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1 Introduction and Preliminaries

The generalization of classical algebraic structures to n-ary structures was first initiated by Kasner
[1] in 1904. The notion of ordered n-ary semigroups is a generalization of ordered semigroups and n-ary
semigroups. In 2000, Cao and Xu studied minimal and maximal left ideals in ordered semigroups and
characterized them in [2]. After that, Arslanov and Kehayopulu characterized minimal and maximal
ideals in ordered semigroups in [3]. Next, Iampan [4] investigated some characterizations of minimal and
maximal left ideals and right ideals in ternary semigroups in 2010. Recently, Petchkaew and Chinram
studied minimal and maximal n-ideals in n-ary semigroups and gave some characterizations of minimal
and maximal n-ideals in n-ary semigroups in [5]. Those are our motivations to do this paper. In this
paper, we extend those results. The remarkable results concerning minimal and maximal n-ideals in
ordered n-ary semigroups are given. First, we would like to recall the definition of n-ary semigroup which
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was stated in [6], a nonempty set S together with an n-ary operation given by f : Sn → S, where n ≥ 2,
is called an n-ary groupoid and is denoted by (S, f). The sequence of elements xi, xi+1, . . . , xj is denoted

by xji . Note that in the case j < i, this is the empty symbol. If xi+1 = xi+2 = · · · = xi+t = x, then we
write xt instead of xi+ti+1. In this convention,

f(x1, x2, . . . , xn) = f(xn1 )

and

f(x1, . . . , xi, x . . . , x︸ ︷︷ ︸
t

, xi+t+1, . . . , xn) = f(xi1, x
t, xni+t+1).

An n-ary groupoid (S, f) is called (i, j)-associative if

f(xi−1
1 , f(xn+i−1

i ), x2n−1
n+i ) = f(xj−1

1 , f(xn+j−1
j ), x2n−1

n+j )

hold for all x1, x2, . . . , x2n−1 ∈ S. The operation f is associative if the above identity holds for all
1 ≤ i ≤ j ≤ n, and (S, f) is called an n-ary semigroup.

Example 1.1. Let S = {2, 2n, 2n+1, 2n+2, . . .}. For all n ∈ N \ {1}, define f : Sn → S by f(xn1 ) =
x1 · x2 · . . . · xn for all x1, x2, . . . , xn ∈ S where · is a usual multiplication. Then (S, f) is an n-ary
semigroup but not an m-ary semigroup for all positive integer m such that 1 < m < n.

A partially ordered n-ary semigroup S is called an ordered n-ary semigroup if for all x, y, a1, a2, . . . , an ∈
S, x ≤ y ⇒ f(ai−1

1 , x, ani+1) ≤ f(ai−1
1 , y, ani+1) for all i = 1, 2, . . . , n.

Example 1.2. Let (S, f) be an n-ary semigroup. We have that (S, f, idS) is an ordered n-ary semigroup
where idS := {(a, a) | a ∈ S} is an identity relation on S.

Let S be an ordered n-ary semigroup. For a subset H of S, let (H] := {t ∈ S | t ≤ h for some h ∈ H}.
For H = {a}, we write (a] instead of ({a}].

Proposition 1.1. Let A and B be subsets of an ordered n-ary semigroup S. The following statements
are true.

(1) A ⊆ (A].

(2) (A ∪B] = (A] ∪ (B].

(3) If A ⊆ B, then (A] ⊆ (B].

(4) (A] = ((A]].

Proof. The proof is straightforward.

For all subsets A1, A2, . . . , An of T, f(An1 ) := {f(an1 ) | ai ∈ Ai}. If A1 = {a1}, then we write
f({a1}, An2 ) as f(a1, A

n
2 ), and similarly in another case such as we write f({a1}, An−1

2 , {an}) as f(a1, A
n−1
2 ,

an) and so on.
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Proposition 1.2. Let A1, A2, . . . , An be subsets of an ordered n-ary semigroup S. Then

f((A1], (A2], . . . , (An]) ⊆ (f(An1 )].

Proof. The proof is straightforward.

A nonempty subset H of an ordered n-ary semigroup (S, f) is called an ordered n-ary subsemigroup
of S if (H] ⊆ H and f(an1 ) ∈ H for all a1, a2, . . . , an ∈ H.

