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Abstract : Hulls of linear codes over finite fields have been introduced and become of interest due to
their wide practical applications. Recently, the concept of hulls has been generalized to linear and cyclic
codes over the finite chain ring Z4. In this paper, hulls of cyclic codes over a non-chain ring F2 + vF2

are studied, where v2 = v. The hull dimensions and the average hull dimension E(n) of cyclic codes of
length n over F2 + vF2 are determined. Asymptotically, if n is odd, it turns out that E(n) is zero or it
grows the same rate as n.
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1 Introduction

In [1], the hull of a linear code has been first introduced to classify finite projective planes. The hull
and the hull dimension of a linear code over finite fields have been of interest and extensively studied due
to their wide practical applications (see [2], [3], [4] and references therein). The enumeration of linear
codes of length n over a finite field whose hulls have the same dimension has been established in [4]. The
average hull dimension of linear codes of length n over a finite field has been given as well. The hulls
of cyclic codes over finite fields and the average hull dimension of cyclic codes have been discussed in
[3]. In [2], the hull dimensions of cyclic and negacyclic codes and the number of cyclic codes whose hulls
share the dimension have been presented. In general, the average hull dimension of constacyclic codes
over finite fields have been established in [5, 6, 7].

Codes over rings have become of interest after it has been shown that the Kerdock codes, Preparata
codes and Delsarte-Goethals codes can be obtained through the Gray images of linear codes over Z4 in
important works [8, 9]. Recently, the concept of hulls has been generalized to linear and cyclic codes
over the finite chain ring Z4 in [10]. The characterization of the hull of a cyclic code over Z4 has been
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established in terms of the generators viewed as ideals in the quotient ring Z4[x]/(xn − 1). The average
hull dimension of cyclic codes of odd length n over Z4 has been established.

In this paper, we focus on hulls of cyclic codes over a commutative non-chain ring R := F2 + vF2 =
{0, 1, v, v̄ := 1 + v}, where v2 = v and the addition and multiplication are given in the Table 1. It is not

+ 0 1 v v

0 0 1 v v
1 1 0 v v
v v v 0 1
v v v 1 0

· 0 1 v v

0 0 0 0 0
1 0 1 v v
v 0 v v 0
v 0 v 0 v

Table 1: Multiplication and addition tables for F2 + vF2 respectively.

difficult to see that R is a commutative ring with identity which is not a field since v · v = 0. Moreover,
R is not a local ring since the ideals (v) and (v) are its distinct maximal ideals. Here, we focus on hulls
of cyclic codes of length n over R and determine the average hull dimension of such codes. A general
formula for the average hull dimension is established together with its asymptotic behavior.

The paper is organized as follows. Some preliminary results on binary cyclic codes and cyclic codes
over R are discussed in Section 2. The characterization of the hull of cyclic codes of length n over R is
given in Section 3 together with the determination of the dimensions of the hull of cyclic codes of length
n over R. In Section 4, the average hull dimension of cyclic codes of length n over R are studied.

2 PRELIMINARIES

In this section, some preliminary results on binary cyclic codes and cyclic codes over the ring R =
F2 + vF2 are recalled and discussed.

Let R be a finite commutative ring. A linear code C of length n over R is defined to be an R-submodule
of Rn. The Euclidean dual of C is defined to be the set

C⊥ =

{
(x0, . . . , xn−1) ∈ Rn

∣∣ n−1∑
i=0

xici = 0 for all (c0, . . . , cn−1) ∈ C

}

and the Euclidean hull of C is defined as Hull(C) = C ∩C⊥. A linear codes of length n over R is said to
be cyclic if (cn−1, c0, . . . , cn−2) ∈ C for all (c0, . . . , cn−1) ∈ C. Useful properties of cyclic codes over F2

and R are discussed in subsections 2.1 an 2.2, respectively.

