Thai Journal of Mathematics : (2020) 145–151 Special Issue: The  $14^{th}$  IMT-GT ICMSA 2018

http://thaijmath.in.cmu.ac.th Online ISSN 1686-0209



# $Max(Min)C_{11}$ Modules with Their Endomorphism Rings

Sarapee Chairat  $^{\dagger,1}$ 

<sup>†</sup>Department of Mathematics and Statistics, Faculty of Science, Thaksin University, Phatthalung 93210, Thailand e-mail : sarapee@tsu.ac.th

Abstract : In this paper, we consider the class of rings and modules with extending properties, and study an intensive class of  $\max(\min)C_{11}$  modules together with their endomorphism rings. An R-module M is  $\max C_{11}$  module if every maximal submodule with nonzero left annihilator has a complement which is a direct summand of M. M is called a  $\min C_{11}$  if every minimal submodule has a complement which is a direct summand of M. We prove that if M is a finitely generated, quasi-projective self-generator, then M is  $C_{11}$  (resp.  $\max C_{11}$ ,  $\min C_{11}$ ,  $\max - \min C_{11}$ ) module if and only if its endomorphism ring S is a right  $C_{11}$  (resp.  $\max C_{11}$ ,  $\min C_{11}$ ,  $\max - \min C_{11}$ ) ring. If M is a prime module, then M is nonsingular,  $\max - \min C_{11}$ with a uniform submodule if and only if S is right and left nonsingular, right and left max-min $C_{11}$ if and only if it is  $\max C_{11}$ .

**Keywords** :  $\max C_{11}$  module;  $\min C_{11}$  module;  $\max - \min C_{11}$  module **2010** Mathematics Subject Classification : 47H09; 47H10 (2000 MSC )

### 1 Introduction

Smith and Tercan [1], [2] defined  $C_{11}$  module as follows, an R-module M is called a  $C_{11}$  module, if every submodule of M has a complement which is a direct summand of M, i.e., for each submodule N of M there exists a direct summand K of M such that K is a complement of N in M.  $C_{11}$  modules were defined as a general of CS modules. They studied  $C_{11}$  modules and found many properties of  $C_{11}$ modules as follows, any direct sum of modules with  $C_{11}$  satisfies  $C_{11}$ . Moreover, a module M satisfies  $C_{11}$  if and only if  $M = \mathbb{Z}_2(M) \oplus K$  for some nonsingular submodule K of M and both  $\mathbb{Z}_2(M)$  and Ksatisfy  $C_{11}$ .

Throughout this paper R is an associative (not necessarily commutative) ring with identity and all modules are unitary. Let M be a right R-module. For a submodule (resp. essential submodule) X of M, we write  $X \leq M$  (resp.  $X \leq_e M$ ). According to [1], a submodule X of M is called a closed submodule if X has no proper essential extension in M, that is, for any submodule Y of M such that X is essential in Y then X = Y. Recall that for a given submodule X of M, a submodule Y of M is called a complement of X in M if Y is maximal with respect to  $Y \cap X = 0$ . Complements are exactly closed submodules.

<sup>&</sup>lt;sup>0</sup>This research was supported by Thaksin University Research Fund.

<sup>&</sup>lt;sup>1</sup>Corresponding author.

Let M be a right R-module with  $S = End(M_R)$ , its endomorphism ring. M is a self-generator if for every submodule X of M, we have  $X = \sum_{f \in I} f(M)$  for some subset  $I \subset S$ . We denote  $I_U = \{f \in S | f(M) \subseteq U\}$  for a submodule U of M, and  $JM = J(M) = \sum_{f \in J} f(M)$  for a subset  $J \subset S$ . It is clear that  $I_U$  is a right ideal of S and JM is a submodule of M. A submodule  $X \leq M$  is called a *fully* invariant submodule if  $s(X) \subseteq X$  for every  $s \in S$ . M is called a duo module (resp. weak duo module) if every submodule (resp. every direct summand) is fully invariant. R is called a right duo ring (resp. right weak duo ring) if  $R_R$  is a duo module (resp. weak duo module), equivalently, every right ideal (resp. every right ideal generated by an idempotent) of R is two-sided.

For primeness in modules, we adopt the notions of N. V. Sanh et al. in [3],[4]. A fully invariant submodule X of M is called a *prime submodule* if for every fully invariant submodule U of M, any ideal K of  $S, K(U) \subseteq X$  implies either  $K(M) \subseteq X$  or  $U \subseteq X$ . A fully invariant submodule X of M is called a semiprime submodule if it is an intersection of prime submodules of M. A right R-module M is called a prime (semiprime) module if the zero submodule of M is prime (semiprime) in M.

