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Abstract : A number of arithmetic functions, referred to as the generalized unitary-Euler’s totient,
generalized unitary-Cohen’s totient, generalized unitary-divisor, generalized unitary-Liouville, odd-phi,
and even-phi functions which generalize the classical totient, divisor and Liouville functions, are intro-
duced in the setting of unitary convolution. Basic properties of these functions extending the existing
ones are established. Results related to the problem of counting exponentially odd and exponentially
even numbers are derived as applications.
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1 Introduction

An arithmetic function, [1], is a complex-valued function defined on the set of positive integers. The set
of arithmetic functions, A, with addition +, and unitary convolution t defined, respectively, by

(f + g)(n) = f(n) + g(n), (f t g)(n) =
∑
d||n

f (n/d) g(d),

where d||n denotes the unitary divisor (i.e., those divisors d of n for which gcd(d, n/d) = 1), is a commu-
tative ring with zero divisors [2]. The identity element under the unitary convolution is the function

I(n) =

{
1 if n = 1

0 if n > 1.

A non-zero arithmetic function f is said to be multiplicative if

f(mn) = f(m)f(n) whenever gcd(m,n) = 1.

Note that a unitary convolution of two multiplicative functions is a multiplicative function.
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A modern systematic study of unitary convolution seems to be started by Cohen. In [3], mimicking
the classical case, he introduced the unitary Euler’s totient as follows: for a, b ∈ Z with b > 0, denote by
(a, b)∗ the greatest divisor of a which is a unitary divisor of b; when (a, b)∗ = 1, the integer a is said to
be semiprime to b. The unitary Euler’s totient, ϕ, is defined to be the number of positive integers that
are semiprime to n, i.e.,

ϕ(n) =
∑
x≤n

(x,n)∗=1

1.

A semi-reduced residue system mod n, denoted by SRRS(n), is a set of integers in a residue system mod
n that are semiprime to n. In the same paper, Cohen introduced a unitary Ramanujan sum c∗(m,n) by

c∗(m,n) =
∑

x∈SRRS(n)

exp(2πimx/n)

where the summation extends over the integers x in a semi-reduced residue system mod n. Based upon
this notion, we observe that

ϕ(n) = c∗(0, n).

Cohen also defined
µ(n) = c∗(1, n)

and proved a unitary analogue of the Möbius inversion formula which states that for f, g ∈ A, we have

f(n) =
∑
d||n

g(d) ⇐⇒ g(n) =
∑
d||n

µ(d)f(n/d),

as well as several identities relating to these functions such as∑
d||n

ϕ(d) = n,
∑
d||n

µ(d) = I(n), ϕ(n) = (ζ1 t µ)(n), µ(n) = (−1)ω(n) (1.1)

where ζ1(n) := n, and ω(n) denotes the number of distinct prime factors of n with ω(1) = 0. In addition,
Cohen introduced the concept of an exponentially odd number which is an integer n ∈ N whose prime
factorization takes the form n = pa11 . . . pass with all powers ai being odd positive integers. Denote by
Eo the set of all exponentially odd numbers. Observe that n ∈ Eo whenever its greatest unitary square
divisor (the largest unitary divisor which is a square) is 1, and so 1 ∈ Eo (because its greatest unitary
square divisor is 1).

Apart from Cohen’s work, Rao in [4] gave the following extension of Cohen’s totient. For n,m, k ∈ N,
let (n,mk)∗k denote the largest unitary divisor of mk that divides n and is a kth power. Denote the unitary
analogue of Cohen’s totient, ϕ∗k(m), as the number of positive integers n ≤ mk such that (n,mk)∗k = 1.
Rao proved that

ϕ∗k(m) =
∑
d||m

dkµ(m/d) = (ζk t µ)(m) = mk
∏
p|n

(
1− 1

pkνp(m)

)
, (1.2)

where ζk(n) := nk and νp(m) denotes the highest power of the prime p that divides m. This result implies
at once that ϕ∗k is a multiplicative function and obviously that ϕ∗1 = ϕ. Let d(n) denote the number of
unitary divisors of n, and let σk(n) denote the sum of the kth power of the unitary divisors of n (see also
[5]), i.e.,

d(n) =
∑
d||n

1 = 2ω(n), σk(n) =
∑
d||n

dk = (ζk t U)(n).

