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Abstract : In this paper, we consider the class of rings and modules with extending properties, and
study an intensive class of max(min)C; modules together with their endomorphism rings. An R—module
M is max(C7; module if every maximal submodule with nonzero left annihilator has a complement which
is a direct summand of M. M is called a minCy; if every minimal submodule has a complement which is
a direct summand of M. We prove that if M is a finitely generated, quasi-projective self-generator, then
M is Cq1 (resp. maxCi; , minCy; , max-minCi;) module if and only if its endomorphism ring S is a right
C11 (resp. maxCiy, minChq, max-minCt) ring. If M is a prime module, then M is nonsingular, max-min
C11 with a uniform submodule if and only if S is right and left nonsingular, right and left max-minC1;
with uniform right and left ideals. Moreover, if M is a semiprime, weak duo module, then M is maxCt
if and only if it is minC1;.
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1 Introduction

Smith and Tercan [1], [2] defined C1; module as follows, an R—module M is called a C7; module,
if every submodule of M has a complement which is a direct summand of M, i.e., for each submodule
N of M there exists a direct summand K of M such that K is a complement of N in M. C}; modules
were defined as a general of C'S modules. They studied C7; modules and found many properties of C1q
modules as follows, any direct sum of modules with Cy; satisfies C7;. Moreover, a module M satisfies
Cy; if and only if M = Zy(M) & K for some nonsingular submodule K of M and both Zs(M) and K
satisty Cqy.

Throughout this paper R is an associative (not necessarily commutative) ring with identity and all
modules are unitary. Let M be a right R-module. For a submodule (resp. essential submodule) X of M,
we write X < M (resp. X <. M ). According to [1], a submodule X of M is called a closed submodule if
X has no proper essential extension in M, that is, for any submodule Y of M such that X is essential in
Y then X =Y. Recall that for a given submodule X of M | a submodule Y of M is called a complement
of X in M if Y is maximal with respect to Y N X = 0. Complements are exactly closed submodules.
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Let M be a right R-module with S = End(Mg), its endomorphism ring. M is a self-generator if
for every submodule X of M, we have X =}, ; f(M) for some subset I C S. We denote Iy = {f €
S|f(M) C U} for a submodule U of M, and JM = J(M) = 3", ; f(M) for a subset J C S. It is clear
that Iy is a right ideal of S and JM is a submodule of M. A submodule X < M is called a fully
invariant submodule if s(X) C X for every s € S. M is called a duo module (resp. weak duo module) if
every submodule (resp. every direct summand) is fully invariant. R is called a right duo ring (resp. right
weak duo ring) if Rg is a duo module (resp. weak duo module), equivalently, every right ideal (resp.
every right ideal generated by an idempotent) of R is two-sided.

For primeness in modules, we adopt the notions of N. V. Sanh et al. in [3],[4]. A fully invariant
submodule X of M is called a prime submodule if for every fully invariant submodule U of M, any ideal
K of S, K(U) C X implies either K(M) C X or U C X. A fully invariant submodule X of M is called a
semiprime submodule if it is an intersection of prime submodules of M. A right R—module M is called
a prime (semiprime) module if the zero submodule of M is prime (semiprime) in M.

We denote rx(Y) and Ix(Y") for the right annihilator and the left annihilator of Y in X, respectively.
If there is no ambiguity of the space X, then we simply write r(Y), (V).

2 Preliminaries

First, we need to prepare some tools in order to develop our investigations in the next sections. Some
results are employed from other authors.

S. M. Khuri [5], [6] investigated preservation of essentiality and closeness between submodules of a
module M and corresponding ideals of its endomorphism ring. In particular, [6, Proposition 3.2] consid-
ered the case of nondegenerate modules. We do obtain similar results in the case of finitely generated,
quasi-projective self-generators in the following lemmas.

Lemma 2.1. (Thuat, Hai, Nghiem and Chairat [Lemma 2.1|[7]) Let M be a finitely generated, quasi-
projective right R—module which is a self-generator with the endomorphism ring S. The following state-
ments hold for the module M.
(1) X is a closed submodule of M if and only if Ix = {f € S|f(M) C X} is a closed right ideal of S.
(2) Conversely, K is a closed right ideal of S if and only if KM =3 . s(M) is a closed submodule
of M.

Lemma 2.2. (Thuat, Hai, Nghiem and Chairat [Lemma 2.2][7]) Let M be a finitely generated, quasi-
projective right R—module which is a self-generator with the endomorphism ring S. The following state-
ments hold:

(1) U is a uniform submodule of M if and only if Iy = {f € S|f(M) C U} is a uniform right ideal
of S.
(2) K is a uniform right ideal of S if and only if KM =3, f(M) is a uniform submodule of M.