2.1 Binary Cyclic Codes

In this subsection, properties of codes over R = F2 are recalled. A linear code of length n over F2 is
sometime called a binary linear code and it can be viewed as a F2-vector space of Fn2 . The dimension of
a binary linear code C is denoted by dim(C) = log2(|C|). Each binary cyclic code C of length n can be
identified as an ideal of the principal ideal ring F2[x]/(xn − 1) generated by a unique monic divisor g(x)
of xn − 1. Such a polynomial is called the generator polynomial for C and dim(C) = n− deg g(x).

Let f(x) = 1 + a1x+ · · ·+ ak−1x
k−1 + xk ∈ F2[x] be a polynomial of degree k whose constant term

is 1. The reciprocal polynomial of f(x) is defined to be f∗(x) = xkf
(
1
x

)
. It is not difficult to see that

(f∗(x))
∗

= f(x). Then the polynomials over F2[x] can be classified into 2 types. If f(x) = f∗(x), then
f(x) is called a self-reciprocal polynomial. Otherwise, we have f(x) 6= f∗(x) and the polynomials f(x)
and f∗(x) are called a reciprocal polynomial pair.

For a given binary cyclic code C of length n with the generator polynomial g(x). The Euclidean dual
of C denoted by C⊥ has the generator polynomial of the form h∗(x) where h(x) = xn−1

g(x) (see [11, Lemma
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2.1]). Note that h∗(x) is a monic divisor of xn − 1 and lcm(f(x), h∗(x)) is the generator polynomial of
Hull(C) (see [2, Theorem 1]).

Let n be a positive integer and write n = 2νn, where n is odd and ν ≥ 0 is an integer. For an odd
positive integer j, ordj(2) is the multiplicative order of 2 modulo j. Let

N2 =
{
` ≥ 1 : ` | (2k + 1) for some k ∈ N

}
.

By [2, Equation (6)], xn − 1 can be factored into a product of monic irreducible polynomials over F2 of
the form

xn − 1 =
(
xn − 1

)2ν
=

∏
j|n,j∈N2

γ(j)∏
i=1

gij(x)

2ν ∏
j|n,j 6∈N2

β(j)∏
i=1

fij(x)f∗ij(x)

2ν

, (2.1)

where

γ(j) =
φ(j)

ordj(2)
, β(j) =

φ(j)

2 ordj(2)
,

fij(x) and f∗ij(x) form a reciprocal polynomial pair of degree ordj(2) and gij(x) is a self-reciprocal

polynomial of degree ordj(2). Let Bn = deg
∏

j|n,j∈N2

(
γ(j)∏
i=1

gij(x)

)
. The number Bn can be simplified as

follows

Bn = deg
∏

j|n,j∈N2

γ(j)∏
i=1

gij(x)

 =
∑

j∈n,j∈N2

φ(j)

ordj(2)
· ordj(2) =

∑
j∈n,j∈N2

φ(j).

The number Bn plays a crucial role in the study the average dimension of the hull of cyclic codes over R
in Section 4.

2.2 Cyclic Codes over F2 + vF2

Some results on cyclic codes of length n over R = F2 + vF2 in [12] are recalled and additional useful
properties of linear and cyclic codes over R are discussed and proved.

Recall that R = F2+vF2 = {0, 1, v, v̄ := 1 + v}, where v2 = v. For each element in R can be uniquely
written as a+bv for some a, b ∈ F2. Then the map φ : R → F2×F2 defined by φ(a+bv) = (a, a+b) is a ring
isomorphism form R to F2×F2. The map φ can be extended to be a ring isomorphism φ : Rn → Fn2 ×Fn2
given as follows

φ(r) = φ(a0 + b0v, . . . , an−1 + bn−1v) = (a0, . . . , an−1, a0 + b0, . . . , an−1 + bn−1).

Moreover, the map φ can be viewed as an F2-linear isomorphism. Hence, a linear code C of length n over
R can be viewed as a vector space over F2 and denoted by dim2(C) the 2-dimension of C, the dimension
of C over F2. It is not difficult to see that dim2(C) = log2(|C|).