where U(n) := 1 for all n ∈ N. Rao also established the identities

σk(n) =
∑
d||n

ϕ∗k(n/d)d(d),
∑
d||n

σs+k(d)ϕ∗k(n/d) = nkσs(n).
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Recently, in [6], a generalized unitary Möbius function was introduced via

µα(n) = (−α)ω(n) (n ∈ N, α ∈ C \ {0}), µ0 := I, µ1 := µ, µ−1 = U.

The main objectives in [6] were
(i) to prove the following generalized unitary Möbius inversion formula: for f, g ∈ A and α ∈ C \ {0}, we
have

f(n) =
∑
d||n

g(d)µ−α

(n
d

)
⇐⇒ g(n) =

∑
d||n

f
(n
d

)
µα(d), or symbolically, f = g t µ−α ⇐⇒ g = f t µα,

(ii) to derive some characterizations of multiplicative function using generalized unitary Möbius function.
Here, we continue our unitary investigation by further generalizing the unitary totient, unitary divisor

and unitary Liouville functions. This is done by introducing the so-called gu-Euler’s totient, gu-Cohen’s
totient, gu-divisor, gu-Liouville, odd-phi, and even-phi functions (the abbreviation gu stands for gener-
alized unitary). Apart from deriving properties of these functions which extend the existing ones, in the
last section, we apply these results to functions that are related to the problem of counting exponentially
odd and exponentially even numbers.

2 Preliminaries

There are two parts in this section; generalized unitary analogues are defined in the first part and their
properties are established in the second part.

2.1 Definitions

Let α ∈ R.
1. The gu-Euler’s totient, ϕα, is defined by

ϕα = ζ1 t µα.

2. The gu-Cohen’s totient, ϕ∗α, is defined by

ϕ∗α = ζα t µ.

3. The gu-divisor function, σα(n), is defined to be the sum of the αth power of positive unitary divisor
d of n, i.e.,

σα(n) =
∑
d||n

dα (n ∈ N).

4. The gu-Liouville function, λα, is defined by

λα(n) = (−α)Ω(n) (n ∈ N), λ0 := I,

where Ω(n) is the number of prime factors of n counting with multiplicity with Ω(1) = 0.
The following facts are easily checked.

• The gu-Euler’s totient, gu-Cohen’s totient, gu-divisor function and gu-Liouville function are mul-
tiplicative functions.

• ϕα(n) =

{∑
d||n d(−α)ω(n/d) if α ∈ R \ {0}

ζ1(n) if α = 0.

• For α ∈ N, the function ϕ∗α is identical with the unitary analogue of the Cohen’s totient.

• σα = ζα t µ−1.

• σ1 = σ and σ0(n) = d(n).

• λ1 is identical with the classical Liouville function, which is defined by λ(n) = (−1)Ω(n) ([1]).

• For α ∈ N, we have λα = λ t · · · t λ (the unitary convolution of α factors).
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2.2 Properties

In this sub-section, we derive a number of properties relating to the functions defined above some of
which generalize those in (1.2). Note first that for α, β ∈ C \ {0}, µα t µβ = µα+β (see [6]).

Proposition 2.2.1. For α, β ∈ R, n ∈ N, p prime, we have

1) σα(n) =
∏
p|n
(
pανp(n) + 1

)
2) ζα = µ t σα

3) ϕα(n) =
∏
p|n
(
pνp(n) − α

)
4)
∑
d||n ϕα(d) =

∏
p|n
(
pνp(n) + 1− α

)
5) ϕα t σβ = ζ1 t ζβ t µα−1

6) ϕ∗α(n) =
∏
p|n
(
pανp(n) − 1

)
7)
∑
d||n ϕ

∗
α(d) = ζα(n)

8) ζα t ϕ∗β = ζβ t ϕ∗α

9) ϕ∗α t d = σα

10) ϕ∗α t σβ = ζα t ζβ

11)
∑
d||n λα(d) =

∏
p|n
(
1 + (−α)νp(n)

)
12)

(
λα t µβ

)
(n) =

∏
p|n
(
(−α)νp(n) − β

)
13) (λα t σβ)(n) =

∏
p|n
(
pβνp(n) + (−α)νp(n) + 1

)
14) (λα t ϕβ)(n) =

∏
p|n
(
pνp(n) + (−α)νp(n) − β

)
15) (λα t ϕ∗β)(n) =

∏
p|n
(
pβνp(n) + (−α)νp(n) − 1

)
.