Lemma 2.3. (Thuat, Hai, Nghiem and Chairat [Lemma 2.3|[7]) Let M be a finitely generated, quasi-
projective right R—module which is a self-generator with the endomorphism ring S. The following state-
ments hold for the module M.

(1) X is a mazimal (resp. minimal) closed submodule of M if and only if Ix = {f € S|f(M) C X}
is a mazimal (resp. minimal) closed right ideal of S.

(2) Conversely, K is a mazimal (resp. minimal) closed right ideal of S if and only if KM =
> sci S(M) is a mazimal (resp. minimal) closed submodule of M.

Lemma 2.4. (Thuat, Hai, Nghiem and Chairat [Lemma 2.4][7]) X is a direct summand of the module M
if and only if Ix = {f € S|f(M) C X} is a direct summand of S. In this case, X = e(M) and Ix = eS
for some idempotent e € S.

Lemma 2.5. (Thuat, Hai, Nghiem and Chairat [Lemma 2.5|[7]) The module M is a duo (resp. weak
duo) if and only if S is a right duo (resp. right weak duo) ring.
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3 Max(C}; modules and min(C}; modules

H. Rayalong and S. Chairat [8] defined minC4; module and maxCy; module as follows, an R—module
M is said to be minC; module, if every minimal submodule has a complement which is a direct summand
of M, i.e., for each minimal submodule N of M there exists a direct summand K of M such that K is a
complement of N in M. A ring R is minCy; if it is minC7; R—module.

An R—module M is said to be maxC7; module, if every maximal submodule with nonzero right
annihilator has a complement which is a direct summand of M, i.e., for each minimal submodule L of M
with nonzero right annihilator there exists a direct summand K of M such that K is a complement of L
in M. A ring R is max(Cy; if it is maxC7; R—module.

Every C11-module is minCY; and maxCh; because any submodule has a complement which is a direct
summand. But conversely is not true in general. Every C'S-module is minC; and maxC1q, since every
CS-module is Cy;. Every simple module is minCy; and maxChy. In particular, Zs, Zs3, Zg, Z1o as a
Z—module is minC7; and maxC7;. Moreover, every uniform module is minCy; and maxCh;.

Theorem 3.1. Let M be a finitely generated, quasi-projective right R—module which is a self-generator.
Then M is a C11 (resp. mazCh1, minCi1, maz-minCi1) module if and only if S is a right C11 (resp.
right mazCh1, right minChy, right maz-minCiy) ring.

Proof. Let M be a Cq; module and K be a right ideal of S. Since K (M) is a submodule of M, there
exists a direct summand X of M such that X is a complement of K(M) in M. We have X is closed,
then by Lemma 2.1 and Lemma 2.4 Iy is a closed right ideal of S such that Ix is a direct summand of
K. Conversely, let S be a right C}; ring, and N be any submodule of M. We have K(N) is a submodule
of M for any right ideal K of S. Then there is a complement Iy of K which is a direct summand for
some submodule X of M. Then, by Lemma 2.1 and Lemma 2.4 X is a closed submodule of M which is
a direct summand. Similarly, the case of minC4; property is deduced from Lemma 2.3, and 2.4.

We assume that M is maxCi;. For every maximal right ideal K of S with nonzero left annihilator
in S, K(M) is a maximal submodule of M by Lemma[2.3] Since K has nonzero left annihilator, there is
some 0 # f € S such that fK = 0, whence K (M) has nonzero left annihilator in S (in deed, fK (M) = 0).
Thus K(M) is a direct summand of M, that is K(M) = e(M) for some idempotent ¢ € S, by Lemma
[2:4 Consequently, K = €S is a direct summand of S, showing that S is right maxCj; . Conversely, for
an arbitrary maximal submodule X of M with nonzero left annihilator in S, Ix = {s € S|s(M) C X} is
a maximal right ideal of S with nonzero left annihilator in S. Therefore, if S is right maxC4; , then Iy
is a direct summand of S, whence X is a direct summand of M. This implies that M is maxC1q . O

The next theorem extends this result to noncommutative rings, even more general, to modules over
associative rings. Note that every commutative ring is right and left duo, and a commutative ring is
semiprime if and only if it is nonsingular. The following lemma is needed to prove our next theorem.

Lemma 3.2. For every closed submodule X of M and Y, a complement of X in M, X is a mazximal
(resp. minimal) closed if and only if Y is minimal (resp. maximal) closed.

Proof. Let X be a closed submodule of M and Y, a complement of X. Then, Y is closed in M.

We suppose that X is maximal closed. Then X # M implies Y # 0. In order to prove that Y is
minimal closed, it is sufficient to show that Y is uniform. Assuming that A, B are nonzero submodules
of Y. If AN B = 0, then there exists a closed submodule 0 # C' < Y such that A C C and Cé B <. Y.
We have C® B d X <. Y ® X <. M. Thus, there is a complement D of C, where D O B® X, D # X.
This is contradict to maximality of X. Therefore, AN B # 0 must be hold, proving that Y is uniform.