We denote  $r_X(Y)$  and  $l_X(Y)$  for the right annihilator and the left annihilator of Y in X, respectively. If there is no ambiguity of the space X, then we simply write r(Y), l(Y).

#### $\mathbf{2}$ Preliminaries

First, we need to prepare some tools in order to develop our investigations in the next sections. Some results are employed from other authors.

S. M. Khuri [5], [6] investigated preservation of essentiality and closeness between submodules of a module M and corresponding ideals of its endomorphism ring. In particular, [6, Proposition 3.2] considered the case of nondegenerate modules. We do obtain similar results in the case of finitely generated, quasi-projective self-generators in the following lemmas.

**Lemma 2.1.** (Thuat, Hai, Nghiem and Chairat [Lemma 2.1][7]) Let M be a finitely generated, quasiprojective right R-module which is a self-generator with the endomorphism ring S. The following statements hold for the module M.

(1) X is a closed submodule of M if and only if  $I_X = \{f \in S | f(M) \subseteq X\}$  is a closed right ideal of S. (2) Conversely, K is a closed right ideal of S if and only if  $KM = \sum_{s \in K} s(M)$  is a closed submodule of M.

Lemma 2.2. (Thuat, Hai, Nghiem and Chairat [Lemma 2.2][7]) Let M be a finitely generated, quasiprojective right R-module which is a self-generator with the endomorphism ring S. The following state*ments hold:* 

(1) U is a uniform submodule of M if and only if  $I_U = \{f \in S | f(M) \subseteq U\}$  is a uniform right ideal of S.

(2) K is a uniform right ideal of S if and only if  $KM = \sum_{f \in K} f(M)$  is a uniform submodule of M.

Lemma 2.3. (Thuat, Hai, Nghiem and Chairat [Lemma 2.3][7]) Let M be a finitely generated, quasiprojective right R-module which is a self-generator with the endomorphism ring S. The following statements hold for the module M.

(1) X is a maximal (resp. minimal) closed submodule of M if and only if  $I_X = \{f \in S | f(M) \subseteq X\}$ is a maximal (resp. minimal) closed right ideal of S.

(2) Conversely, K is a maximal (resp. minimal) closed right ideal of S if and only if KM = $\sum_{s \in K} s(M)$  is a maximal (resp. minimal) closed submodule of M.

Lemma 2.4. (Thuat, Hai, Nghiem and Chairat [Lemma 2.4][7]) X is a direct summand of the module M if and only if  $I_X = \{f \in S | f(M) \subseteq X\}$  is a direct summand of S. In this case, X = e(M) and  $I_X = eS$ for some idempotent  $e \in S$ .

Lemma 2.5. (Thuat, Hai, Nghiem and Chairat [Lemma 2.5][7]) The module M is a duo (resp. weak duo) if and only if S is a right duo (resp. right weak duo) ring.

 $Max(Min)C_{11}$  Modules with Their Endomorphism Rings

# 3 $MaxC_{11}$ modules and $minC_{11}$ modules

H. Rayalong and S. Chairat [8] defined  $\min C_{11}$  module and  $\max C_{11}$  module as follows, an R-module M is said to be  $\min C_{11}$  module, if every minimal submodule has a complement which is a direct summand of M, i.e., for each minimal submodule N of M there exists a direct summand K of M such that K is a complement of N in M. A ring R is  $\min C_{11}$  if it is  $\min C_{11} R$ -module.

An R-module M is said to be  $\max C_{11}$  module, if every maximal submodule with nonzero right annihilator has a complement which is a direct summand of M, i.e., for each minimal submodule L of Mwith nonzero right annihilator there exists a direct summand K of M such that K is a complement of Lin M. A ring R is  $\max C_{11}$  if it is  $\max C_{11} R$ -module.

Every  $C_{11}$ -module is min $C_{11}$  and max $C_{11}$  because any submodule has a complement which is a direct summand. But conversely is not true in general. Every CS-module is min $C_{11}$  and max $C_{11}$ , since every CS-module is  $C_{11}$ . Every simple module is min $C_{11}$  and max $C_{11}$ . In particular,  $\mathbb{Z}_2$ ,  $\mathbb{Z}_3$ ,  $\mathbb{Z}_6$ ,  $\mathbb{Z}_{10}$  as a  $\mathbb{Z}$ -module is min $C_{11}$  and max $C_{11}$ . Moreover, every uniform module is min $C_{11}$  and max $C_{11}$ .

