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Abstract : In this paper, we consider the class of rings and modules with extending properties, and
study an intensive class of max(min)C11 modules together with their endomorphism rings. An R−module
M is maxC11 module if every maximal submodule with nonzero left annihilator has a complement which
is a direct summand of M . M is called a minC11 if every minimal submodule has a complement which is
a direct summand of M . We prove that if M is a finitely generated, quasi-projective self-generator, then
M is C11 (resp. maxC11 , minC11 , max-minC11) module if and only if its endomorphism ring S is a right
C11 (resp. maxC11, minC11, max-minC11) ring. If M is a prime module, then M is nonsingular, max-min
C11 with a uniform submodule if and only if S is right and left nonsingular, right and left max-minC11

with uniform right and left ideals. Moreover, if M is a semiprime, weak duo module, then M is maxC11

if and only if it is minC11.
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1 Introduction

Smith and Tercan [1], [2] defined C11 module as follows, an R−module M is called a C11 module,
if every submodule of M has a complement which is a direct summand of M , i.e., for each submodule
N of M there exists a direct summand K of M such that K is a complement of N in M . C11 modules
were defined as a general of CS modules. They studied C11 modules and found many properties of C11

modules as follows, any direct sum of modules with C11 satisfies C11. Moreover, a module M satisfies
C11 if and only if M = Z2(M) ⊕K for some nonsingular submodule K of M and both Z2(M) and K
satisfy C11.

Throughout this paper R is an associative (not necessarily commutative) ring with identity and all
modules are unitary. Let M be a right R-module. For a submodule (resp. essential submodule) X of M ,
we write X 6 M (resp. X 6e M ). According to [1], a submodule X of M is called a closed submodule if
X has no proper essential extension in M , that is, for any submodule Y of M such that X is essential in
Y then X = Y . Recall that for a given submodule X of M , a submodule Y of M is called a complement
of X in M if Y is maximal with respect to Y ∩X = 0. Complements are exactly closed submodules.
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Let M be a right R-module with S = End(MR), its endomorphism ring. M is a self-generator if
for every submodule X of M , we have X =

∑
f∈I f(M) for some subset I ⊂ S. We denote IU = {f ∈

S|f(M) ⊆ U} for a submodule U of M , and JM = J(M) =
∑

f∈J f(M) for a subset J ⊂ S. It is clear
that IU is a right ideal of S and JM is a submodule of M . A submodule X 6 M is called a fully
invariant submodule if s(X) ⊆ X for every s ∈ S. M is called a duo module (resp. weak duo module) if
every submodule (resp. every direct summand) is fully invariant. R is called a right duo ring (resp. right
weak duo ring) if RR is a duo module (resp. weak duo module), equivalently, every right ideal (resp.
every right ideal generated by an idempotent) of R is two-sided.

For primeness in modules, we adopt the notions of N. V. Sanh et al. in [3],[4]. A fully invariant
submodule X of M is called a prime submodule if for every fully invariant submodule U of M, any ideal
K of S,K(U) ⊆ X implies either K(M) ⊆ X or U ⊆ X. A fully invariant submodule X of M is called a
semiprime submodule if it is an intersection of prime submodules of M. A right R−module M is called
a prime (semiprime) module if the zero submodule of M is prime (semiprime) in M.

We denote rX(Y ) and lX(Y ) for the right annihilator and the left annihilator of Y in X, respectively.
If there is no ambiguity of the space X, then we simply write r(Y ), l(Y ).

2 Preliminaries

First, we need to prepare some tools in order to develop our investigations in the next sections. Some
results are employed from other authors.

S. M. Khuri [5], [6] investigated preservation of essentiality and closeness between submodules of a
module M and corresponding ideals of its endomorphism ring. In particular, [6, Proposition 3.2] consid-
ered the case of nondegenerate modules. We do obtain similar results in the case of finitely generated,
quasi-projective self-generators in the following lemmas.

