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1 Introduction

Simultaneous Padé approximation (or Hermite-Padé approximation) has been
studied for a long time. Making use of this approximation, Hermite [I] proved
that e is transcendental in 1873. This approximation was systematically reintro-
duced for general vectors of approximated functions in [2]. Most of the studies of
simultaneous Padé approximation were concentrated on diagonal sequences (for
more information, see some important papers [3, 4, [5, 6] and some survey papers
[7, 8] in this direction). There are very few papers [9, [10, [1T], 12} T3] dedicated
to the study of row sequences. The pioneering one in this direction is the work
of Graves-Morris and Saff [10] where they proved an analogue of the Montessus
de Ballore theorem. The other significant work in this direction is due to Cacoq,
de la Calle, and Lépez [9] where they proved some results on the inverse problem
of row sequences. In last few years, these simulaneous Padé approximants were
generalized in various forms such as orthogonal Hermite-Padé approximants, mul-
tipoint Hermite-Padé approximants, simultaneous Padé-Faber approximants, and
simultaneous Padé-orthogonal approximants (see [14], [15], 16}, [17] I8} 19]).

In this paper, we study convergences of two generalizations of simultaneous
Padé approximation. The first approximation is based on orthogonal polynomials
on a general compact set and is called simultaneous Padé-orthogonal approxi-
mation. The concept of simultaneous Padé-orthogonal approximation was first
introduced by Cocoq and Lépez in [20]. In their paper, those simultaneous Padé-
orthogonal approximants are called simultaneous Fourier-Padé approximants and
are constructed from orthogonal polynomial on the unit circle. They obtained
convergence of row sequences of simultaneous Padé-orthogonal approximants. In
[14], the definition of Cocoq and Lépez was extended to more general compact
set and convergence theorem for row sequences of the corresponding appriximants
was proved. Simultaneous Padé-orthogonal approximation is defined as follows.

Let E be an infinite compact subset of the complex plane C such that C \ E
is simply connected. Denote by K the collection of these compact sets. Let u be
a finite positive Borel measure with an infinite support supp(p) contained in E.
We write p € M(E) and define the associated inner product

(g, hy = / g(ORO)Ap(C),  g.h € La(p).

Let
pn(z) =kp2" 4+, Ky >0, n=0,1,2,...,

be the orthonormal polynomial of degree n with respect to p with positive leading
coefficient; that is (P, Pm )y = On,m. Define

H(E)! = {(F\, Fy,...,Fy) : Fy € H(E) forall a = 1,2,...,d},

where H(E) is the space of all functions holomorphic in some neighborhood of E.
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Definition 1.1. Let E € K, F = (F|, F,...,Fy) € H(E)? and p € M(E). Fix

a multi-index m = (mq,ma,...,mq) € Nd\ {0} where 0 is the zero vector in N¢.
Set |m| :=my + ma + -+ -+ mg. Then, for each n > max{ms,ma,...,mq}, there
exist polynomials ¢}, m, Ph.m,a, where a =1,2,...,d, such that

deg(pg,m,oz) <n-— Me, deg(‘]ﬁ,m) < |m|7 qg,m ?é 07

<q¢7f’mFa _pﬁ,m’a7pj>,u = 07 ] = 07 17 sy T
The vector of rational functions

Rﬁ,m = (Ri,m,h Ri,m,% e 7Rl7:,m7d)
T n,m,l1/ Ynm’nm,2/Ynm’ " Pp m.,d/ Yn,m
= (P a1 /T o Py en2) O Phy e/ Trm)

is called an (n,m) simultaneous Padé-orthogonal approximant of F with respect
to p.

Indeed, finding gh m is equivalent to solving a system of |m| homogeneous
linear equations with |m|+1 unknowns. Then, ¢}, m always exists. Since ¢l m Z 0,
we normalize gJ, m to be a “monic” polynomial. Moreover, for each o = 1,2,...,d,
Ph.m,o 15 uniquely determined by g}, m. Therefore, for any pair (n, m), a vector of
rational functions R}, , always exists but may not be unique.

Now, we introduce a definition of poles for a vector of functions.

Definition 1.2. Let Q := (21,Q0,...,84) be a system of domains such that for
each a =1,2,...,d, F, is meromorphic in ,. We say that the point A is a pole
of F in & of order 7 if there exists an index « € {1,2,...,d} such that A € Q,
and it is a pole of Fi, of order 7, and for 5 # « either X is a pole of Fg of order
less than or equal to 7 or A ¢ Q3. When ©Q := (Q,9Q,...,Q), we say that A is a
pole of F in Q.