**Theorem 3.1.** Let M be a finitely generated, quasi-projective right R-module which is a self-generator. Then M is a  $C_{11}$  (resp. max $C_{11}$ , min $C_{11}$ , max-min $C_{11}$ ) module if and only if S is a right  $C_{11}$  (resp. right max $C_{11}$ , right max $C_{11}$ , right max-min $C_{11}$ ) ring.

*Proof.* Let M be a  $C_{11}$  module and K be a right ideal of S. Since K(M) is a submodule of M, there exists a direct summand X of M such that X is a complement of K(M) in M. We have X is closed, then by Lemma 2.1 and Lemma 2.4  $I_X$  is a closed right ideal of S such that  $I_X$  is a direct summand of K. Conversely, let S be a right  $C_{11}$  ring, and N be any submodule of M. We have K(N) is a submodule of M for any right ideal K of S. Then there is a complement  $I_X$  of K which is a direct summand for some submodule X of M. Then, by Lemma 2.1 and Lemma 2.4 X is a closed submodule of M which is a direct summand. Similarly, the case of min $C_{11}$  property is deduced from Lemma 2.3, and 2.4.

We assume that M is  $\max C_{11}$ . For every maximal right ideal K of S with nonzero left annihilator in S, K(M) is a maximal submodule of M by Lemma 2.3. Since K has nonzero left annihilator, there is some  $0 \neq f \in S$  such that fK = 0, whence K(M) has nonzero left annihilator in S (in deed, fK(M) = 0). Thus K(M) is a direct summand of M, that is K(M) = e(M) for some idempotent  $e \in S$ , by Lemma 2.4. Consequently, K = eS is a direct summand of S, showing that S is right  $\max C_{11}$ . Conversely, for an arbitrary maximal submodule X of M with nonzero left annihilator in  $S, I_X = \{s \in S | s(M) \subseteq X\}$  is a maximal right ideal of S with nonzero left annihilator in S. Therefore, if S is right  $\max C_{11}$ , then  $I_X$ is a direct summand of S, whence X is a direct summand of M. This implies that M is  $\max C_{11}$ .

The next theorem extends this result to noncommutative rings, even more general, to modules over associative rings. Note that every commutative ring is right and left duo, and a commutative ring is semiprime if and only if it is nonsingular. The following lemma is needed to prove our next theorem.

**Lemma 3.2.** For every closed submodule X of M and Y, a complement of X in M, X is a maximal (resp. minimal) closed if and only if Y is minimal (resp. maximal) closed.

*Proof.* Let X be a closed submodule of M and Y, a complement of X. Then, Y is closed in M.

We suppose that X is maximal closed. Then  $X \neq M$  implies  $Y \neq 0$ . In order to prove that Y is minimal closed, it is sufficient to show that Y is uniform. Assuming that A, B are nonzero submodules of Y. If  $A \cap B = 0$ , then there exists a closed submodule  $0 \neq C \leq Y$  such that  $A \subseteq C$  and  $C \oplus B \leq_e Y$ . We have  $C \oplus B \oplus X \leq_e Y \oplus X \leq_e M$ . Thus, there is a complement D of C, where  $D \supseteq B \oplus X, D \neq X$ . This is contradict to maximality of X. Therefore,  $A \cap B \neq 0$  must be hold, proving that Y is uniform.

Next, we assume that X is minimal closed. For a closed submodule A of M such that  $A \neq M$  and  $Y \subseteq A$ , if  $B = A \cap X \neq 0$ , then  $B \leq_e X$  because of minimality of X. Thus  $B \oplus Y \leq_e X \oplus Y \leq_e M$ . Since  $B \subseteq A, Y \subseteq A$ , we have  $B \oplus Y \subseteq A \leq_e M$ , contradict to closeness of A. Therefore, B = 0 must be hold, that is A = Y. This shows that Y is maximal closed in M.

**Theorem 3.3.** Let M be a finitely generated, quasi-projective right R-module which is a self-generator. If M is a semiprime, weak duo module, then the following conditions are equivalent:

- (1) *M* is  $maxC_{11}$ ;
- (2) S is right  $maxC_{11}$ ;
- (3) S is right  $minC_{11}$ ;
- (4) M is min $C_{11}$ .

*Proof.* Since M is semiprime, S is semiprime. Since M is weak duo, S is right weak duo by Lemma 2.5. Thus every right ideal generated by an idempotent of S in the following is two-sided.

