max{‖Φ‖K , 1} (4.35)

(σ = 1 when K ⊂ E). Choose δ > 0 sufficiently small such that

ρ1 := ρmα(Fα)− δ > ρmα−1(Fα), and σ + δ

ρ1 − δ
< 1. (4.36)



Convergence in Hausdorff Content of Generalized Simultaneous... 19

First, we approximate
∑∞
ν=n+|mn|−mn,α+1 |b

(α)
ν,n||Φν(z)| on Dσ. With the sim-

ilar computation as (4.12). From (3.3) and (4.31), it follows that for ν ≥ n +
|mn| −mn,α + 1,

|b(α)
ν,n| = |[QFαQEn,mn

Fα −QFαPEn,mn,α]ν | = |[QFαQEn,mn
Fα]ν |

=

∣∣∣∣∣ 1
2πi

∫
Γρ1

QFα(z)QEn,mn
(z)Fα(z)Φ′(z)

Φν+1(z) dz

∣∣∣∣∣ ≤ c1C
|mn|
1
ρν1

,
(4.37)

Therefore, by (3.4) and (4.37), we have for all z ∈ Dσ,

∞∑
ν=n+|mn|−mn,α+1

|b(α)
ν,n||Φν(z)|

≤
∞∑

ν=n+|mn|−mn,α+1

c2C
|mn|
1

(
σ

ρ1

)ν
≤ c3C |mn|

1

(
σ

ρ1

)n
. (4.38)

Next, we approximate
∑n+|mn|−mn,α
ν=0 |b(α)

ν,n||Φν(z)| on Dσ. Again, we begin by
approximating |a(α)

k,n|. Choose ρ2 ∈ (1, ρ0(Fα)), we have

a
(α)
k,n = [QEn,mn

Fα]k = 1
2πi

∫
Γρ2

QEn,mn
(z)Fα(z)Φ′(z)
Φk+1(z) dz.

Define
γ

(α)
k,n := 1

2πi

∫
Γρ1

QEn,mn
(z)Fα(z)Φ′(z)
Φk+1(z) dz.

Arguing as (4.16), we have

γ
(α)
k,n − a

(α)
k,n =

q∑
j=1

Res(QEn,mn
FαΦ′/Φk+1, λj). (4.39)

Now, we use Leibniz’s formula to rewrite (4.39) in the same way as (4.17) such
that

γ
(α)
k,n − a

(α)
k,n =

q∑
j=1

τj−1∑
t=0

βn(j, t)
(

Φn−k
)(t)

(λj), (4.40)

where

βn(j, t) := 1
(τj − 1)!

(
τj − 1
t

)
lim
z→λj

(
(z − λj)τjFαQEn,mn

Φ′

Φn+1

)(τj−1−t)
(z),

for j = 1, 2, . . . , q, and t = 0, 1, . . . , τj−1. Since a(α)
k,n = 0 for k = n−mn,α+ 1, n−

mn,α + 2, . . . , n and the assumption that mn,α ≥ mα (for n sufficiently large), we
have

γ
(α)
k,n =

q∑
j=1

τj−1∑
t=0

βn(j, t)
(

Φn−k
)(t)

(λj), k = n−mα+1, n−mα+2, . . . , n. (4.41)
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Next, we use the same technique in the proof of Theorem (2.1) to find βn(j, t)
by replacing sk/sn with Φn−k in (4.18). Consider (4.41) as a system of mα equa-
tions on the mα unknowns βn(j, t) and the determinant ∆ corresponding to this
system is

∆ :=

∣∣∣∣∣∣∣∣∣∣∣

(
Φmα−1) (λj) · · ·

(
Φmα−1)(τj−1) (λj)(

Φmα−2) (λj) · · ·
(
Φmα−2)(τj−1) (λj)

... · · ·
...

1 · · · 0

∣∣∣∣∣∣∣∣∣∣∣
j=1,2,...,q

.