The second approximation is based on Faber polynomials defined as follows.
Let E € K and ® be the exterior conformal mapping from C \ E onto C\ {w €
C : |w| < 1} satistying ®(c0) = oo and ®’(c0) > 0. For each p > 1, we define a
level curve with respect to E of index p and a canonical domain with respect to E
of index p by

I',:={z€C:|®(z)]=p} and D,:=FEU{zeC:|P(2)| < p},

respectively. Let F € H(E)%. Denote by pjm|(F) the index p > 1 of the largest
canonical domain D, to which F has at most |m| poles. The Faber polynomial of
degree n for E is defined by the formula

1 D" (t)
D, (2) = — dt, D, n=0,1,2,... 1.1
(2) 2m /pp t—=z FE€Lp (L.1)

and the Faber cocfficient of F € H(E) with respect to ®,, is given by

1 [ F)d(t)

Fl, = —
[F] 2mi Jr, Prtl(t)

dt, (1.2)

where p € (1, po(F)).
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Definition 1.3. Let £ € K and F = ([, I, ..., F;) € H(E)?. Fix a multi-
index m = (my,ma,...,mq) € N4\ {0}. Set |m| :=my +my + -+ mg. Then,
for each n > max{mi,ms,...,mq}, there exist polynomials ¢/, pZ ., ., where
a=1,2,...,d, such that l

deg(p o) <1 —Ma, deg(qf ) < |m|, ¢&, #0,

[0F wFo —PEmal; =0, 5=01,...,n.

The vector of rational functions

E E E E
Rn,m - (Rn,m,l’ n,m,27 " Rn,m,d)

= (pﬁmJ/qf,mvpg,mﬁ/qE,m’ o 7pr]im,d/qf,m)

is called an (n,m) simultaneous Padé-Faber approxzimant of F corresponding to
E.

Using the same line of reasoning, for any pair (n,m), we normalize q,]i m to

be a “monic” polynomial and a vector of rational functions RE m always exists

but may not be unique. In [I5] and [I6], the idea of simultaneous Padé-Faber
approximants was introduced and analogues of Montessus de Ballore’s theorem
for simultaneous Padé-Faber approximants were proved.

Next, let us introduce the concept of convergence in Hausdorff content. Let B
be a subset of the complex plane C. By U(B), we denote the class of all coverings
of B by at most a countable set of disks. Let 8 > 0 and set

hg(B) :=inf ¢ Y U7+ {U;} €U(B) 3,

j=1

where |U;| is the radius of the disk U;. This notation hg(B) is called the §-
dimensional Hausdorff content of the set B. This set function is not a measure
but it is subadditive and monotonic. Clearly, if B is a disk, then hg(B) = |B|”.

Definition 1.4. Let {g,}nen be a sequence of complex valued functions defined
on a domain D C C and g another complex function defined on D. We say that
{gn }nen converges in S-dimensional Hausdorff content to the function g inside D
if for every compact subset K of D and for each ¢ > 0, we have

lim bz € K :[ga(z) — 9(2)] > ¢} = 0.
Such a convergence will be denoted by hg —lim;,, 00 gn = g in D.

In this paper, we prove convergences in Hausdorff content of those two gener-
alizations when the sequences of indices {(n, m,,)} satisfy the limit below

. |myu|lnn
lim ————
n— o0 n

=0. (1.3)
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This type of sequences was introduced by Gonchar [21] for Padé («, 3)-approximants.
We prove results analogous to Theorem 2 in [21] for two generalizations of simul-
taneous Padé approximants. As consequences of our main theorems, we give al-
ternate proofs of the Montessus de Ballore type theorem for those generalizations.

The outline of this paper is as follows. Section 2 contains our main results.
We collect needed auxiliary lemmas in Section 3. Section 4 is dedicated to the
proofs of all results in Section 2.

2 Main Results

Before we state our results about the convergence of simultaneous Padé-orthogonal
approximants, we need to define a class of measures and some more notation.
A class of measures that we are interested is R(E) C M(E). We write p €
R(E) when the corresponding sequence of orthonormal polynomials has ratio
asymptotics; that is
lim 71)"(2) = ! ,
n—oo pn+1(2) (I)(Z)

uniformly on each compact subset of C\ E. Moreover, we restrict ourselves to a
smaller collection of compact sets F defined as follows. Denote by K; the collection
of all sets E € K such that the inverse function of ® can be extended continuously
to C\ {we C: |w| <1}

The following theorem is our main result on simultaneous Padé-orthogonal
approximants which is an analogue of Theorem 2 in [21].

Theorem 2.1. Let E€ Ky, p>1, p € R(E), and F = (F\, Fs,...,F;) € H(E)¢

be a vector of functions meromorphic in D,. Suppose that for each o =1,2,...,d,
F, has exactly v(Fy,D,) poles (counting multiplicities) in D, and the sequence
{m,} = {(mn1,Mnz2,...,mnq)} satisfies the following conditions
liminf my, o > v(Fa, D,), a=12,...,d
n—oo
and
1
L LY
n—oQ n

Then for any fived numbers 3 > 0 and o = 1,2,...,d, each sequence {Rh m, o}
converges in B-dimensional Hausdorff content to Fy, inside D, as n — oo.

As a consequence of Theorem we can prove a Montessus de Ballore type
theorem for simultaneous Padé-orthogonal approximants which was earlier proved
in |14, Theorem 2.4] stated below. Given F = (Fy, Fy,..., F;) € H(E)? and a
multi-index m := (my,ma,...,my) € N¢\ {0}, we define

Du(F) := (D, (F1), Dp,,, (F2), ..., D, (Fa)).