For each linear code C of length n over R, let

R(C) = {a | a+ bv ∈ C for some a ∈ Fn2} and T(C) = {a+ b | a+ bv ∈ C for some a ∈ Fn2} .

It is not difficult to see that R(C) and T(C) are binary linear codes of length n.

Lemma 2.1. Let C1 and C2 be binary linear codes of length n. Then (1 + v)C1 ∩ vC2 = {0}.

Proof. Let x ∈ (1 + v)C1 ∩ vC2. Then (1 + v)c1 = x = vc2 where c1 ∈ C1 and c2 ∈ C2. It follows that
0 = c1 + (c1 + c2)v, and hence, c1 = 0 = c2. Therefore, x = 0 and (1 + v)C1 ∩ vC2 = {0} as desired.

For linear codes C1 and C2 of length n over R, the direct sum of C1 and C2 is defined to be

C1 ⊕ C2 = {c1 + c2 | c1 ∈ C1, c2 ∈ C2}

satisfying C1 ∩ C2 = {0}. In this case, for every c ∈ C1 ⊕ C2, there exist unique c1 ∈ C1 and c2 ∈ C2

such that c = c1 + c2.
A linear code C of length n over R can be written as the direct sum of R(C) and T (C) as follows.
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Theorem 2.2 ([12, Theorem 3.1 and Corollary 3.3]). Let C be a linear code of length n over R. Then
φ(C) = R(C) × T(C) and |C| = |R(C)||T(C)|. Moreover, C can be uniquely expressed as C = (1 +
v) R(C)⊕ vT(C).

The decomposition of the intersection of any two linear codes of the same length over R is given in
the next theorem.

Theorem 2.3. Let C = (1 + v) R(C)⊕ vT(C) and D = (1 + v) R(D)⊕ vT(D) be linear codes of length
n over R. Then C ∩D = (1 + v) (R(C) ∩ R(D))⊕ v (T(C) ∩ T (D)).

Proof. Let c = (1 + v)c′ + vc′′ ∈ C ∩D. Since c ∈ C = (1 + v) R(C) ⊕ vT(C), we have c′ ∈ R(C) and
c′′ ∈ T(C). Since c ∈ D = (1 + v) R(D) ⊕ vT(D), we have c′ ∈ R(D) and c′′ ∈ T(D). It follows that
c ∈ R(C) ∩ R(D) and c′ ∈ T(C) ∩ T (D). Hence, c ∈ (1 + v) (R(C) ∩ R(D)) ⊕ v (T(C) ∩ T (D)). The
reverse inclusion is obvious.

Each cyclic code C of length n overR can be viewed as an ideal of the quotient ringRn = R[x]/(xn−1)
and the corresponding ideal is generated by

((1 + v)g1(x), vg2(x)),

where g1(x) and g2(x) are monic divisors of xn − 1 over F2 [12, Theorem 4.5]. Furthermore, |C| =
22n−deg g1(x)−deg g2(x). In this case, the 2-dimension of C is 2n− deg g1(x)− deg g2(x). By [12, Corollary
4.8], the dual C⊥ of C is generated by

((1 + v)h∗1(x), vh∗2(x)), (2.2)

where h1(x) = xn−1
g1(x)

and h2(x) = xn−1
g2(x)

.

Let C(n) be the set of all cyclic codes of length n over R. The average 2-dimension of the hull of
cyclic codes of length n over R is defined to be

E(n) =
∑

C∈C(n)

dim2 Hull(C)

|C(n)|
.

The characterization of Hull(C) and the average 2-dimension E(n) will be discussed in Sections 3 and 4,
respectively.

3 Hulls of Cyclic Codes over F2 + vF2

In this section, algebraic structure of the hull of a cyclic code of length n over R = F2 + vF2 are
focused on. Subsequently, the 2-dimensions of the hulls of cyclic codes of length n over R are determined.