The implications  $(1) \Leftrightarrow (2)$  and  $(3) \Leftrightarrow (4)$  follow from Theorem 3.1

 $(2) \Rightarrow (3)$  Let X be a minimal right ideal of S. Since S is semiprime, Y = r(X) is the unique complement of X in S by [4, Theorem 3.2]. Moreover, Y is a maximal right ideal of S by the preceding lemma, and  $Y \neq S$ . We will show that  $l(Y) \neq 0$ . In contrary, if l(Y) = 0, then Y = rl(Y) = S, a contradiction. Thus we have  $l(Y) \neq 0$ . Since S is right max  $C_{11}$ , Y is a direct summand, writing Y = eS for some idempotent  $e \in S$ . In addition, r(Y) is again the unique complement of Y in S, and hence X = r(Y). Since Y is two-sided, Se = eS = Y, so  $(1 - e)S \subseteq r(Y) = X$ . Therefore, we have (1 - e)S = X by minimality of X. This means that X is a direct summand of S,, so Y is a complement of X which is a direct summand whence S is right min $C_{11}$ .

 $(3) \Rightarrow (2)$  Let X be a maximal closed right ideal of S with nonzero left annihilator. Since S is semiprime, Y = r(X) is the unique complement of X in S. Moreover, Y is a minimal right ideal of S by Lemma 2.3. Since S is right min  $C_{11}$ , Y is a direct summand. Note that S is right weak duo, hence Y = eS = Se for some idempotent  $e \in S$ . In addition, r(Y) is again the unique complement of Y in S, thus X = r(Y). We observe that  $Y \oplus (1-e)S = eS \oplus (1-e)S = S$ , so (1-e)S = r(Y) = X. This implies that X is a direct summand of S, showing that S is right max  $C_{11}$ . The proof is now completed.  $\Box$ 

**Corollary 3.4.** Let R be a semiprime, right weak duo ring. Then, R is right  $maxC_{11}$  if and only if it is right  $minC_{11}$ .

*Proof.* ( $\Rightarrow$ ) Let R be a right max $C_{11}$  ring and I be a minimal right ideal in R. Since R is right weak duo, I is two-sided. By [4], I = annannI, hence  $annI \neq 0$ , but R semiprime, which implies  $I \cap annI = 0$ . Let J be a relative complement of I, so J is maximal ideal in R with respect to  $I \cap J = 0$ . Since R is max $C_{11}$ , I is a direct summand of R. Then we have, J is a complement of I which is a direct summand.

( $\Leftarrow$ ) Let *R* be a right min $C_{11}$  ring and *I* be a maximal ideal in *R*, with  $annI \neq 0$ . By [9], I = annannI. Let *J* be a relative complement of *I*. Then *J* is closed in *R*, so *I* is a minimal in *R* by [9]. Since *R* is right min $C_{11}$ , *J* is a direct summand of *R*.

**Corollary 3.5.** A commutative nonsingular ring is  $maxC_{11}$  if and only if it is  $minC_{11}$ .

*Proof.* Since a nonsingular ring is semiprime and commutative ring implies a right weak duo ring , so the proof follow from Corollary 2.4.  $\Box$ 

**Corollary 3.6.** Let M be a right R-module and  $S = End(M_R)$ . Assuming that one of the following conditions is satisfied:

- (1) M is a free module which is a self-generator;
- (2) R is semiprime, M is a torsionless or projective module which is a self-generator;
- (3) M is a generator.

Then M is  $maxC_{11}$  (resp.  $minC_{11}$ ,  $max-minC_{11}$ ) if and only if S is right  $maxC_{11}$  (resp. right  $minC_{11}$ , right  $max-minC_{11}$ ).

Proof. It is clear.

By Theorem 3.3, since  $\max C_{11}$  or  $\min C_{11}$  are equivalent for a finitely generated, quasi-projective, semiprime, duo module which is a self-generator. Next, we provide a further study of  $\max C_{11}$  modules and  $\min C_{11}$  modules. We consider some properties in  $\min C_{11}$  modules that may not share with  $\max C_{11}$  modules and vice versa.

 $Max(Min)C_{11}$  Modules with Their Endomorphism Rings

**Proposition 3.7.** Let M be a max(resp. min) $C_{11}$ , right R-module. If a right R-module N is isomorphic to M, then N is also max(resp. min) $C_{11}$ .

*Proof.* It is clear.