Next, we assume that X is minimal closed. For a closed submodule A of M such that A # M and
Y CA if B=ANX #0, then B <. X because of minimality of X. Thus B&®Y <, X Y <. M. Since
BCAY CA, wehave B&Y C A <. M, contradict to closeness of A. Therefore, B = 0 must be hold,
that is A =Y. This shows that Y is maximal closed in M.

O
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Theorem 3.3. Let M be a finitely generated, quasi-projective right R—module which is a self-generator.
If M is a semiprime, weak duo module, then the following conditions are equivalent:

(1) M is maaChy ;

(2) S is right maxCyy ;

(3) S is right minCy ;

(4) M is minCqy .

Proof. Since M is semiprime, S is semiprime . Since M is weak duo, S is right weak duo by Lemma [2.5]
Thus every right ideal generated by an idempotent of S in the following is two-sided.

The implications (1)< (2) and (3)< (4) follow from Theorem 3.1

(2)=(3) Let X be a minimal right ideal of S. Since S is semiprime, ¥ = r(X) is the unique comple-
ment of X in S by [4, Theorem 3.2]. Moreover, Y is a maximal right ideal of S by the preceding lemma,
and Y # S. We will show that [(Y) # 0. In contrary, if [(Y) = 0, then Y = r{(Y) = S, a contradiction.
Thus we have [(Y) # 0. Since S is right max Cj;1, Y is a direct summand, writing ¥ = eS for some
idempotent e € S. In addition, r(Y) is again the unique complement of Y in S, and hence X = r(Y).
Since Y is two-sided, Se = eS =Y, so (1 —e)S C r(Y) = X. Therefore, we have (1 —e)S = X by
minimality of X. This means that X is a direct summand of S,, so Y is a complement of X which is a
direct summand whence S is right minCh;.

(8)=(2) Let X be a maximal closed right ideal of S with nonzero left annihilator. Since S is
semiprime, Y = r(X) is the unique complement of X in S. Moreover, Y is a minimal right ideal of S
by Lemma 2.3] Since S is right min Cj1, Y is a direct summand. Note that S is right weak duo, hence
Y = eS = Se for some idempotent e € S. In addition, r(Y") is again the unique complement of ¥ in S,
thus X = r(Y"). We observe that Y @ (1 —e)S =eS@® (1 —€)S =S5, s0 (1—e)S =r(Y) = X. This implies
that X is a direct summand of S, showing that S is right max C11. The proof is now completed. O

Corollary 3.4. Let R be a semiprime, right weak duo ring. Then, R is right mazCh; if and only if it is
right minC11.

Proof. (=) Let R be a right maxCy; ring and I be a minimal right ideal in R. Since R is right weak
duo, T is two-sided. By [4], I = annannl, hence annl # 0, but R semiprime, which implies I Nannl =0
. Let J be a relative complement of I, so J is maximal ideal in R with respect to I NJ =0 . Since R is
maxCiy , I is a direct summand of R. Then we have , .J is a complement of I which is a direct summand.

(<) Let R be aright minC1; ring and I be a maximal ideal in R, with annl # 0. By [9], I = annannl.
Let J be a relative complement of I. Then J is closed in R, so I is a minimal in R by [9]. Since R is
right minC4; , J is a direct summand of R. O

Corollary 3.5. A commutative nonsingular ring is mazChy if and only if it is minCy;.

Proof. Since a nonsingular ring is semiprime and commutative ring implies a right weak duo ring , so the
proof follow from Corollary 2.4. O

Corollary 3.6. Let M be a right R—module and S = End(Mg). Assuming that one of the following
conditions is satisfied:

(1) M is a free module which is a self-generator;

(2) R is semiprime, M is a torsionless or projective module which is a self-generator;

(8) M is a generator.

Then M is maxCiy (resp. minCh1, maz-minChy ) if and only if S is right mazChy (resp. right minCiy,
right maz-minCiy ).

Proof. 1t is clear. O

By Theorem 3.3 , since maxC4; or minCy; are equivalent for a finitely generated, quasi-projective,
semiprime, duo module which is a self-generator. Next, we provide a further study of maxC7; modules
and minC7; modules. We consider some properties in minC7; modules that may not share with maxC1,
modules and vice versa.
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Proposition 3.7. Let M be a maz(resp. min)Ci1, right R—module. If a right R—module N is isomorphic
to M, then N is also max(resp. min)Ci.

Proof. 1t is clear. O

Proposition 3.8. Let M be a right R—module.

(1) M is minChy if and only if for every minimal submodule A < M, there exist submodules My, My
of M such that A < My, My is a complement of A and My & My = M.

(2) If M is minC11, then so is every submodule, and hence every direct summand of M.

Proof. (1) It is clear.