Theorem 3.1. Let C = (1 + v)C1 ⊕ vC2 be a cyclic code of length n over R generated by ((1 +
v)g1(x), vg2(x)), where g1(x) and g2(x) are monic divisors of xn − 1 over F2. Then Hull(C) is gen-
erated by

((1 + v) lcm(g1(x), h∗1(x)), v lcm(g2(x), h∗2(x))) ,

where h1(x) = xn−1
g1(x)

and h2(x) = xn−1
g2(x)

.

Proof. Note that g1(x) and g2(x) are generator polynomials of binary cyclic codes C1 and C2, respectively.
By Equation (2.2), we have C⊥ = (1 + v)C⊥1 ⊕ vC⊥2 generated by ((1 + v)h∗1(x), vh∗2(x)), where h1(x) =
xn−1
g1(x)

and h2(x) = xn−1
g2(x)

. Moreover, h∗1(x) and h∗2(x) are the generator polynomials of binary cyclic codes
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C⊥1 and C⊥2 , respectively. By [2, Theorem 1], the generator polynomials of Hull(C1) and Hull(C2) are
lcm(g1(x), h∗1(x)) and lcm(g2(x), h∗2(x)) respectively. Therefore, by Theorem 2.3,

Hull(C) = C ∩ C⊥ = ((1 + v) Hull(C1), vHull(C2))

is generated by

((1 + v) lcm(g1(x), h∗1(x)), v lcm(g2(x), h∗2(x)))

as desired.

The 2-dimension of Hull(C) is given in Theorem 3.3 based on the following lemma.

Lemma 3.2. Let ν be a nonnegative integer. Let 0 ≤ a, b, c ≤ 2ν be integers. Then the following
statements hold.

1. 0 ≤ 2ν −max{a, 2ν − a} ≤ 2ν−1.

2. 0 ≤ 2ν+1 −max{b, 2ν − c} −max{c, 2ν − b} ≤ 2ν .

Proof. To prove Statement 2, we consider the following two cases.

Case I: 0 ≤ a ≤ 2ν−1. We have −2ν ≤ −a ≤ 0 which implies that 2ν−1 ≤ 2ν − a ≤ 2ν . Hence,
2ν−1 ≤ max{a, 2ν − a} ≤ 2ν .

Case II: 2ν−1 < a ≤ 2ν . We have −2ν ≤ a < −2ν−1 which means 0 ≤ 2ν − a < 2ν−1. Consequently,
2ν−1 < max{a, 2ν − a} ≤ 2ν .

All together, we conclude that 0 ≤ 2ν −max{a, 2ν − a} ≤ 2ν−1. Hence, Statement 1 is proved.

To prove Statement 2, we consider the following two cases.

Case I: max{b, 2ν−c} = b. We have max{c, 2ν−b} = c which means 2ν+1−max{b, 2ν−c}−max{c, 2ν−
b} = 2ν+1 − b− c. Since 2ν ≤ b+ c ≤ 2ν+1, we have 0 ≤ 2ν+1 − b− c ≤ 2ν .

Case II: max{b, 2ν − c} = 2ν − c. We have max{c, 2ν − b} = 2ν − b which implies that max{b, 2ν − c}+
max{c, 2ν−b} = 2ν−c+2ν−b = 2ν+1−c−b. Thus 0 ≤ 2ν+1−max{b, 2ν−c}−max{c, 2ν−b} = b+c ≤ 2ν .

Hence, we conclude that 0 ≤ 2ν+1 −max{b, 2ν − c}−max{c, 2ν − b} ≤ 2ν . Therefore, Statement 2 is
proved.

Theorem 3.3. Let n be a positive integer and write n = 2νn, where n is odd and ν ≥ 0 is an integer.
Then the 2-dimensions of the hull of cyclic codes of length n over R are of the form

∑
j∈n,j∈N2

ordj(2) · aj +
∑

j∈n,j 6∈N2

ordj(2) · bj ,

where 0 ≤ aj ≤ 2ν and 0 ≤ bj ≤ 2ν+1.