A nonempty subset I of S is called an ordered i-ideal of S if (I] ⊆ I and for every x1, ..., xi−1, xi+1, ..., xn
∈ S with a ∈ I, then f(xi−1

1 , a, xni+1) ∈ I. A nonempty subset I of S is called an ordered ideal of S if I
is an i-ideal for every 1 ≤ i ≤ n.

The intersection of all i-ideals of an ordered n-ary subsemigroup H of an ordered n-ary semigroup S
containing a nonempty subset A of H is the ordered i-ideal of H generated by A. For A = {a}, we denote
Ii,H(a) to be the ordered i-ideal of H generate by {a}. If H = S, then we write Ii,S(a) as Ii(a). The
intersection of all ordered i-ideals of an ordered n-ary semigroup S containing a nonempty subset A is
the ordered i-ideal of S generated by A denoted by Ii(A) and if A = {a}, we denote it by Ii(a).

An element a of an ordered n-ary semigroup S with at least two elements is called a zero element
of S if f(xi−1

1 , a, xni+1) = a with x1, x2, . . . , xi−1, xi+1, . . . , xn ∈ S for all i = 1, 2, . . . , n and denote it by
0. If an ordered n-ary semigroup S contains a zero element, then every i-ideal of S also contains a zero
element.

An ordered n-ary semigroup S without zero is called i-simple if it has no proper ordered i-ideals. An
ordered n-ary semigroup S with zero is called 0-i-simple if it has no nonzero proper ordered i-ideals and
f(Sn) 6= {0}.

An ordered i-ideal I of an ordered n-ary semigroup S without zero is called a minimal ordered i-ideal
of S if there is no ordered i-ideal J of S such that J ( I. This implies that if there is an ordered i-ideal
J of S such that J ⊆ I, we gain that J = I. A nonzero ordered i-ideal I of an ordered n-ary semigroup
S with zero is called a 0-minimal ordered i-ideal of S if there is no nonzero ordered i-ideal J of S such
that J ( I. Equivalently, if S has an ordered i-ideal J such that J ( I, we obtain that J = {0}. A
proper ordered i-ideal I of an ordered n-ary semigroup S is called a maximal ordered i-ideal of S if for
any ordered i-ideal J of S such that I ( J , we have J = S. Equivalently, if J is a proper ordered i-ideal
of S such that I ⊆ J , we acquire that J = I.

2 Basic properties

Throughout this paper, S is assumed to be an ordered n-ary semigroup. In this section, we provide
some ideas, elementary properties and some our fundamental results which relate to ordered n-ideals,
n-simples, and 0-n-simples.

Lemma 2.1. Let A be any nonempty subset of S. Then (f(Sn−1, A)∪A] is the smallest ordered n-ideal
of S containing A.

Proof. First, we show that (f(Sn−1, A)∪A] is an ordered n-ideal of S. By Proposition 1.1(4), ((f(Sn−1, A)∪
A]] = (f(Sn−1, A) ∪ A]. Next, let x1, x2, . . . , xn−1 ∈ S and y ∈ (f(Sn−1, A) ∪ A]. Then there exists
z ∈ f(Sn−1, A) ∪A such that y ≤ z. So z ∈ f(Sn−1, A) or z ∈ A.

Case 1: z ∈ f(Sn−1, A). Then z = f(sn−1
1 , a) for some s1, s2, . . . , sn−1 ∈ S and for some a ∈ A. Then

f(xn−1
1 , y) ≤ f(xn−1

1 , z) = f(xn−1
1 , f(sn−1

1 , a)) = f(f(xn−1
1 , s1), sn−1

2 , a) ∈ f(Sn−1, A) ⊆ f(Sn−1, A) ∪ A.
This implies that

f(xn−1
1 , y) ∈ (f(Sn−1, A) ∪A].

Case 2: z ∈ A. Then f(xn−1
1 , y) ≤ f(xn−1

1 , z) ∈ f(Sn−1, A) ⊆ f(Sn−1, A) ∪ A. This implies that
f(xn−1

1 , y) ∈ (f(Sn−1, A) ∪A].
From Case 1 and Case 2, we can conclude that (f(Sn−1, A) ∪A] is an ordered n-ideal of S.
Next, we show that (f(Sn−1, A) ∪ A] is a smallest ordered n-ideal of S containing A. Let I be any
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ordered n-ideal of S containing A. Let y ∈ (f(Sn−1, A) ∪A]. Then there exists z ∈ f(Sn−1, A) ∪A such
that y ≤ z. If z ∈ A, then z ∈ I because A ⊆ I. This implies that y ∈ I. If z ∈ f(Sn−1, A), then
z = f(sn−1

1 , a) for some s1, s2, . . . , sn−1 ∈ S and for some a ∈ A. Thus a ∈ I because A ⊆ I. Hence
z = f(sn−1

1 , a) ∈ I since I is an ordered n-ideal of S. Therefore, y ∈ I. We obtain (f(Sn−1, A) ∪A] ⊆ I.
Hence (f(Sn−1, A) ∪A] is the smallest ordered n-ideal of S containing A.