It follows that for k ≥ n+ 1,

γ
(α)
k,n − a

(α)
k,n = 1

∆

q∑
j=1

τj−1∑
t=0

mα∑
y=1

γ
(α)
n−mα+y,nC[y, hj,t]

(
Φn−k

)(t)
(λj), (4.42)

where C[y, h] is the determinant of the (y, h)th cofacter matrix of ∆. Arguing as
(4.20-4.24) by replacing sk/sn with Φn−k, for sufficiently large n, we have

|a(α)
k,n| ≤ |γ

(α)
k,n|+

c4

ρk−n2

mα∑
y=1
|γ(α)
n−mα+y,n|, k ≥ n+ 1. (4.43)

By the definition of γ(α)
k,n, for all sufficiently large n, we have for k ≥ n+ 1,

|γ(α)
k,n| ≤

c5C
|mn|
1
ρk1

.

This implies that

|a(α)
k,n| ≤

c6C
|mn|
1

ρk−n2 ρn1
, k ≥ n+ 1. (4.44)

Now, we estimate |[QFαΦk]ν |. Suppose that δ > 0 is sufficiently small such
that ρ2 − δ > 1. Then,

|[QFαΦk]ν | =

∣∣∣∣∣ 1
2πi

∫
Γρ2−δ

QFα(z)Φk(z)Φ′(z)
Φν+1(z) dz

∣∣∣∣∣ ≤ c7 (ρ2 − δ)k

(ρ2 − δ)ν
. (4.45)

Consequently, we get

|b(α)
ν,n| ≤

∞∑
k=n+1

|a(α)
k,n||[Q

FαΦk]ν |

≤ c8C
|mn|
1

(ρ2 − δ)ν

(
ρ2

ρ1

)n ∞∑
k=n+1

(
ρ2 − δ
ρ2

)k
≤ c9C

|mn|
1

(ρ2 − δ)ν

(
ρ2 − δ
ρ1

)n
.
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Therefore, sufficiently large n,

n+|mn|−mn,α∑
ν=0

|b(α)
ν,n||Φν(z)| ≤ c10C

|mn|
1

(
ρ2 − δ
ρ1

)n n+|mn|−mn,α∑
ν=0

(
σ

ρ2 − δ

)ν

≤ c10C
|mn|
1

(
ρ2 − δ
ρ1

)n n+|mn|−mn,α∑
ν=0

σν

≤ c11(n+ |mn| −mn,α + 1)C̃ |mn|
1 (ρ2 − δ)n

(
σ

ρ1

)n
, (4.46)

where z ∈ Dσ and C̃1 := σC1.
Combining (4.38) and (4.46), it follows from (4.34) that for each k ≥ n2,

|QFα(z)QEn,mn
(z)Fα(z)− PEn,mn,α(z)|

≤ c12(n+ |mn| −mn,α + 1)C̃ |mn|
1 (ρ2 − δ)n

(
σ

ρ1

)n
, z ∈ Dσ, n ≥ k. (4.47)

Using (4.32), we arrive for each k ≥ n2,

lim sup
n→∞

∥∥∥Fα −REn,mn,α

∥∥∥1/n

Dσ\Jβε (Fα,mα;k)
≤ (ρ2 − δ)

(
σ

ρ1

)
. (4.48)

Letting δ → 0, ρ1 → ρmα(Fα), and ρ2 → 1, we obtain that for for each k ≥ n2,

lim sup
n→∞

∥∥∥Fα −Rµn,mn,α

∥∥∥1/n

K(ε;k)
≤ lim sup

n→∞

∥∥∥Fα −REn,mn,α

∥∥∥1/n

Dσ\Jβε (Fα,mα;k)
≤ σ

ρmα(Fα)

(comparing this with (4.29)). This implies that for any β > 0, each sequence
{REn,mn,α}n∈N converges in β-dimentional Hausdorff content to Fα insideDρmα (Fα),
as n→∞.

Arguing as the proofs of Corollary 2.2 and 2.3 by replacing Rµn,mn,α with
REn,mn,α, we are obtain Corollary 2.5 and 2.6.
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Surv. Approx. Theory 2 (2006) 61–91.

[8] A.I. Aptekarev and A. Kuijlaars, Hermite-Padé approximations and multiple
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