Proof. Let C = (1 + v)C1 ⊕ vC2 be a cyclic code of length n over R generated by ((1 + v)g1(x), vg2(x)).
Then C⊥ = (1 + v)C⊥1 ⊕ vC⊥2 generated by ((1 + v)h∗1(x), vh∗2(x)) by Equation (2.2). Note that
g1(x), g2(x), h∗1(x) and h∗2(x) are monic divisors of xn − 1.
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By Equation (2.1), we have

g1(x) =
∏

j|n,j∈N2

γ(j)∏
i=1

gij(x)aij
∏

j|n,j 6∈N2

β(j)∏
i=1

fij(x)bijf∗ij(x)cij ,

g2(x) =
∏

j|n,j∈N2

γ(j)∏
i=1

gij(x)uij
∏

j|n,j 6∈N2

β(j)∏
i=1

fij(x)vijf∗ij(x)wij ,

h1(x) =
∏

j|n,j∈N2

γ(j)∏
i=1

gij(x)2
ν−aij

∏
j|n,j 6∈N2

β(j)∏
i=1

fij(x)2
ν−bijf∗ij(x)2

ν−cij ,

h2(x) =
∏

j|n,j∈N2

γ(j)∏
i=1

gij(x)2
ν−uij

∏
j|n,j 6∈N2

β(j)∏
i=1

fij(x)2
ν−vijf∗ij(x)2

ν−wij ,

h∗1(x) =
∏

j|n,j∈N2

γ(j)∏
i=1

gij(x)2
ν−aij

∏
j|n,j 6∈N2

β(j)∏
i=1

fij(x)2
ν−cijf∗ij(x)2

ν−bij ,

h∗2(x) =
∏

j|n,j∈N2

γ(j)∏
i=1

gij(x)2
ν−uij

∏
j|n,j 6∈N2

β(j)∏
i=1

fij(x)2
ν−wijf∗ij(x)2

ν−vij ,

for some 0 ≤ aij , bij , cij , uij , vij , wij ≤ 2ν .
Since Hull(C) generated by ((1 + v) lcm(g1(x), h∗1(x)), v lcm(g2(x), h∗2(x))) , we have

lcm(g1(x), h∗1(x)) =
∏

j|n,j∈N2

γ(j)∏
i=1

gij(x)max{aij ,2ν−aij}

∏
j|n,j 6∈N2

β(j)∏
i=1

fij(x)max{bij ,2ν−cij}f∗ij(x)max{cij ,2ν−bij}, (3.1)

lcm(g2(x), h∗2(x)) =
∏

j|n,j∈N2

γ(j)∏
i=1

gij(x)max{uij ,2ν−uij}

∏
j|n,j 6∈N2

β(j)∏
i=1

fij(x)max{vij ,2ν−wij}f∗ij(x)max{wij ,2ν−vij}. (3.2)

By Equations (3.1) and (3.2), it can be concluded that

dim2(Hull(C)) =2n− deg lcm(g1(x), h∗1(x))− deg lcm(g2(x), h∗2(x))

= (n− deg lcm(g1(x), h∗1(x))) + (n− deg lcm(g2(x), h∗2(x)))

=

 ∑
j∈n,j∈N2

ordj(2)

γ(j)∑
i=1

2ν +
∑

j∈n,j 6∈N2

ordj(2)

β(j)∑
i=1

2ν+1

−
 ∑
j∈n,j∈N2

ordj(2)

γ(j)∑
i=1

max{aij , 2ν − aij} +

∑
j∈n,j 6∈N2

ordj(2)

β(j)∑
i=1

(max{bij , 2ν − cij}+ max{cij , 2ν − bij})

+
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j∈n,j∈N2

ordj(2)

γ(j)∑
i=1

2ν +
∑

j∈n,j 6∈N2

ordj(2)

β(j)∑
i=1

2ν+1

−
 ∑
j∈n,j∈N2

ordj(2)