° Pmy
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Corollary 2.2. Let E € Ky, p € R(E), and F = (Fy, Fy, ..., Fy) € H(E)?. For
eacha =1,2,...,d, suppose that F, has poles of total multiplicity me in D, (F.,)
at the points Ao1,Aa2s-- - Aaymg and F has exactly |m| poles in Dy (F) where
m = (mqy,ma,...,mg). Then, Rﬁ,m is uniquely determined for all sufficiently
large n and for any a = 1,2,...,d, {Rh m.a} converges uniformly to F, on each
compact subset of D, (r,)\{Aa,1,Aa.2, -+ s Aaum, } a8 — 00. Moreover, for each
a=1,2,...,d and for any compact subset K of D, (r,)\{Aa,15 Aa.25 -+ > Aama }

®|lx
limsup |Fa — RE o107 < 12l
n—)ocpH « n,m,a”K — pma(Fa)

where || - ||k denotes the sup-norm on K and if K C E, then ||®||x is replaced by
1.

Corollary 2.3. Let E € Ky, u € R(E), and F = (F\, Fy, ..., Fy) € H(E)?. For
each a =1,2,...,d, denote by

D, r) =\ Dpr)
=0

the maximal canonical domain in which F, can be continued to a meromorphic
function. Assume that

lim inf m,, o = o0, a=1,2,...,d
n—roo
and m[1
. m,|lnn
lim ——— =0.
n—o00 n

Then for any fized numbers 8 > 0 and o = 1,2,...,d, each sequence {Rh m, .o}
converges in [3-dimensional Hausdorff content to F inside D, () as n — o0o.

Note that the scalar case of the above two results were obtained in [22].
Similar results for simultaneous Padé-Faber approximants are stated below.

Theorem 2.4. Let E€ K, p>1and F = (F|, F,,..., Fy) € H(E)? be a vector
of functions meromorphic in D,. Suppose that for each a = 1,2,...,d, F, has
exactly v(Fy, D,) poles (counting multiplicities) in D, and the sequence {m,} :=

{(Mmn1,Mn2,...,mpq)} satisfies the following conditions
liminf my, o > v(Fa, D,), a=1,2,....d
n— o0
and
. |my|lnn
lim ——— =
n—oo n

Then for any fized numbers 8 > 0 and o = 1,2,...,d, each sequence {Rﬁmma

converges in 3-dimensional Hausdorff content to F, inside D, as n — oo.



Convergence in Hausdorff Content of Generalized Simultaneous... 7

The following corollary coincides with Theorem 1 in [I5].

Corollary 2.5. Let E € K and F = (F\, Fy,...,F;) € H(E)Y. For each a =
1,2,...,d, suppose that F,, has poles of total multiplicity me in D,  (r,) at the
POINts Aa.1,Aa,2, - -5 Aa,m, and F has ezactly |m| poles in Dy (F) where m :=
(my,ma,...,mgq). Then, R,Iim is uniquely determined for all sufficiently large n
and for any a =1,2,...,d, {Rf,m,a} converges uniformly to F, on each compact
subset of D, (k) \ {Aa,1,Aa2s -+ -5 Aayma } @8 1 — 00. Moreover, for each o =
1,2,...,d and for any compact subset K of D, (r,) \ { .15 a2+ Aama }s

E {E”K
limsup ||[F, — R 1n < 7” )
" p” « n,m,aHK — Q(Fa)

where || - ||k denotes the sup-norm on K and if K C E; then |®| x is replaced by
1.

Corollary 2.6. Let E € K and F = (F1, Fy, ..., F;) € H(E)?. Assume that

lim inf m,, o = 0, a=1,2,...,
n—o00 ’
and 1
. |my,|lnn
lim —— = 0.
n— o0 n

Then for any fized numbers § > 0 and o = 1,2,...,d, each sequence {Rfimm(JZ

converges in [3-dimensional Hausdorff content to F, inside D, (p,y asn — oo.

3 Auxiliary Lemmas

In this section, we keep all needed notations and lemmas. Let F € K and
€ M(E). We define the n-th Fourier coefficient of G € H(FE) with respect to p,
by

(G)n = (Gopal = [ GpaEIdn).
We say that u € Reg,(E) C M(E) when
Tim_ [pa ()" = [@(:)], (31)

uniformly on each compact subset of C\ E. The following two lemmas (see, e.g., [17,
Lemma 2.1] and [23]) concern the formulas for computing po(G) and the domain
of convergence of orthogonal and Faber polynomial expansions of holomorphic
functions.

Lemma 3.1. Let E € K, G € H(E) and jn € Reg,(E). Then,
-1
po(G) = (limsup |<G)n|1/"> .
n—roo

Moreover, the series Y~ ((G)npn(2) converges to G(z) uniformly on each compact
subset of D,y (q)-
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Lemma 3.2. Let E € K and G € H(E). Then,

polG) = (nmsup HG]nP/")_l .

n—o0

Moreover, the series’y - [G].®,(z) converges to G(z) uniformly on each compact
subset of D, (q)-

The second type functions s,, defined by

< _
sale) = [ 22X au(0), = € T \suppi),
are very useful in our proofs. The next lemma (see [24, Lemma 3.1]) is the asymp-
totic relation between the orthogonal polynomials p,, and the second type functions
S

Lemma 3.3. Let E € Ky. If p € R(E), then

nh_)ngopn(z)sn(z) = ()’

uniformly on each compact subset of C\ E. Consequently, for any compact set
K C C\ E, there exists ng € N such that s,(z) # 0 for all z € K and n > ny.