Proof. 1) Since σα is multiplicative, we get σα(1) = 1. To prove the assertion, it suffices to evaluate
σα(pa) for prime p and a ∈ N, which is

σα(pa) =
∑
d||pa

dα = pαa + 1.

Assertions 2), 5), 7), 8), 9) and 10) follow, respectively, from the identities

µ t σα = µ t ζα t µ−1 = ζα

ϕα t σβ = ζ1 t µα t ζβ t µ−1 = ζ1 t ζβ t µα−1∑
d||n

ϕ∗α(d) = (ϕ∗α t U)(n) = (ζα t µ t µ−1)(n) = ζα(n)

ζα t ϕ∗β = ζα t ζβ t µ = ζβ t ζα t µ = ζβ t ϕ∗α
ϕ∗α t d = ζα t µ t µ−2 = ζα t µ−1 = σα

ϕ∗α t σβ = ζα t µ t ζβ t µ−1 = ζα t ζβ t I = ζα t ζβ .
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Since the functions ϕα, ϕ
∗
α, λα t µβ , λα t σβ , λα t µβ , λα t ϕ∗β are multiplicative, as in the proof of

Assertion 1), Assertions 3), 6), 12), 13), 14) and 15) follow at once from the evaluation

ϕα(pa) = (ζ1 t µα)(pa) =
∑
d||pa

d(−α)
ω
(

pa

d

)
= pa(−α)ω(1) + (−α)ω(pa) = pa − α

ϕ∗α(pa) = (ζα t µ)(pa) = µ(pa) + ζα(pa) = paα − 1

(λα t µβ)(pa) =
∑
d||pa

λα(d)µβ

(
pa

d

)
= λα(pa) + µβ(pa) = (−α)a − β

(λα t σβ)(pa) =
∑
d||pa

λα(d)σβ
(
pa

d

)
= λα(pa) + σβ(pa) = (−α)a + pβa + 1

(λα t ϕβ)(pa) =
∑
d||pa

λα(d)ϕβ

(
pa

d

)
= λα(pa) + ϕβ(pa) = (−α)a + pa − β

(λα t ϕ∗β)(pa) =
∑
d||pa

λα(d)ϕ∗β

(
pa

d

)
= λα(pa) + ϕ∗β(pa) = (−α)a + paβ − 1.

When n = 1, we have ∑
d||1

ϕα(d) = ϕα(1) = 1,
∑
d||1

λα(d) = λα(1) = (−α)Ω(1) = 1.

For n ≥ 2, since the functions ϕα t U, λα are multiplicative, as in the proof Assertion 1), Assertions 4)
and 11) follow from

(ϕα t U)(pa) =
∑
d||pa

ϕα(pa) = ϕα(1) + ϕα(pa) = pa + 1− α

∑
d||pa

λα(d) = λα(1) + λα(pa) = 1 + (−α)Ω(pa) = 1 + (−α)a.

3 Results

Complementing the concept of exponentially odd numbers, an exponentially even number is defined to
be a positive integer whose prime factorization contains only even prime powers, and let Ee be the set of
all exponentially even numbers. Let β(n) be the maximal unitary divisor of the exponentially even part
of n, with β(1) := 1 and let α(n) be the maximal unitary divisor of the exponentially odd part of n, with
α(1) := 1. For any positive integer whose prime factorization is n = pa11 · · · pass q

b1
1 · · · qbrr , where pi, qj are

distinct primes, and ai, bj ∈ N are such that each ai is odd, and each bj is even, we clearly see that

β(n) =

{
qb11 · · · qbrr if there is at least one bi 6= 0

1 if all bi = 0
, α(n) =

{
pa11 · · · pass if there is at least one ai 6= 0

1 if all ai = 0.