#### **Proposition 3.8.** Let M be a right R-module.

(1) M is min $C_{11}$  if and only if for every minimal submodule  $A \leq M$ , there exist submodules  $M_1, M_2$ of M such that  $A \leq M_1, M_2$  is a complement of A and  $M_1 \oplus M_2 = M$ .

(2) If M is  $minC_{11}$ , then so is every submodule, and hence every direct summand of M.

*Proof.* (1) It is clear.

(2) Let M be min $C_{11}$  and A, a submodule of M. We need to prove that A is again min $C_{11}$ . For every minimal submodule B of A, B is also minimal in M, so  $B \oplus C = M$  for some  $C \leq M$ . Thus  $A = A \cap (B \oplus C) = B \oplus (A \cap C)$ , hence B is a direct summand of A. This implies that A is a min  $C_{11}$ module. The case of direct summands is obvious, completing the proof.

**Proposition 3.9.** Let M be a finitely generated right R-module. If every maximal submodule of M is a direct summand, then M is a max $C_{11}$  module.

*Proof.* Let A be a maximal submodule of M. Since M is finitely generated, there is a maximal submodule B of M such that  $A \subseteq B$ . Then, by assumption B is a direct summand of M and A = B since A is maximal. Then there exist a complement submodule C of M such that  $A \bigoplus C = M$ , proving that M is  $\max C_{11}$ .

**Example 3.10.** Let  $\mathbb{Z}$  be the set of all integers. Then, for a given prime number p, we consider  $\mathbb{Z}$ -modules,  $\mathbb{Z}_p = \mathbb{Z}/p\mathbb{Z}, \mathbb{Z}_{p^3} = \mathbb{Z}/p^3\mathbb{Z}, M = \mathbb{Z}_p \oplus \mathbb{Z}_{p^3}$ . Clearly,  $\mathbb{Z}_p$  and  $\mathbb{Z}_{p^3}$  are CS modules so is  $C_{11}$  and min  $C_{11}$ . We observe that  $A = (1 + p\mathbb{Z}, p + p^3\mathbb{Z})\mathbb{Z}$  is uniform and closed in M, but cannot be a direct summand because it has order  $p^2$  (also see [10]). Thus M is not min $C_{11}$  but A is uniform so is  $C_{11}$  and hence min $C_{11}$ . This example also shows that a non-min $C_{11}$  module may have min $C_{11}$  submodules, and a direct sum of min $C_{11}$  modules needs not to be min $C_{11}$ . An other simple case is that Z is uniform hence is  $C_{11}$  but no maximal submodule of  $\mathbb{Z}$  is direct summand. Thus the converse of Proposition 3.9 is not true.

## 4 Max $C_{11}$ and min $C_{11}$ properties in nonsingular prime modules

In this section, M is a finitely generated, quasi-projective right R-module which is a self-generator with the endomorphism ring  $S = End(M_R)$ . Note that we regularly refer readers to some results in [5], [6] with requirement of retractability. This condition is automatically satisfied when M is a self-generator. By [3, Theorem 2.4], M is a prime module if and only if S is a prime ring. With the aid of results in section 3, we are going to generalize the results in [11] to nonsingular prime modules in this section.

Let M be a right R-module with  $S = End(M_R)$ , its endomorphism ring. Uniform dimension (or Goldie dimension) of M is denoted by  $udim(M_R)$ . M is a self-generator if for every submodule X of M, we have  $X = \sum_{f \in I} f(M)$  for some subset  $I \subset S$ . According to [12], M is called nonsingular if the only submodule of M with essential right annihilator in R is zero, that is for any  $X \leq M$ ,  $r_R(X) \leq_e R$  implies X = 0. M is said to be co-nonsingular if the only submodule of M with essential left annihilator in S is zero, that is for any  $X \leq M$ ,  $l_S(X) \leq_e S$  implies X = 0. It is easy to see that if M is co-nonsingular, then every essential right ideal K of S has zero kernel (i.e. zero right annihilator) in M, that is  $r_M(K) = \{m \in M | f(m) = 0, \forall f \in K\} = 0$ .

**Lemma 4.1.** If M is a min $C_{11}$ , nonsingular and prime module with a uniform submodule, then S is right min $C_{11}$ , right and left nonsingular.

*Proof.* By [5, Theorem 3.1], S is right nonsingular. By Theorem 3.1, S is right min $C_{11}$ . By assumption, M has a uniform submodule, namely U. Then  $I = I_U = \{f \in S | fM \subseteq U\}$  is a uniform right ideal of S by Lemma 2.2. Since S is a right nonsingular, right min $C_{11}$ , prime ring with a uniform right ideal, S is left nonsingular by Lemma 6.