Lemma 2.1. (Thuat, Hai, Nghiem and Chairat [Lemma 2.1][7]) Let M be a finitely generated, quasi-
projective right R−module which is a self-generator with the endomorphism ring S. The following state-
ments hold for the module M.

(1) X is a closed submodule of M if and only if IX = {f ∈ S|f(M) ⊆ X} is a closed right ideal of S.
(2) Conversely, K is a closed right ideal of S if and only if KM =

∑
s∈K s(M) is a closed submodule

of M.

Lemma 2.2. (Thuat, Hai, Nghiem and Chairat [Lemma 2.2][7]) Let M be a finitely generated, quasi-
projective right R−module which is a self-generator with the endomorphism ring S. The following state-
ments hold:

(1) U is a uniform submodule of M if and only if IU = {f ∈ S|f(M) ⊆ U} is a uniform right ideal
of S.

(2) K is a uniform right ideal of S if and only if KM =
∑

f∈K f(M) is a uniform submodule of M.

Lemma 2.3. (Thuat, Hai, Nghiem and Chairat [Lemma 2.3][7]) Let M be a finitely generated, quasi-
projective right R−module which is a self-generator with the endomorphism ring S. The following state-
ments hold for the module M.

(1) X is a maximal (resp. minimal) closed submodule of M if and only if IX = {f ∈ S|f(M) ⊆ X}
is a maximal (resp. minimal) closed right ideal of S.

(2) Conversely, K is a maximal (resp. minimal) closed right ideal of S if and only if KM =∑
s∈K s(M) is a maximal (resp. minimal) closed submodule of M.

Lemma 2.4. (Thuat, Hai, Nghiem and Chairat [Lemma 2.4][7]) X is a direct summand of the module M
if and only if IX = {f ∈ S|f(M) ⊆ X} is a direct summand of S. In this case, X = e(M) and IX = eS
for some idempotent e ∈ S.

Lemma 2.5. (Thuat, Hai, Nghiem and Chairat [Lemma 2.5][7]) The module M is a duo (resp. weak
duo) if and only if S is a right duo (resp. right weak duo) ring.



Max(Min)C11 Modules with Their Endomorphism Rings 147

3 MaxC11 modules and minC11 modules

H. Rayalong and S. Chairat [8] defined minC11 module and maxC11 module as follows, an R−module
M is said to be minC11 module, if every minimal submodule has a complement which is a direct summand
of M , i.e., for each minimal submodule N of M there exists a direct summand K of M such that K is a
complement of N in M . A ring R is minC11 if it is minC11 R−module.

An R−module M is said to be maxC11 module, if every maximal submodule with nonzero right
annihilator has a complement which is a direct summand of M , i.e., for each minimal submodule L of M
with nonzero right annihilator there exists a direct summand K of M such that K is a complement of L
in M . A ring R is maxC11 if it is maxC11 R−module.

Every C11-module is minC11 and maxC11 because any submodule has a complement which is a direct
summand. But conversely is not true in general. Every CS-module is minC11 and maxC11, since every
CS-module is C11. Every simple module is minC11 and maxC11. In particular, Z2, Z3, Z6, Z10 as a
Z−module is minC11 and maxC11. Moreover, every uniform module is minC11 and maxC11.

Theorem 3.1. Let M be a finitely generated, quasi-projective right R−module which is a self-generator.
Then M is a C11 (resp. maxC11, minC11, max-minC11) module if and only if S is a right C11 (resp.
right maxC11, right minC11, right max-minC11) ring.

Proof. Let M be a C11 module and K be a right ideal of S. Since K(M) is a submodule of M , there
exists a direct summand X of M such that X is a complement of K(M) in M . We have X is closed,
then by Lemma 2.1 and Lemma 2.4 IX is a closed right ideal of S such that IX is a direct summand of
K. Conversely, let S be a right C11 ring, and N be any submodule of M. We have K(N) is a submodule
of M for any right ideal K of S. Then there is a complement IX of K which is a direct summand for
some submodule X of M . Then, by Lemma 2.1 and Lemma 2.4 X is a closed submodule of M which is
a direct summand. Similarly, the case of minC11 property is deduced from Lemma 2.3, and 2.4.