Table 1 : Examples of α(n) and β(n)

n d; d||n d1; d ∈ Eo d2; d ∈ Ee α(n) β(n)
2 1, 2 1, 2 1 2 1
8 1, 8 1, 8 1 8 1
12 1, 3, 4, 12 1, 3 1, 4 3 4
16 1, 16 1 1, 16 1 16
24 1, 3, 8, 24 1, 3, 8, 24 1 24 1
36 1, 4, 9, 36 1 1, 4, 9, 36 1 36
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1. The even-phi function, τ̃(n) is defined to be the number of integers m ≤ n which is semiprime
to β(n), i.e.,

τ̃(n) =
∑
m≤n

(m,β(n))∗=1

1.

2. The odd-phi function, φ̃(n) is defined to be the number of integers m ≤ n which is semiprime
to α(n), i.e.,

φ̃(n) =
∑
m≤n

(m,α(n))∗=1

1.

Table 2 : Examples of the even-phi function and the odd-phi function

n β(n) m;m ≤ n and (m,β(n))∗ = 1 τ̃(n) α(n) m;m ≤ n and (m,α(n))∗ = 1 φ̃(n)
2 1 1, 2 1 2 1 1
8 1 1, 2, . . . , 8 7 8 1, 2, . . . , 7 7
12 4 1, 2, 3, 5, 6, 7, 9, 10, 11 8 3 1, 2, 4, 5, 7, 8, 10, 11 8
16 16 1, . . . , 15 16 1 1, . . . , 16 16
24 1 1, . . . , 24 14 24 1, 2, 4, 5, 7, 10, 11, 13 14

14, 17, 19, 20, 22, 23
36 36 1, 2, 3, 5, 6, 7, 10, 11, 13, 24 1 1, . . . , 36 36

14, 15, 17, 19, 21, 22, 23,
25, 26, 29, 30, 31, 33, 34, 35

Let

K(n) =

{
µ(
√
n) if n is a perfect square

0 otherwise.

In this part, we show that the even-phi function can be written as the unitary convolution of ζ1 with
K and the odd-phi function can be written as the unitary convolution of ζ1 with T defined to be a
multiplicative function such that for p prime,

T (pa) =

{
−1 if a is odd

0 if a is even.

We start with some auxiliary results.

Lemma 3.1. For any prime p and a ∈ N, we have

τ̃(pa) =

{
pa if a is odd

pa − 1 if a is even
, φ̃(pa) =

{
pa − 1 if a is odd

pa if a is even.

Proof. If a is odd, then β(pa) = 1, α(pa) = pa, and if a is even, then β(pa) = pa, α(pa) = 1. Thus,

τ̃(pa) =
∑
m≤pa

(m,β(pa))∗=1

1 =

{
pa, if a is odd

pa − 1, if a is even
, φ̃(pa) =

∑
m≤pa

(m,α(pa))∗=1

1 =

{
pa − 1, if a is odd

pa, if a is even.

To state the next lemma more conveniently, we introduce the following terminology. An arithmetic
function f is said to be multiplicative over Eo (respectively, over Ee) if f(1) = 1 and f(mn) = f(m)f(n)
for relatively prime m,n ∈ Eo (respectively, Ee).
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Lemma 3.2. The functions τ̃ and φ̃ are both multiplicative over both Eo and Ee.

Proof. Since β(1) = 1, we get

τ̃(1) =
∑
m≤1

(m,β(1))∗=1

1 =
∑
m≤1

(m,1)∗=1

1 = 1.