A simple relation (see [I7, Lemma 2.2]) used frequently in this paper is con-
tained in

Lemma 3.4. Let E € K, G € H(E), k € No, and p € (1,p0(G)). Then,

(G, = !

=5 )y, G(w)si(w)dw. (32)

The following lemma (see |25, page 43] or [26] page 583] for its proof) gives an
estimate of Faber polynomials on on a level curve.
Lemma 3.5. Let p > 1 be fized. Then, there exists ¢ > 0 such that
[@nllp, < cp”, n>0. (3.3)
Indeed, by the maximum modulus principle, the inequalities can be replaced
by the inequalities

[®nll5, < cp”, n>0. (3.4)

The following lemma is about the uniqueness of the common denominators of
generalized simultaneous Padé approximants to polynomial expansions.
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Lemma 3.6. Let (n,m) € N x N4\ {0} be fived. Then the following assertions
hold:

(b) If for all g m in Definition[1.1] degqh.m = [m]|, then gh m is unique.

(b) If for all qf , in Deﬁnitz’on deg g o = |ml, then qf , is unique.

Proof of Lemma[5.6. Without loss of generality, we may consider only in the case
of ¢ m. From Deﬁnition a polynomial €|y 2™+ cjm—12™I 71+, 4o is ¢hm

if and only if it is monic and the coefficients ¢|m|, ¢jm|—1, - - - , co satisfy the following
system of |m| linear equations: for all « = 1,2,...,dand j = n—m, + 1,5 =
n—mee+2,...,n,

|m|

> el Fa); = 0. (3.5)
k=0

Suppose for a contradiction that there are 2 distinct monic polynomials g;
and ¢y of degree |m| which satisfy all conditions of ¢h m. Then there exists a
polynomial g := ¢; — g2 # 0 of degree less than |m|. Obviously, all coefficients of
q satisfies . By normalize g to be a monic polynomial, a contradiction on the
degree of qﬁ,m occurs. O

The determinant of the matrix in the following lemma will be used in our
proofs of the main theorems.

Lemma 3.7. Let ® be the exterior conformal mapping from C\ E onto C\ {w €
C:|w| < 1} satisfying ®(c0) = 0o and ®'(c0) > 0. Assume that A1, Ag, ..., g are
distinct points in C\ E and 7; > 0 for all j = 1,2,...,q. Define m := 23:1 Tj
and the m x m matriz as follows

(@) () e (et E:K (A)
A (fl’m’f) (A) - (em?) (%) , (3.6)
: (,)

Jj=1,2,....q

where the subindex on the determinant means that the indicated group of columns
are successively written for j =1,2,...,q. Then,

det(A) = H(Tj —D@' )2 T (@) e (3.7)

1<i<j<q
where n!! stands for 011! nl.

The proof of the above lemma is similar to the one of Theorem 1 in [27].

The final lemma proved by Gonchar (see [2I, Lemma 1]) allows us to derive
uniform convergence on compact subsets of the region under consideration from
convergence in hj-content under appropriate assumptions.
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Lemma 3.8. Suppose that hy-lim, oo g, = g in D. Then the following assertions
hold true:

(i) If the functions gn,n € N, are holomorphic in D, then the sequence {gn tnen
converges uniformly inside D and g is holomorphic in D.

(it) If each of the functions g, is meromorphic in D and has no more than
k < 400 poles in this domain, then the limit function g is also meromorphic
and has no more than k poles in D.

(iii) If each function g, is meromorphic and has no more than k < +oo poles
in D and the function g is meromorphic and has exactly k poles in D,
then all g,,n > N, also have k poles in D; the poles of g, tend to the poles
A1, A2y ..oy A of g (taking account of their orders) and the sequence {gn }nen
tends to g uniformly inside the domain D' = D\ {\1, A2, ..., A\x}.

4  Proofs of main results

Proof of Theorem[2.1, We normalize the polynomials g}, m, in terms of its zeros
An,; such that

ta @)= T] =) 1 (1—{) (41)

iy
[Anl<1 [An,j1>1 7

and for each a =1,2,...,d,

H P#
m _ Pnmu,a  fnmya
My, T H - H
Qn,mn n, My

With this normalization, we can estimate upper and lower bounds on the normal-
ized Q) m,, -

Let o € {1,2,...,d} be fixed. Denote by m, := v(Fu,D,) the number of
poles of F,, in D,. We fix £ > 0 and cover each pole of F, in D, (r,) with an
open disk of radius (¢/(6m,))'/? and denote by JgE(mea) the union of these
disks. We cover each zero of Q} m, with an open disk of radius (g/(6/m,,|n?))'/#
and denote by J7 _(F) the union of these disks. For each k > 0, we set