We assume that M is maxC11. For every maximal right ideal K of S with nonzero left annihilator
in S, K(M) is a maximal submodule of M by Lemma 2.3. Since K has nonzero left annihilator, there is
some 0 6= f ∈ S such that fK = 0, whence K(M) has nonzero left annihilator in S (in deed, fK(M) = 0).
Thus K(M) is a direct summand of M, that is K(M) = e(M) for some idempotent e ∈ S, by Lemma
2.4. Consequently, K = eS is a direct summand of S, showing that S is right maxC11 . Conversely, for
an arbitrary maximal submodule X of M with nonzero left annihilator in S, IX = {s ∈ S|s(M) ⊆ X} is
a maximal right ideal of S with nonzero left annihilator in S. Therefore, if S is right maxC11 , then IX
is a direct summand of S, whence X is a direct summand of M. This implies that M is maxC11 .

The next theorem extends this result to noncommutative rings, even more general, to modules over
associative rings. Note that every commutative ring is right and left duo, and a commutative ring is
semiprime if and only if it is nonsingular. The following lemma is needed to prove our next theorem.

Lemma 3.2. For every closed submodule X of M and Y, a complement of X in M, X is a maximal
(resp. minimal) closed if and only if Y is minimal (resp. maximal) closed.

Proof. Let X be a closed submodule of M and Y, a complement of X. Then, Y is closed in M.
We suppose that X is maximal closed. Then X 6= M implies Y 6= 0. In order to prove that Y is

minimal closed, it is sufficient to show that Y is uniform. Assuming that A,B are nonzero submodules
of Y. If A ∩ B = 0, then there exists a closed submodule 0 6= C 6 Y such that A ⊆ C and C ⊕ B 6e Y.
We have C ⊕ B ⊕X 6e Y ⊕X 6e M. Thus, there is a complement D of C, where D ⊇ B ⊕X,D 6= X.
This is contradict to maximality of X. Therefore, A ∩B 6= 0 must be hold, proving that Y is uniform.

Next, we assume that X is minimal closed. For a closed submodule A of M such that A 6= M and
Y ⊆ A, if B = A∩X 6= 0, then B 6e X because of minimality of X. Thus B⊕ Y 6e X ⊕ Y 6e M. Since
B ⊆ A, Y ⊆ A, we have B ⊕ Y ⊆ A 6e M, contradict to closeness of A. Therefore, B = 0 must be hold,
that is A = Y. This shows that Y is maximal closed in M.
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Theorem 3.3. Let M be a finitely generated, quasi-projective right R−module which is a self-generator.
If M is a semiprime, weak duo module, then the following conditions are equivalent:

(1) M is maxC11 ;
(2) S is right maxC11 ;
(3) S is right minC11 ;
(4) M is minC11 .

Proof. Since M is semiprime, S is semiprime . Since M is weak duo, S is right weak duo by Lemma 2.5.
Thus every right ideal generated by an idempotent of S in the following is two-sided.

The implications (1)⇔(2) and (3)⇔(4) follow from Theorem 3.1
(2)⇒(3) Let X be a minimal right ideal of S. Since S is semiprime, Y = r(X) is the unique comple-

ment of X in S by [4, Theorem 3.2]. Moreover, Y is a maximal right ideal of S by the preceding lemma,
and Y 6= S. We will show that l(Y ) 6= 0. In contrary, if l(Y ) = 0, then Y = rl(Y ) = S, a contradiction.
Thus we have l(Y ) 6= 0. Since S is right max C11, Y is a direct summand, writing Y = eS for some
idempotent e ∈ S. In addition, r(Y ) is again the unique complement of Y in S, and hence X = r(Y ).
Since Y is two-sided, Se = eS = Y, so (1 − e)S ⊆ r(Y ) = X. Therefore, we have (1 − e)S = X by
minimality of X. This means that X is a direct summand of S,, so Y is a complement of X which is a
direct summand whence S is right minC11.