Corollary 2.2. For any an element a of S, In(a) = (f(Sn−1, a) ∪ {a}].

Proof. This follows from Lemma 2.1.

Lemma 2.3. Let A be a nonempty subset of an n-ideal I of S. Then (f(In−1, A)] is an ordered n-ideal
of S.

Proof. Let s1, s2, . . . , sn−1 ∈ S and let y ∈ (f(In−1, A)]. Then there exists z ∈ f(In−1, A) such that
y ≤ z. Thus z = f(xn−1

1 , a) for some x1, x2, . . . , xn−1 ∈ I and for some a ∈ A. Then f(sn−1
1 , y) ≤

f(sn−1
1 , z) = f(sn−1

1 , f(xn−1, a)) = f(f(sn−1
1 , x1), xn−1

2 , a) ∈ f(In−1, A) because I is an ordered n-ideal
of S and xi ∈ I for all i ∈ {1, 2, . . . , n− 1}. So f(sn−1

1 , y) ∈ (f(In−1, A)]. This implies that (f(In−1, A)]
is an ordered n-ideal of S.

Lemma 2.4. Let A be any nonempty subset of S. Then (f(Sn−1, A)] is an ordered n-ideal of S.

Proof. This follows by Lemma 2.3 by using I = S.

Lemma 2.5. If S has no zero element, then the following statements are equivalent:

(1) S is n-simple.

(2) (f(Sn−1, a)] = S for all a ∈ S.

(3) In(a) = S for all a ∈ S.

Proof. First, we show (1)⇒ (2). Assume that S is n-simple. By Lemma 2.4, (f(Sn−1, a)] is an ordered
n-ideal of S for all a ∈ S. Thus (f(Sn−1, a)] = S for all a ∈ S because S is n-simple.

Next, we show (2) ⇒ (3). Assume that (f(Sn−1, a)] = S for all a ∈ S. By Corollary 2.2, we obtain
In(a) = (f(Sn−1, a) ∪ {a}] = S ∪ (a] = S. Therefore, In(a) = S for all a ∈ S.

Finally, we show (3)⇒ (1). Assume the statement (3) holds. Let I be any ordered n-ideal of S. Since
I is nonempty, let x ∈ I. Thus S = In(x) ⊆ I ⊆ S. This implies that I = S. Hence, S is n-simple.

Example 2.1. Consider Z50, let S = {5, 25} and ≤:= {(5, 5), (25, 25), (5, 25)}. Define f : Sn → S by

f(xn1 ) = x1 · x2 · . . . · xn

for all x1, x2, . . . , xn ∈ S where · is the multiplication of Z50. Then (S, f,≤) is an ordered n-ary semigroup.
It is easy to see that S is n-simple.

Lemma 2.6. Let S be an ordered n-ary semigroup with a zero element 0. Then the following statements
hold:

(1) If S is 0-n-simple, then In(a) = S for all a ∈ S r {0}.

(2) If In(a) = S for all a ∈ S r {0}, then either (f(Sn)] = {0} or S is 0-n-simple.

Proof. (1) Assume that S is 0-n-simple. Since In(a) is a nonzero ordered n-ideal of S for all a ∈ Sr {0},
we obtain that In(a) = S for all a ∈ S r {0}.

(2) Assume that In(a) = S for all a ∈ S r {0} and suppose that (f(Sn)] 6= {0}. Let I be a nonzero
ordered n-ideal of S. Then there exists x ∈ I r {0}. Hence S = In(x) ⊆ I ⊆ S, and so I = S. Therefore,
S is 0-n-simple.
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Example 2.2. Consider Z50, let S = {0, 5, 25} and

≤:= {(0, 0), (5, 5), (25, 25), (0, 5), (0, 25), (5, 25)}.