For pa11 . . . pass (> 1) ∈ Eo, with pi being prime and ai being odd, we have β(pa11 · · · pass ) = 1. Using part
2 of Lemma 3.1, we deduce that

τ̃(pa11 · · · pass ) =
∑

m≤pa1
1 ···p

as
s

(m,β(p
a1
1 ···p

as
s ))∗=1

1 =
∑

m≤pa1
1 ···p

as
s

(m,1)∗=1

1 = pa11 · · · pass = τ̃(pa11 ) · · · τ̃(pass ),

which implies that τ̃ is multiplicative over Eo.
Similarly, for qb11 · · · qbrr (> 1) ∈ Ee, with qi being prime and bi being even, from β(qb11 · · · qbrr ) =

qb11 · · · qbrr using part 1 of Lemma 3.1, we have

τ̃(qb11 · · · qbrr ) =
∑

m≤qb11 ···q
br
r

(m,β(q
b1
1 ···q

br
r ))∗=1

1 =
∑

m≤qb11 ···q
br
r

(m, q
b1
1 ···q

br
r )∗=1

1

= qb11 · · · qbrr −
r∑
i=1

qb11 · · · qbrr
qbii

+

r∑
i,j=1,i<j

qb11 · · · qbrr
qbii q

bj
j

+ · · ·+ (−1)r−1
r∑
i=1

qbii + (−1)r

= (qb11 − 1)(qb22 − 1) · · · (qbrr − 1) = τ̃(qb11 ) · · · τ̃(qbrr ),

which shows that τ̃ is multiplicative over Ee. The proof for the function φ̃ is similar and is omitted.

Next, we show that φ̃ and τ̃ are multiplicative functions.

Theorem 3.3. Both τ̃ and φ̃ are multiplicative functions.

Proof. For a prime factorization pa11 · · · pass q
b1
1 · · · qbrr , where each ai is odd(even) and each bj is even(odd),

we get β(pa11 · · · pass q
b1
1 · · · qbrr ) = qb11 · · · qbrr . Putting p = pa11 · · · pass and using part 2 of Lemma 3.1, we

have

τ̃(pa11 · · · pass q
b1
1 · · · qbrr ) = τ̃(pqb11 · · · qbrr ) =

∑
m≤pqb11 ···q

br
r

(m,β(pq
b1
1 ···q

br
r ))∗=1

1 =
∑

m≤pqb11 ···q
br
r

(m,q
b1
1 ···q

br
r )∗=1

1

= pqb11 . . . qbrr −
r∑
i=1

pqb11 · · · qbrr
qbii

+

r∑
i,j=1,i<j

pqb11 · · · qbrr
qbii q

bj
j

+ · · ·+ (−1)r−1
r∑
i=1

pqbii + (−1)rp

= p(qb11 − 1) · · · (qbrr − 1) = pq11 · · · pass (qb11 − 1) · · · (qbrr − 1)

= τ̃(pa11 ) · · · τ̃(pass )τ̃(qb11 ) · · · τ̃(qbrr ).

Since τ̃(1) = 1, the multiplicativity of τ̃ is immediate. The proof for the function φ̃ is similar and is
omitted.

It is shown in [3] that (K t U)(n) = χo(n) where χo(n) is the characteristic function of n being
exponentially odd, while [7], (T t U)(n) = χe(n) where χe(n) is the characteristic function of n being
exponentially even. We end the paper with the promised result
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Theorem 3.4. We have
τ̃ = ζ1 tK, φ̃ = ζ1 t T.

Proof. Clearly,
(ζ1 tK)(1) = ζ1(1)K(1) = 1 = τ̃(1).

For n > 1, since ζ1,K and τ̃ are multiplicative functions, it suffices to verify their values at prime power
pa, which is

(ζ1 tK)(pa) =
∑
d||pa

ζ1(d)K

(
pa

d

)
= K(pa) + paK(1) =

{
pa if a is odd

pa − 1 if a is even
= τ̃(pa).

When n = 1, we have
(ζ1 t T )(1) = ζ1(1)T (1) = 1 = φ̃(1).

For n > 1, since ζ1, T and φ̃ are multiplicative functions, it suffices to verify their values at prime power
pa, which is

(ζ1 t T )(pa) =
∑
d||pa

ζ1(d)T

(
pa

d

)
= T (pa) + paT (1) =

{
−1 + pa if a is odd

pa if a is even
= φ̃(pa).
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