TP (Favmai k) = J) (Fayma) | J | U J2-(F) |-
n=~k

By using the monotonicity and subadditivity of hg, it easy to check that for any
k>0,

hg(JE (Foymai k) < e
and Jfl(Fa,ma;k) C Jg(Fa,ma;k) for e; < 3. For any set B C D, (r.)
we put B(e;k) := B\ J?(F,,ma; k). It is easy to check that if for any compact
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subset K C D, (r,) and € > 0, there exists k£ € N such that {gn }nen converges
uniformly to g on K(e; k), then hg — lim,, 00 g, = g in D, (.-

Due to the normalization in , for any compact subset K C D, (r,),
e > 0 be fixed, and k > 0, there exist positive constants C; > 0 and Cy > 0
independent of n such that for all sufficiently large n,

[ @, | < i (1.2
and
min Q@ m,, ()] = (Colmy, [n?) =2/, (4.3)
2€K\JL (Fa,ma;ik) "
Since p € R(E), it follows that
1
lim PZ) 1=0,1,2,..., (4.4)

n—00 pn+l(z) CI)(Z)Z,

uniformly on each compact subset of C\ E. Then from (4.4) and Lemma we
obtain

o sea(@) o palE) pea(sen(s) 1 ®()/8(:) 1
n—oo sn(z)  n=o0 ppii(z)  pn(2)sn(2) D(2)! ©(2)'/2(2) CI’(Z)Z(’ )
4.5
uniformly on each compact subset of C\ E. Moreover, it follows from (4.4)) and

[E3) that

lim |pn(z)|1/" = |®(2)], (4.6)
n—oo
and
lim |s,(2)[}/™ = ! : (4.7)
n—c0 |®(2)]
uniformly on each compact subset of C \ E, respectively.
Define
q
Q™ (2) = [[(z = )7,
j=1
where A1, Ag, ..., Ag are distinct poles of Fy, in D, (F,)and 71,72, ..., 7,4 are their

multiplicities. From the definition of simultaneous Padé-orthogonal approximants
and Lemma [3.I] we have

nom, (2)Fa(2) = By, 0 Z ok )pk(2), 2 € Dogrys  (48)
k=n+1

where
a’l(car)z'_< " Fa>k7 k:O,l,Q,...,

T,y
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(a
and ay,
QF>(z) and expanding the result in terms of the orthogonal system {p, }5°, such
that for 2 € D, (r,),

) = 0, for all k =n —my o + 1,7 — my o +2,...,n. Multiplying 1) by

n

Q" (2)Qh 1, (2)Ful2) = Q7 ()P, a(2) = D Q(2)a)pe(2)

k=n-+1
o0 nt|mn | —mn,qo o0
= Wam() = Y, bap(e)+ Y. WIm(e) (49)
v=0 v=0 v=n+|my,|—mq, o+1
Let K be a compact subset of D), () and set
o :=max{||®| 1} (4.10)

(0 =1 when K C E). Choose ¢ > 0 sufficiently small such that

o+
< 1. 4.11
o (4.11)

p1 = pma(Fa) -0 > pmafl(Fa)a P1 — 6> 1, and

First, we approximate Zinﬂmn‘_mn i1 |b,(,a,2||p,,(z)| on D,. Due to the
inequality in (4.2]) and Lemma it follows that for v > n+ |m,| — m, o + 1,

6] = [(QT Q" 1y Fo — QFPE - V| = [(QTQ" 1 Fu)l
(4.12)

1 m
el SCACLICIACRIOTE ERTE G R

where the constant ¢; does not depend on n (from now on, we will denote some
constants that do not depend on n by ca,cs,...). By using (4.7), there exists
ng € N such that
C2
||5V||l"p1 S (pl _5),/7 14 Z 1o (413)

Moreover, from (4.6)), it follows from maximum modulus principle that

Ipvll5, <cs(o+6)”, v=0. (4.14)
Therefore, by (4.12), (4.13), and (4.14)), for n > ny,
oo 0o - 5 v
S @l Y ok (”_5)
v=n+|my|—mp,o+1 v=n+|m,|—m, o+1 P (415)
m §\" —
<ac™ (Z25), seD,.
p1—0

Next, we approximate Z:L‘Jm”_m"’” |b,(,arz||p,,(z)| on D,. To approximate

[bS5n], we need to approximate |aj™| first. Let pa € (1, p0(Fy)). Using Lemma



Convergence in Hausdorff Content of Generalized Simultaneous... 13

when G = Q% m, Fa, we have

= @ Fols = 7 [ i (IFa(2Ion(2)

Define
(0)
W= g | ma IFIsu()

Notice that for each k > 0, Q} m, Fask is meromorphic on D,, \ D,, and
has poles at Aq, Ao,..., A, with multiplicities at most 7, 7,...,7,;, respectively.
Applying Cauchy’s residue theorem, we obtain

'an_akn ZRes (Qh wm, Fask, Aj)- (4.16)
Recall that the limit formula for the residue of Qﬁ,mn Fosp at Aj is

1 . - (T]_l)
Res(Qf m, Fask, Aj) = (] ILI&I ((z — ) JQﬁymnFasO (2).
i 1z y

Using Leibniz’s rule and the fact that for n sufficiently large s,,(z) # 0 for z € C\E
(see Lemma , we can transform the expression under the limit sign as follows