Define f : Sn → S by
f(xn1 ) = x1 · x2 · . . . · xn

for all x1, x2, . . . , xn ∈ S where · is the multiplication of Z50. Then (S, f,≤) is an ordered n-ary semigroup
with a zero 0. It is easy to see that S is 0-n-simple.

Lemma 2.7. Let {Iγ | γ ∈ Γ} be a family of ordered n-ideals of S.

(1)
⋃
γ∈Γ

Iγ is an ordered n-ideal of S.

(2) If
⋂
γ∈Γ

Iγ 6= ∅, then
⋂
γ∈Γ

Iγ is also an ordered n-ideal of S.

.

Proof. The proof is straightforward.

Lemma 2.8. Let I be an ordered n-ideal of S and H be an ordered n-ary subsemigroup of S, then the
following statements hold:

(1) If H is n-simple such that H ∩ I 6= ∅, then H ⊆ I.

(2) If H is 0-n-simple such that (H r {0}) ∩ I 6= ∅, then H ⊆ I.

Proof. (1) Assume that H is n-simple such that H ∩ I 6= ∅. Then there exists a ∈ H ∩ I. By Lemma 2.4
and Lemma 2.7(2), we obtain that (f(Hn−1, a)] ∩H is an ordered n-ideal of H. Since H is n-simple, we
gain (f(Hn−1, a)] ∩H = H. This implies that H ⊆ (f(Hn−1, a)] ⊆ (f(Sn−1, I)] ⊆ I. Therefore, H ⊆ I.

(2) Suppose that H is 0-n-simple such that (H r {0})∩ I 6= ∅. Then there exists a ∈ H r {0}∩ I. By
Lemma 2.6(1) and Corollary 2.2, we obtain H = In,H(a) = (f(Hn−1, a)∪{a}]∩H ⊆ (f(Sn−1, a)∪{a}] =
In(a) ⊆ I. Therefore, H ⊆ I.

3 Minimal ordered n-ideals

In this section, we investigate the relationship between minimal ordered n-ideals and n-simple (0-n-
simple) ordered n-ary semigroups.

Theorem 3.1. Let S be an ordered n-ary semigroup without zero and I be an ordered n-ideal of S. Then
I is a minimal ordered n-ideal of S if and only if I is n-simple.

Proof. (1) Let I be a minimal ordered n-ideal of S and J be any ordered n-ideal of I. Therefore,
(f(In−1, J)] ⊆ J ⊆ I. By Lemma 2.3, (f(In−1, J)] is an ordered n-ideal of S. Since I is minimal,
I ⊆ (f(In−1, J)] and so (f(In−1, J)] = I. This implies that J = I. Therefore, I is n-simple. Conversely,
suppose that I is n-simple. Let J be an ordered n-ideal of S such that J ⊆ I. So I ∩ J 6= ∅, and hence
I ⊆ J by Lemma 2.8(1). This implies that J = I. Therefore, I is a minimal ordered n-ideal of S.

Example 3.1. Consider Z50, let S = {1, 5, 25} and

≤:= {(1, 1), (5, 5), (25, 25), (5, 25), (5, 1), (25, 1)}.

Define f : Sn → S by
f(xn1 ) = x1 · x2 · . . . · xn

for all x1, x2, . . . , xn ∈ S where · is the multiplication of Z50. Then (S, f,≤) is an ordered n-ary semigroup.
It is easy to see that I = {5, 25} is a minimal ordered n-ideal of S.
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Theorem 3.2. If S has a zero element and I is a nonzero ordered n-ideal of S, then the following
statement hold:

(1) If I is a 0-minimal ordered n-ideal of S, then either (f(In−1, J)] = {0} for some nonzero ordered
n-ideal J of I or I is 0-n-simple.

(2) If I is 0-n-simple, then I is a 0-minimal ordered n-ideal of S.

Proof. (1) Assume that I is a 0-minimal ordered n-ideal of S and (f(In−1, J)] 6= {0} for any nonzero
ordered n-ideal J of I. Let J be a nonzero ordered n-ideal of I. Then {0} 6= (f(In−1, J)] ⊆ J ⊆ I.
Moreover, we obtain that (f(In−1, J)] is an ordered n-ideal of S by Lemma 2.3. Since I is 0-minimal,
I ⊆ (f(In−1, J)]. This implies that (f(In−1, J)] = J = I. Therefore, I is 0-n-simple.