(3)⇒(2) Let X be a maximal closed right ideal of S with nonzero left annihilator. Since S is
semiprime, Y = r(X) is the unique complement of X in S. Moreover, Y is a minimal right ideal of S
by Lemma 2.3. Since S is right min C11, Y is a direct summand. Note that S is right weak duo, hence
Y = eS = Se for some idempotent e ∈ S. In addition, r(Y ) is again the unique complement of Y in S,
thus X = r(Y ). We observe that Y ⊕ (1− e)S = eS⊕ (1− e)S = S, so (1− e)S = r(Y ) = X. This implies
that X is a direct summand of S, showing that S is right max C11. The proof is now completed.

Corollary 3.4. Let R be a semiprime, right weak duo ring. Then, R is right maxC11 if and only if it is
right minC11.

Proof. (⇒) Let R be a right maxC11 ring and I be a minimal right ideal in R. Since R is right weak
duo, I is two-sided. By [4], I = annannI, hence annI 6= 0, but R semiprime, which implies I ∩ annI = 0
. Let J be a relative complement of I, so J is maximal ideal in R with respect to I ∩ J = 0 . Since R is
maxC11 , I is a direct summand of R. Then we have , J is a complement of I which is a direct summand.

(⇐) Let R be a right minC11 ring and I be a maximal ideal in R, with annI 6= 0 . By [9], I = annannI.
Let J be a relative complement of I. Then J is closed in R, so I is a minimal in R by [9]. Since R is
right minC11 , J is a direct summand of R.

Corollary 3.5. A commutative nonsingular ring is maxC11 if and only if it is minC11.

Proof. Since a nonsingular ring is semiprime and commutative ring implies a right weak duo ring , so the
proof follow from Corollary 2.4.

Corollary 3.6. Let M be a right R−module and S = End(MR). Assuming that one of the following
conditions is satisfied:

(1) M is a free module which is a self-generator;
(2) R is semiprime, M is a torsionless or projective module which is a self-generator;
(3) M is a generator.
Then M is maxC11 (resp. minC11, max-minC11) if and only if S is right maxC11 (resp. right minC11,

right max-minC11).

Proof. It is clear.

By Theorem 3.3 , since maxC11 or minC11 are equivalent for a finitely generated, quasi-projective,
semiprime, duo module which is a self-generator. Next, we provide a further study of maxC11 modules
and minC11 modules. We consider some properties in minC11 modules that may not share with maxC11

modules and vice versa.
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Proposition 3.7. Let M be a max(resp. min)C11, right R−module. If a right R−module N is isomorphic
to M, then N is also max(resp. min)C11.

Proof. It is clear.

Proposition 3.8. Let M be a right R−module.
(1) M is minC11 if and only if for every minimal submodule A 6 M, there exist submodules M1,M2

of M such that A 6 M1, M2 is a complement of A and M1 ⊕M2 = M.
(2) If M is minC11, then so is every submodule, and hence every direct summand of M.

Proof. (1) It is clear.
(2) Let M be minC11 and A, a submodule of M. We need to prove that A is again minC11. For

every minimal submodule B of A, B is also minimal in M, so B ⊕ C = M for some C 6 M. Thus
A = A ∩ (B ⊕ C) = B ⊕ (A ∩ C), hence B is a direct summand of A. This implies that A is a min C11

module. The case of direct summands is obvious, completing the proof.

Proposition 3.9. Let M be a finitely generated right R−module. If every maximal submodule of M is
a direct summand, then M is a maxC11 module.

Proof. Let A be a maximal submodule of M. Since M is finitely generated, there is a maximal submodule
B of M such that A ⊆ B. Then, by assumption B is a direct summand of M and A = B since A is
maximal. Then there exist a complement submodule C of M such that A

⊕
C = M , proving that M is

maxC11 .