((z = X)) Qi Fasi) 77V (2)

mi7l ®)
7 — 1 - Fi—1— Sk
=X (7)) R, 00 ()
t=0 n
Forj=1,2,...,qand t =0,1,...,7; — 1, set

Bn(j,t) == %1), (Tj t_ 1) lim ((z — )\j)TjFan?mnsn)(ijlft)(Z)

(notice that S3,(j,t) do not depend on k and «). Thus, we can rewrite (4.16)) as

q T;i—1

) —al?) =33 Bait) ( )m(/\j). (4.17)

j=1 t=0

Since agc o 0,k=n—mpqo+1,n—myq+2,...,n, it follows from 1’ and
the assumptlon that m,, o > mq (for n sufﬁc1ently large)

q Ti—

(t)
'chn ZZﬁnJ, ( > Aj), k=n—maeg+1,n—me+2,...,n. (4.18)

7j=1 t=0
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Now, we consider (4.18]) as a system of m,, linear equations on the m, unknowns
Br(j,t) and the determinant A,, corresponding this system is

(571—‘;7%4»1)()\]) (Snfsminaﬂyﬁ—l)()\j)
(S—iaw) () - (M>m_l)()\j)

Sn Sn

J=1,2,...,q

where the subindex on the determinant means that the indicated group of columns
are successively written for j =1,2,...,¢. Using (4.5, we have

(@) 0y) e (@) ()
m A, — A @)D (2T )
n— oo . :
1 0
Jj=1,2,....q

Using Lemma we can conclude that the determinant Acg # 0.
To avoid long expressions, we define forall j =1,2,...,¢,andt =0,1,...,7;—
1

j—1
Sn | +t+1,
=0

where 79 = 0. Applying Cramer’s rule to (4.18)), we have

Ay (

ﬂn(]at) = A Z’}/n ma+y,n [y’ hj’t]’

n

where A, (4,t) is the determinant obtained from A,, by replacing ht column with
the column

[ (@) (@) (a)]

V- ma+1, ny Yn— ma+2,n0 " 77nn

and C,, [y, h] is the determinant of the (y, )™ cofacter matrix of A, (j,t). Substi-
tuting B, (j,t) in (4.17)), we obtain for k > n+ 1,

T;—1
N 1 qa 7 Ma sk (t)
Al = Y S ol ()00 (@)

=1 t=0 y=1

Define
B(Ar):={zeC:|z—- )\ <r}.
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Let € > 0 be sufficiently small such that B(\;,e) C {z € C: |®(z)| > p2} for all
j=1,2,...,q and B(\;,e) N B(A,e) = 0 for all & # j. Using Cauchy’s integral
formula, we obtain

NG / ol
(=) =5 ] eI (4.20)

Applying (4.5) on (4.20)), there exists a constant ¢; such that for sufficiently large

n

)

Sk ® Cy
— ) )=

j=1,2,...,q, £=0,1,...,7,—1, k>n+1 (421)

= T
2

Moreover, by using Cauchy’s integral formula as before, there exists a constant
cg such that for all kK = n—mg+1,n—mg +2,...,n, j = 1,2,...,q, and

32071,...77']'—1,
(@)
Sk
_ by
’() )

for all sufficiently large n. From (4.22)), we have

<cs (4.22)

ICr(g, h)| <cg, g,h=1,2,...,m4,. (4.23)

Using (4.21)), (4.22), (4.23), and |A| = |cg| > 0, it follows from (4.19) that

)] < o] + Z ) k>n+l. (4.24)

n ma+yn

By the definition of 7(0‘) for all sufficiently large n, we have

k,n’
(a)| < 0110‘1m"|_
Pl = (py — )k
This implies that
0120‘1m”|
ph " (pr — )"

Recall that bl(,o‘yz = 41 a,(sr)l (QF=py),. By Cauchy-Schwarz inequality and
the orthonormality of {p;}72, we have for all » > 0 and k£ > 0,

k>n+1. (4.25)

)

laj)| <

QT pi)u| = (Q Pk, py) |<HQ (Prs i) 2 (pu,puﬁmﬁHQF"‘ L, S s
(4.26)
Then,
B2 S 1a 1@ gy | < SHET
il < S TETR

k=n+1
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Combining the above inequality and (4.14)), for sufficiently large n,

nt|my, [—mn o n4my, | —my,, o

+9)”
b&ag pu(z < I Clm"‘L
y§:0 | ) [P (2)] < ;zo 1541 (p1 — )"
< ~‘mn| o+ 6 "
= 016(n + |mn| — Mn,a + 1)01 7[)1 5 (427)

where € = Ci(oc+6) and z € D,.
Combining (4.15)) and (4.27)), it follows from (4.9)) that for sufficiently large n,

QT (2)Q" p, (2)Fa(2) = P, o(2)| S cizC™0", 2€D,,  (4.28)

T,y n,my ,x
where 6 is an arbitrary constant which satisfies

oc+4d

<6<l
p1—06

Let B> 0 and € > 0 be fixed. By the definition of JZ(F,,mq;k) and (4.3)),
the inequality (4.28) implies that for sufficiently large n,