(2) Assume that I is 0-n-simple. Let J be a nonzero ordered n-ideal of S such that J ⊆ I. This
implies that I r {0} ∩ J 6= ∅ and so I ⊆ J by Lemma 2.8(2). Hence J = I. Therefore, I is a 0-minimal
ordered n-ideal of S.

Example 3.2. Consider Z50, let S = {0, 1, 5, 25} and

≤:= {(0, 0), (1, 1), (5, 5), (25, 25), (0, 1), (0, 5), (0, 25), (5, 25), (5, 1), (25, 1)}.

Define f : Sn → S by
f(xn1 ) = x1 · x2 · . . . · xn

for all x1, x2, . . . , xn ∈ S where · is the multiplication of Z50. Then (S, f,≤) is an ordered n-ary semigroup
with a zero 0. It is easy to see that I = {0, 5, 25} is a 0-minimal ordered n-ideal of S.

4 Maximal ordered n-ideals

In this section, we give the relationship between maximal n-ideals and the union U of all (nonzero)
proper ordered n-ideals of ordered n-ary semigroups.

Theorem 4.1. Let I be a proper n-ideal of S. Then I is a maximal ordered n-ideal if and only if

(1) S r I = {a} and (f(a, Sn−2, a)] ⊆ I for some a ∈ S or

(2) S r I ⊆ (f(Sn−1, a)] for all a ∈ S r I.

Proof. Let I be a maximal ordered n-ideal of S. We consider the following two cases:
Case 1: Suppose that there exists a ∈ S r I such that (f(Sn−1, a)] ⊆ I. Then (f(a, Sn−2, a)] ⊆

(f(Sn−1, a)] ⊆ I. By Corollary 2.2, we obtain (I ∪ {a}] = ((I ∪ f(Sn−1, a)) ∪ {a}] = (I ∪ (f(Sn−1, a) ∪
{a})] = (I ∪ In(a)]. This implies that (I ∪{a}] is an ordered n-ideal of S because (I ∪ In(a)] is an n-ideal
of S. Since I is a maximal ordered n-ideal of S and I ( (I ∪ {a}], we obtain that (I ∪ {a}] = S. This
implies that S r I = (a]. Let x ∈ S r I. Then x ≤ a and (f(Sn−1, x)] ⊆ (f(Sn−1, a)] ⊆ I. From
(f(Sn−1, x)] ⊆ I, x ∈ S \ I, a similar argument shows that S \ I ⊆ (x]. Consequently, a ∈ (x]. Therefore
x = a. Hence, we have that S r I = {a} and (f(a, Sn−2, a)] ⊆ I for some a ∈ S as desire. In this case,
the statement (1) is satisfied.

Case 2: Suppose that (f(Sn−1, a)] 6⊆ I for all a ∈ S r I. Let a ∈ S r I. Then (f(Sn−1, a)] 6⊆ I.
Moreover, we obtain that (f(Sn−1, a)] is an ordered n-ideal of S by Lemma 2.4. By Lemma 2.7, we
gain that (I ∪ f(Sn−1, a)] is an ordered n-ideal of S. Since I is a maximal ordered n-ideal of S and
I ( (I ∪ f(Sn−1, a)], we acquire that (I ∪ f(Sn−1, a)] = S. Hence a ∈ (f(Sn−1, a)] because a ∈ S r I.
This implies that S r I ⊆ (f(Sn−1, a)] for all a ∈ S r I. Hence, this case satisfies the statement (2).

Conversely, suppose that J is an n-ideal of S such that I ( J . Then J r I 6= ∅. If there exists a ∈ S
such that S r I = {a} and (f(a, Sn−2, a)] ⊆ I, then J r I ⊆ S r I = {a}, and hence J r I = {a}. This
implies that J = I ∪ {a} = S. Hence we obtain that I is maximal. Next, if S r I ⊆ (f(Sn−1, a)] for all
a ∈ S r I, then S r I ⊆ (f(Sn−1, x)] ⊆ (f(Sn−1, J)] ⊆ J for all x ∈ J r I. Hence S = (S r I) ∪ I ⊆
J ∪ J = J ⊆ S, and so J = S. Therefore, I is a maximal ordered n-ideal of S.