Example 3.10. Let Z be the set of all integers. Then, for a given prime number p, we consider
Z−modules, Zp = Z/pZ,Zp3 = Z/p3Z,M = Zp⊕Zp3 . Clearly, Zp and Zp3 are CS modules so is C11 and
min C11. We observe that A = (1 + pZ, p + p3Z)Z is uniform and closed in M, but cannot be a direct
summand because it has order p2 (also see [10]). Thus M is not minC11 but A is uniform so is C11 and
hence minC11. This example also shows that a non-minC11 module may have minC11 submodules, and a
direct sum of minC11 modules needs not to be minC11. An other simple case is that Z is uniform hence
is C11 but no maximal submodule of Z is direct summand. Thus the converse of Proposition 3.9 is not
true.

4 Max C11 and min C11 properties in nonsingular prime modules

In this section, M is a finitely generated, quasi-projective right R−module which is a self-generator
with the endomorphism ring S = End(MR). Note that we regularly refer readers to some results in [5], [6]
with requirement of retractability. This condition is automatically satisfied when M is a self-generator.
By [3, Theorem 2.4], M is a prime module if and only if S is a prime ring. With the aid of results in
section 3, we are going to generalize the results in [11] to nonsingular prime modules in this section.

Let M be a right R−module with S = End(MR), its endomorphism ring. Uniform dimension (or
Goldie dimension) of M is denoted by udim(MR). M is a self-generator if for every submodule X of
M , we have X =

∑
f∈I f(M) for some subset I ⊂ S. According to [12], M is called nonsingular if the

only submodule of M with essential right annihilator in R is zero, that is for any X 6 M, rR(X)6eR
implies X = 0. M is said to be co-nonsingular if the only submodule of M with essential left annihilator
in S is zero, that is for any X 6 M, lS(X)6eS implies X = 0. It is easy to see that if M is co-
nonsingular, then every essential right ideal K of S has zero kernel (i.e. zero right annihilator) in M,
that is rM (K) = {m ∈M |f(m) = 0,∀f ∈ K} = 0.
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Lemma 4.1. If M is a minC11, nonsingular and prime module with a uniform submodule, then S is
right minC11, right and left nonsingular.

Proof. By [5, Theorem 3.1], S is right nonsingular. By Theorem 3.1, S is right minC11. By assumption,
M has a uniform submodule, namely U. Then I = IU = {f ∈ S|fM ⊆ U} is a uniform right ideal of S
by Lemma 2.2. Since S is a right nonsingular, right minC11, prime ring with a uniform right ideal, S is
left nonsingular by Lemma 6.

Proposition 4.2. If M is a maxC11, prime, nonsingular and co-nonsingular module with a uniform
submodule, then S is right maxC11 and left minC11.

Proof. Firstly, we see that S is a prime ring. By Lemma 2, since M has a uniform submodule, S has a
uniform right ideal. By [5, Theorem 3.1], nonsingularity of M implies that S is right nonsingular. By [12,
Proposition 1], since M is co-nonsingular, S if left nonsingular hence is nonsingular. By Theorem 3.1,
since M is a maxC11 module, S is a right max C11 ring. Therefore, S is a left minC11 ring by Lemma
7.

Proposition 4.3. If M is a C11, nonsingular and prime module with a uniform submodule, then S is
right C11 and left minC11.

Proof. Clearly, M is a minC11 module. Therefore, Lemma 4.1 claims that S is left nonsingular. Thus M
is co-nonsingular by [12, Proposition 1]. It follows from Proposition 4.2 that S is left minC11. Finally, S
is right C11 by Theorem 3.1.

Lemma 4.4. If R is a non-domain ring, and M is a nonsingular, minC11 and prime module with a
uniform submodule, then S is a right minC11 ring with uniform right and left ideals.

Proof. It is an easy verification that S is prime due to [3] and is right nonsingular due to [5]. In addition,
S is right minC11 by Theorem 3.1, and S has a uniform right ideal by Lemma 2.2. Consequently, S has
a uniform left ideal by Lemma 8. Note that in this lemma 8, S is not a domain.
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