(2) Let M be minCy; and A, a submodule of M. We need to prove that A is again minCy;. For
every minimal submodule B of A, B is also minimal in M, so B@® C = M for some C' < M. Thus
A=AN(Ba&C)=B®(ANC), hence B is a direct summand of A. This implies that A is a min Cy;
module. The case of direct summands is obvious, completing the proof. O

Proposition 3.9. Let M be a finitely generated right R—module. If every maximal submodule of M is
a direct summand, then M is a maxCi1 module.

Proof. Let A be a maximal submodule of M. Since M is finitely generated, there is a maximal submodule
B of M such that A C B. Then, by assumption B is a direct summand of M and A = B since A is
maximal. Then there exist a complement submodule C' of M such that A@ C = M, proving that M is
maxCyy . O

Example 3.10. Let Z be the set of all integers. Then, for a given prime number p, we consider
Z—modules, Ly, = 7./pL, Lys = Z/p*Z,M = Z, ® Zys. Clearly, Z, and Z,s are CS modules so is C11 and
min C11. We observe that A = (1 + pZ,p + p>Z)Z is uniform and closed in M, but cannot be a direct
summand because it has order p? (also see [10)]). Thus M is not minCyy but A is uniform so is Cyy and
hence minC11. This example also shows that a non-minC1; module may have minCty, submodules, and a
direct sum of minC11 modules needs not to be minCh1. An other simple case is that Z is uniform hence
is C11 but no mazimal submodule of Z is direct summand. Thus the converse of Proposition [3.9 is not
true.

4 Max (17 and min C}; properties in nonsingular prime modules

In this section, M is a finitely generated, quasi-projective right R—module which is a self-generator
with the endomorphism ring S = End(Mpg). Note that we regularly refer readers to some results in [5], [6]
with requirement of retractability. This condition is automatically satisfied when M is a self-generator.
By [3, Theorem 2.4], M is a prime module if and only if S is a prime ring. With the aid of results in
section 3, we are going to generalize the results in [I1] to nonsingular prime modules in this section.

Let M be a right R—module with S = End(Mg), its endomorphism ring. Uniform dimension (or
Goldie dimension) of M is denoted by udim(Mg). M is a self-generator if for every submodule X of
M, we have X = 3., f(M) for some subset I C S. According to [12], M is called nonsingular if the
only submodule of M with essential right annihilator in R is zero, that is for any X < M, rr(X)<.R
implies X = 0. M is said to be co-nonsingular if the only submodule of M with essential left annihilator
in S is zero, that is for any X < M, lg(X)<.S implies X = 0. It is easy to see that if M is co-
nonsingular, then every essential right ideal K of S has zero kernel (i.e. zero right annihilator) in M,
that is 7y (K) = {m € M|f(m) =0,Vf € K} = 0.
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Lemma 4.1. If M is a minC11, nonsingular and prime module with a uniform submodule, then S is
right minC11, right and left nonsingular.

Proof. By [B, Theorem 3.1], S is right nonsingular. By Theorem [3.1] S is right minC1;. By assumption,
M has a uniform submodule, namely U. Then I = Iy = {f € S|fM C U} is a uniform right ideal of S
by Lemma Since S is a right nonsingular, right minC11, prime ring with a uniform right ideal, S is
left nonsingular by Lemma 6. O

Proposition 4.2. If M is a maxCy1, prime, nonsingular and co-nonsingular module with a uniform
submodule, then S is right maxC11 and left minCyy.

Proof. Firstly, we see that S is a prime ring. By Lemma 2, since M has a uniform submodule, S has a
uniform right ideal. By [5], Theorem 3.1], nonsingularity of M implies that .S is right nonsingular. By [12]
Proposition 1], since M is co-nonsingular, S if left nonsingular hence is nonsingular. By Theorem 3.1,
since M is a maxC7; module, S is a right max C7; ring. Therefore, S is a left minC4; ring by Lemma
7. O

Proposition 4.3. If M is a Ci1, nonsingular and prime module with a uniform submodule, then S is
right C11 and left minCyy.

Proof. Clearly, M is a minCj; module. Therefore, Lemma [4.1] claims that S is left nonsingular. Thus M
is co-nonsingular by [12] Proposition 1]. It follows from Propositionthat S is left minC4y. Finally, S
is right C11 by Theorem 3.1. O

Lemma 4.4. If R is a non-domain ring, and M is a nonsingular, minCi; and prime module with a
uniform submodule, then S is a right minChy ring with uniform right and left ideals.

Proof. Tt is an easy verification that S is prime due to [3] and is right nonsingular due to [5]. In addition,
S is right minC4; by Theorem 3.1, and S has a uniform right ideal by Lemma 2.2. Consequently, S has
a uniform left ideal by Lemma 8. Note that in this lemma 8, S is not a domain. O
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