γ(j)∑
i=1

max{uij , 2ν − uij}

+
∑

j∈n,j 6∈N2

ordj(2)

β(j)∑
i=1

(max{vij , 2ν − wij}+ max{wij , 2ν − vij})


=

 ∑
j∈n,j∈N2

ordj(2)

γ(j)∑
i=1

(2ν −max{aij , 2ν − aij}) +

∑
j∈n,j 6∈N2

ordj(2)

β(j)∑
i=1

(
2ν+1 − (max{bij , 2ν − cij}+ max{cij , 2ν − bij})

)+

 ∑
j∈n,j∈N2

ordj(2)

γ(j)∑
i=1

(2ν −max{uij , 2ν − uij}) +

∑
j∈n,j 6∈N2

ordj(2)

β(j)∑
i=1

(
2ν+1 − (max{vij , 2ν − wij}+ max{wij , 2ν − vij})

)
=

∑
j∈n,j∈N2

ordj(2)

γ(j)∑
i=1

(
2ν+1 −max{aij , 2ν − aij} −max{uij , 2ν − uij}

)
+

∑
j∈n,j 6∈N2

ordj(2)

β(j)∑
i=1

(
2ν+2 − (max{bij , 2ν − cij}+ max{cij , 2ν − bij})−

(max{vij , 2ν − wij}+ max{wij , 2ν − vij})) (3.3)

=
∑

j∈n,j∈N2

ordj(2) · aj +
∑

j∈n,j 6∈N2

ordj(2) · bj by Lemma 3.2

where 0 ≤ aj ≤ 2ν and 0 ≤ bj ≤ 2ν+1.

Example 3.4. Let n = 14. Then n = 7 and ν = 1. The divisors of 7 are 1 and 7. Note that 1 ∈ N2

and 7 6∈ N2. Since ord1(2) = 1 and ord7(2) = 3, by Theorem 3.3, the 2-dimensions of the hulls of cyclic
codes of length 14 over R are of the form

a1 + 3 · b7,

where 0 ≤ a1 ≤ 2 and 0 ≤ b7 ≤ 4, which are 0, 1, 2, . . . , 13 and 14.

4 The Average 2-Dimension E(n) and Bounds on E(n)

In this section, an explicit expression for the average 2-dimension E(n) of the hull of cyclic codes
over R is given in terms of Bn and the length of codes. Subsequently, some bounds on E(n) are given
together with the asymptotic behavior of E(n).

Lemma 4.1. Let ν be a nonnegative integer and let 0 ≤ a, b, c ≤ 2ν be integers. Then

1. E (max{a, 2ν − a}) = 3·2ν+1
4 − δ2ν

4(2ν+1) and

2. E (max{b, 2ν − c}) = 2ν(4·2ν+5)
6(2ν+1) ,

where δ2ν = 1 if ν > 0, and δ2ν = 0 if ν = 0.
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Proof. The statements can be obtained using arguments similar to those in the proof of [3, Theorem
23].

The formula for the average 2-dimension of the hull of cyclic codes of length n over R is given as
follows.

Theorem 4.2. Let n be a positive integer and write n = 2νn, where n is odd and ν ≥ 0 is an integer.
The average 2-dimension of the hull of cyclic codes of length n over R is

E(n) = n

(
2ν+1 + 1

3(2ν + 1)

)
−Bn

(
22ν + 2ν+1 + 3− 3δ2ν

12(2ν + 1)

)
.

Proof. Let C be a cyclic code of length n over R. Then, by Theorem 3.1, Hull(C) is generated by

((1 + v) lcm(g1(x), h∗1(x)), v lcm(g2(x), h∗2(x))) .