Clsclmn | o™

QR (2)@n.m, (2))

|Fa(2) = By m, a(2)] <

~ 6 ma/B
< ergCymnlon (rga) (Ca|my, [n?)2m1/5,

for all z € D, \ JZ(F,, mq; k) and k sufficiently large. Then, for sufficiently large

n and k,
’ D N\IE (Fo,mak)

61y \ ™/ ? Hn
<<< ) ) 0(C1/2Cy/ iy |/ ()P yRlemel

1/n
F, —

n, My,

< cié”@e(cm*% log(n)) (2/mn/n)
which implies that

7 RY 1/n

n, My, ,x

lim sup
n—oo

b

_ <
D \J2 (Fuo,maik)

for sufficiently large k.
Letting 6 — 0 and p1 — ppm,, (F,), we have

o
— <0<
pma(Fa)
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Since 6 is arbitrary, we let 6 — o/pp,, (Fa), for sufficiently large &,

1/n 1/n
o0 S| For = Ram| ey = hﬂsolipHF“ ™ Rz, e
—timsup||F0 — &2, | <—2% <1 (429
n—s00 T NDNIE (Faymask) — Pmg (Fa)

This implies that for any 8 > 0 and a = 1,2,...,d, each sequence {R}, m, .o}
converges in [-dimentional Hausdorfl content to Fy, inside D, (r,), as n —
0. O

Proof of Corollary[2.3 By the assumption of Corollary[2.2] for each o = 1,2, ..., d,
Mp,a = V(Fa,D,). Then, the conditions in Theorem are obtained. By Theo-

rem we get hy — limy 00 R m,, .0 = Fo in D, (F,)- Since deg Qhm < |ml,

by applying Lemma [3.8] the inequality must becomes equality and each pole of

F,, attracts as many zeros of Qﬁym as its order otherwise a contradiction on multi-
plicities of poles must occur. Therefore, for all sufficiently large n, Q, m is unique

by Lemma This implies that for such n, R} ,, is unique.

Let K C D, (r)\{Aa,1, X025 - - - s Aaym, | De a compact set and o := max{||®||; , 1}.

Since all points Ao 1, Aa.2; - -« s Aa.m,, attract all zeros of Q) m, for sufficiently small

€ > 0 and for sufficiently large k,

K € Dy \ J2(Fy,ma; k).

By the inequality (4.29)),

1/n 1/n g

F, — Rl

m,m,x

lim sup
n—oo

< limsupHFa — RH

n,m,x
K n—oo

Do \JE (Famask) = P (Fo)
(4.30)

This implies that the sequence { R}, m,o} converges uniformly to F, on each com-

pact subset of D), (r,) \ {A1,A2,...,A\¢} as n — oo, O

Proof of Corollary[2.3 Let o € {1,2,...,d} be fixed and let K be a compact
subset of D, (p,)- Let € > 0 and 8 > 0 be fixed. Since K is compact, K C D, (r.)
for some ¢t € Ny. By the assumption on my, o, it is clear that lim, o Mp,o >
v(Fu,D,,(r.)). Applying Theorem [2.1} we have hg — lim, oo R m,.a = Fo in
D,Dt(Fa)' Thus,

T, My, , 0

im hs{z € K ¢ Rl o) = Fa(2)] > €} = 0.
L]

Proof of Theorem[2.} Let wamn be the polynomial q,]i m, Dormalized as in 1)
And we have for all a =1,2,...,d,

E E
E _ Pomua _ fnmua
n, My, E - E
qn,mn T,My,
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Let o € {1,2,...,d} be fixed. Denote by mq = v(F,,D,) the number of poles
of F in D,,. Note that the notations JZ(F,, m4; k) and B(e; k) are defined as in
the proof of Theorem. by replacing Q} m, with QF . Then, for any compact
subset K C D, (F,), for any € > 0, and k > 0, there exist positive constants
C7 > 0 and C5 > 0 independent of n such that for all sufficiently large n,

HQn |, < ol (4.31)

and

min |QF . (2)] = (Calmy,|(n)?)~2Mmnl/8, (4.32)
2EK\JZ (Foymak)

Define
q
z) = H (z— )\j)Tj ,
j=1

where A1, A2,..., Ay are distinct poles of F, in D, and 71,72,...,7, are their
multiplicities, respectively. From the definition of simultaneous Padé-Faber ap-
proximants and Lemma [3.2] we have

E o (2)Fa(z) = PEL o ( Z a\")®r(2), 2 € Dpyry),s (4.33)
k=n-+1

where
(@) .

ak n [ n,m,
and al(ﬁ)L =0,forall k=n—myq+1,n—myo+2,...,n Multiplying lj by
Q¥ (z) and expanding the result in terms of the Faber polynomial system {®,, }°°
such that for z € D, (r,),

Fa]k; k:O7172a"'7

QFH(Z) E,mn(z) ( ) QF ( ) nmn,a Z QF akn ( )

k=n-+1
) n+|my, |[—mn o 0
=Y e, = > e, (2) + > b, (2). (4.34)
v=0 v=0 v=n+|m,|—m.,, o+1
Let K be a compact subset of D, () and set
o = max{||®| ,,1} (4.35)