**Proposition 4.2.** If M is a max $C_{11}$ , prime, nonsingular and co-nonsingular module with a uniform submodule, then S is right max $C_{11}$  and left min $C_{11}$ .

*Proof.* Firstly, we see that S is a prime ring. By Lemma 2, since M has a uniform submodule, S has a uniform right ideal. By [5, Theorem 3.1], nonsingularity of M implies that S is right nonsingular. By [12, Proposition 1], since M is co-nonsingular, S if left nonsingular hence is nonsingular. By Theorem 3.1, since M is a max $C_{11}$  module, S is a right max  $C_{11}$  ring. Therefore, S is a left min $C_{11}$  ring by Lemma 7.

**Proposition 4.3.** If M is a  $C_{11}$ , nonsingular and prime module with a uniform submodule, then S is right  $C_{11}$  and left min $C_{11}$ .

*Proof.* Clearly, M is a min $C_{11}$  module. Therefore, Lemma 4.1 claims that S is left nonsingular. Thus M is co-nonsingular by [12, Proposition 1]. It follows from Proposition 4.2 that S is left min $C_{11}$ . Finally, S is right  $C_{11}$  by Theorem 3.1.

**Lemma 4.4.** If R is a non-domain ring, and M is a nonsingular,  $minC_{11}$  and prime module with a uniform submodule, then S is a right  $minC_{11}$  ring with uniform right and left ideals.

*Proof.* It is an easy verification that S is prime due to [3] and is right nonsingular due to [5]. In addition, S is right min $C_{11}$  by Theorem 3.1, and S has a uniform right ideal by Lemma 2.2. Consequently, S has a uniform left ideal by Lemma 8. Note that in this lemma 8, S is not a domain.

**Acknowledgement :** I would like to thank Dr.Nguyen D. Hoa Nghiem for his comments and suggestions. This work was supported by Thaksin University Research Fund.

#### References

- Smith, P. F. and Tercan, A. Generalizations of CS Modules, Communication in algebra. 6(21), 1809-1847, 1993.
- [2] Tercan, A. and Yucel, C. C. , Module Theory, Extending Modules and Generalization, Basel : Birkhauser Basel, 2016.
- [3] N. V. Sanh, N. A. Vu, S. Asawasamrit, K. F. U. Ahmed and L. P. Thao. Primeness in module category, Asian-European J. Math., 3:1(145-154), 2010.
- [4] N. V. Sanh, K. F. U. Ahmed and L. P. Thao. On semiprime modules with chain conditions, East-West J. Math., 15:2 (135-151), 2013.
- [5] S. M. Khuri. Endomorphism rings of nonsingular modules, Ann. Sci. Math. Quebec, 4(145-152), 1980.
- [6] S. M. Khuri, Nonsingular retractable modules and their endomorphism rings. Bull. Austral. Math. Soc., 43(63-71), 1991.
- [7] D. V. Thuat, H. D. Hai, N. D. H. Nghiem and S. Chairat, On the Endomorphism Rings of Max CS and Min CS Modules, AIP Conference Proceedings, 03006(1-7), 2016.

 $Max(Min)C_{11}$  Modules with Their Endomorphism Rings

- [8] Hagim Rayalong and Sarapee Chairat, On Direct Sum of MinC<sub>11</sub> and MaxC11 Modules, AIP Conference Proceedings 2013, 020047, 2018.
- [9] I. M. A. Hadi, R. N. Majeed, Min (max)-CS modules. Ibn Al-Haitham J. Pure and Applied Science, 25:1, 2012.
- [10] N. V. Dung, D. V. Huynh, P. F. Smith and R. Wisbauer. Extending modules, Research Notices in Mathematics Series 313. Pitman, London, 1994.
- [11] S. K. Jain, Husain S. Al-Hazmi, and Adel N. Alahmadi, Right-Left Symmetry of Right Nonsingular Right Max-Min CS Prime Rings. Communications in Algebra, 34(3883-3889), 2006.
- [12] S. M. Khuri. Modules whose endomorphism rings have isomorphic maximal left and right quotient rings, Proceedings of the American Math. Soc., 85:2(161-164), 1982.

(Received 23 November 2018) (Accepted 30 June 2019)

THAI J. MATH. Online @ http://thaijmath.in.cmu.ac.th