Then

dim2 Hull(C) =2n− deg lcm(g1(x), h∗1(x))− deg lcm(g2(x), h∗2(x)

= (n− deg lcm(g1(x), h∗1(x))) + (n− deg lcm(g2(x), h∗2(x))

Let Y be the random variable of the 2-dimension dim2(C), where C is chosen randomly form C(n) with
uniform probability. The average 2-dimension E(n) can be determined in terms of the expectation E(Y )
as follows

E(n) =E(Y )

=E (n− deg lcm(g1(x), h∗1(x))) + E (n− deg lcm(g2(x), h∗2(x))

=n− E

 ∑
j∈n,j∈N2

ordj(2)

γ(j)∑
i=1

max{aij , 2ν − aij}

+
∑

j∈n,j 6∈N2

ordj(2)

β(j)∑
i=1

(max{bij , 2ν − cij}+ max{cij , 2ν − bij})

+

n− E

 ∑
j∈n,j∈N2

ordj(2)

γ(j)∑
i=1

max{uij , 2ν − uij}

+
∑

j∈n,j 6∈N2

ordj(2)

β(j)∑
i=1

(max{vij , 2ν − wij}+ max{wij , 2ν − vij})


=n−

∑
j∈n,j∈N2

ordj(2) · γ(j) · E(max{aij , 2ν − aij})

−
∑

j∈n,j 6∈N2

ordj(2) · β(j) · E (max{bij , 2ν − cij}+ max{cij , 2ν − bij}) +

n−
∑

j∈n,j∈N2

ordj(2) · γ(j) · E(max{uij , 2ν − uij})

−
∑

j∈n,j 6∈N2

ordj(2) · β(j) · E (max{vij , 2ν − wij}+ max{wij , 2ν − vij})
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=

n− ∑
j∈n,j∈N2

φ(j) · E(max{aij , 2ν − aij})

−
∑

j∈n,j 6∈N2

φ(j) · 1

2
· E (max{bij , 2ν − cij}+ max{cij , 2ν − bij})

+

n− ∑
j∈n,j∈N2

φ(j) · E(max{uij , 2ν − uij})

−
∑

j∈n,j 6∈N2

φ(j) · 1

2
· E (max{vij , 2ν − wij}+ max{wij , 2ν − vij})


= (n−Bn · E(max{aij , 2ν − aij})− (n−Bn) · E(max{bij , 2ν − cij})) +

(n−Bn · E(max{uij , 2ν − uij})− (n−Bn) · E(max{vij , 2ν − wij}))
=2 (n−Bn · E (max{aij , 2ν − aij})− (n−Bn) · E (max{bij , 2ν − cij}))

=2

(
n−Bn

(
3 · 2ν + 1

4
− δ2ν

4(2ν + 1)

)
− (n−Bn)

(
2ν (4 · 2ν + 5)

6 (2ν + 1)

))
by Lemma 4.1

=2

(
n

(
1

3
− 1

6(2ν + 1)

)
−Bn

(
2ν + 1

12
+

2− 3δ2ν

12(2ν + 1)

))
=n

(
2

3
− 1

3(2ν + 1)

)
−Bn

(
2ν + 1

6
+

2− 3δ2ν

6(2ν + 1)

)
as required.

The next corollary follows immediately from Theorem 4.2.

Corollary 4.3. Let n = n2ν , where n̄ is odd and ν ≥ 0. Then the following statements hold.

1. E(n) < 2n
3 .

2. E(n) = n−Bn
2 .

3. E(n) < n
2 .

In the case where n is odd, we have the following upper and lower bounds.

Theorem 4.1. Let n be an odd integer. Then the following statements hold.

1. E(n) = 0 if and only if n ∈ N2.

2. n
6 ≤ E(n) ≤ 2n

3 for all n 6∈ N2.

Proof. Let E2(n) denote the average hull dimension of cyclic codes of length n over F2. By [3, Corollary
11] and Theorem 4.2, we have E(n) = 2E2(n). The results can be derived analogous to [3, Theorem
25].

From Theorem 4.1, we can conclude that the average 2-dimension of the hull of cyclic codes of odd
length n over R is zero or grows the same rate as n.
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