(0 =1 when K C E). Choose ¢ > 0 sufficiently small such that

o+
p1—90

P1 = pmo(Fa) =6 > pm.—1(Fy), and < 1. (4.36)
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First, we approximate ) - n+|mw‘ M1 |b(a)||<I> (2)| on D,. With the sim-
ilar computation as (4.12). From and ( -, it follows that for v > n +
|mn| - mn,a + 1a

|b1(/a)| = HQFQ nmnF QF nmn a]l’| = |[QFa E,mnFOé]V|

Q™ (2)Qf m, (2)Fa(2)P'(2) o (4.37)
2m/ Prtl(z) dz| =

V7 )

P1

Therefore, by (3.4) and (4.37), we have for all z € Dy,

o0

> 10 (2)]

v=n+|my|—mg, o+1
oo o n
< > eyl () < ezCimn! ( ) . (4.38)
_ P1 P1
v=n+|my,|—mu o+1
Next, we approximate Z:+(|)m”‘ Mmoo \b(a)||<I> (2)] on Dy. Again, we begin by
approximating \ak n| Choose ps € (1, po(Fy)), we have

() F 1 Qn mn( ) (Z)(I)/(Z)

- e = dz.
Apm = [ n,my, }k 27_” r,, (PkJrl( ) z

Qfl m, (2)Fa(2)®(2)
k’”. 2m/ ‘Iﬂ”l( ) dz.

Arguing as (4.16]), we have

Define

q
y,i";z a,gag > Res(QF , Fa®' /@5 N)). (4.39)
j=1

Now, we use Leibniz’s formula to rewrite (4.39) in the same way as (4.17]) such
that

Ti—1

o o AN
A=) =35 Bt ) (277F) 0y, (4.40)
j=1 t=0
where
_ 1 (-1 o\
= — li i F,

i = (7 ) i (G- A Q) )
forj:1,2 ..,¢,and t=0,1,..., 7, — L Slncea,(m)l =0fork=n—myo+1,n—
Mp,o +2,...,n and the assumptlon that Mo > M (for n sufficiently large), we
have

qg Ti—1

’Ykn ZZﬁn Jit (‘I’" k)()(/\j), E=n—mas+1,n—mg+2,...,n. (4.41)

7j=1 t=0
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Next, we use the same technique in the proof of Theorem to find 5, (j,t)
by replacing sy /s, with ®”~% in . Consider as a system of m, equa-
tions on the m, unknowns 5,(j,t) and the determinant A corresponding to this
system is

((I)ma—l) (A;) - (q)ma—1)(fj—1) )
A @) () (@m==2)T 7D ()
: N 0 »

It follows that for k > n + 1,

qg Ti—1mg

(t)
W = = xS A Clu kil (277) T O0), (42

j=1 t=0 y=1

where C[y, h] is the determinant of the (y, h)*™™ cofacter matrix of A. Arguing as
(r20lfz.24)

by replacing sy /s, with ®*~F, for sufficiently large n, we have

« « Cq - «
as ] < el + = S W iyl B> 1L (4.43)
2 y=1

By the definition of fy,(;iz, for all sufficiently large n, we have for k > n + 1,

(@) o 01
Vel < —-
k,n p]{;
This implies that
cﬁC‘m”l
g <=2 k>l (4.44)
’ P2 P1

Now, we estimate |[QF>®;],|. Suppose that § > 0 is sufficiently small such
that po — & > 1. Then,

F, / _ k

L[ @R, (ot

Lpys (p2 = 6)¥

Q@] | = (4.45)

2mi v Hl(z)

Consequently, we get

o0
B < ST Jaf[[QF @), |
k=n-+1

|m,, | n oo k |m., | n
cgCh (Pz) (P2—5> coCh <P2—5)
< — | = E <
T (=0 \p ) S\ pe T (2 =0\ m
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Therefore, sufficiently large n,

n4|my |[—my o 0 5 n ntHlmy|—mn o v
BB, (2)] < 10O <2_ ) ( ? )
I N O
_5 nNHmy|—mg o
< cmCJm"l <p2 ) Z o’
P1 v=0
<ecnn(n+ my| —my o+ l)CN"lm"l(pz — 6" (Z) , (4.46)
1

where z € D, and C’l = o(].

Combining (4.38) and (4.46), it follows from (4.34) that for each k > ng,

Q7 (2)Q% m, (2)Fa(2) = P, a(2)|

n
< ca(n+ my| — mp,q + 1)0{‘“"‘(;)2 —o)" (:) , 2€ Dy, >k (4.47)
1

Using (4.32)), we arrive for each k > no,

e < (ps— ) (;’) L (448)

F,—RY o <
Do \JE (Fayma;k) 1

lim sup g

n—oQ

Letting 6 — 0, p1 = pm., (Fa), and pa — 1, we obtain that for for each k > na,

r RH o F, RE o -
J— - < ()
o n,my o « XD NI (Famaik) Pmo (Fa)

lim sup
n—oo

< lim sup
K(ﬂ’“) n—oo

(comparing this with (4.29))). This implies that for any 8 > 0, each sequence
RE,mn,a}nEN converges in S-dimentional Hausdorff content to F, inside D, (F,),

as n — oQ.

Arguing as the proofs of Corollary and by replacing Ry m,.o with

RE we are obtain Corollary and

n, My,
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