Hence the proof of this theorem is completed.
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Example 4.1. (1) Let S = N and ≤:= {(a, b) | a ≥ b}. Define f : Sn → S by

f(xn1 ) = x1 + x2 + . . . + xn

for all x1, x2, . . . , xn ∈ S where + is the usual addition of N. Then (S, f,≤) is an ordered n-ary semigroup.
Let I = Nr {1}. Thus S r I = {1} and (f(1, Sn−2, 1)] ⊆ I. By Theorem 4.1(1), I is a maximal ordered
n-ideal of S.

(2) Let S = {0,−1, 1} and ≤:= {(0, 0), (1, 1), (−1,−1), (1, 0), (−1, 0)}. Define f : Sn → S by

f(xn1 ) = x1 · x2 · . . . · xn

for all x1, x2, . . . , xn ∈ S where · is the usual multiplication. Then (S, f,≤) is an ordered n-ary semigroup.
Let I = {0}. Then S r I ⊆ (f(Sn−1, 1)] and S r I ⊆ (f(Sn−1,−1)]. By Theorem 4.1(2), I is a maximal
ordered n-ideal of S.

For an ordered n-ary semigroup S, the notation U is assumed to be the union of all nonzero proper
ordered n-ideals of S if S has a zero element and the notation U is assumed to be the the union of all
proper ordered n-ideals of S if S has no a zero element, from now on.

Lemma 4.2. U = S if and only if In(a) 6= S for all a ∈ S.

Proof. Assume that U = S. If In(a) = S for some a ∈ S. Thus a 6∈ Iγ for all proper ordered n-ideal Iγ
of S. Hence a 6∈ U = S, which is a contradiction. Therefore, In(a) 6= S for all a ∈ S. Conversely, assume
that In(a) 6= S for all a ∈ S. This implies that In(a) is a proper ordered n-ideal for all a ∈ S. Thus
S ⊆

⋃
a∈S In(a) ⊆ U ⊆ S. Hence U = S.

Theorem 4.3. If S has no zero element, then the exactly one of the following statements is satisfied:

(1) S is n-simple.

(2) In(a) 6= S for all a ∈ S.

(3) There exists a ∈ S such that In(a) = S, a /∈ (f(Sn−1, a)], (f(a, Sn−2, a)] ⊆ U = S r {a} and U is
the unique maximal ordered n-ideal of S.

(4) S r U = {a ∈ S | (f(Sn−1, a)] = S} and U is the unique maximal ordered n-ideal of S.

Proof. Assume that S is not n-simple. This implies that there exists a proper ordered n-ideal I of S.
Hence U is an ordered n-ideal of S. We divide into two cases:

Case 1: If U = S, then In(a) 6= S for all a ∈ S by Lemma 4.2. In this case, the statement (2) is
satisfied.

Case 2: If U 6= S, then U is a maximal ordered n-ideal of S. We would like to show that U is the
unique maximal ordered n-ideal of S. Suppose that I is a maximal ordered n-ideal of S, and so I is
a proper ordered n-ideal of S. Hence I ⊆ U ( S. Since I is a maximal ordered n-ideal of S, I = U .
Therefore, U is the unique maximal ordered n-ideal of S as desire. Furthermore, by Theorem 4.1, we
acquire

(1) S r U = {a} and (f(a, Sn−2, a)] ⊆ U for some a ∈ S or

(2) S r U ⊆ (f(Sn−1, a)] for all a ∈ S r U .

First, we assume that S r U = {a} and (f(a, Sn−2, a)] ⊆ U for some a ∈ S. Since S r U = {a},
(f(a, Sn−2, a)] ⊆ U = S r {a}. Since a /∈ U , In(a) = S. If a ∈ (f(Sn−1, a)], then {a} ⊆ (f(Sn−1, a)],
and hence S = In(a) = (f(Sn−1, a) ∪ {a}] = (f(Sn−1, a)] by Corollary 2.2. This implies that a =
f(sn−1

1 , a) and s1 = f(s2n−2
n , a) for some s1, s2, . . . , s2n−2 ∈ S. Hence, a = f(sn−1

1 , a) = f(s1, s
n−1
2 , a) =

f(f(s2n−2
n , a), sn−1

2 , a) = f(s2n−2
n , f(a, sn−1

2 , a)). Since (f(a, Sn−2, a)] ⊆ U and U is an ordered n-ideal of
S, we have that a = f(s2n−2

n , f(a, sn−1
2 , a)) ∈ U , which is a contradiction. Therefore, a /∈ (f(Sn−1, a)].

In this case, the statement (3) is satisfied.
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Finally, assume that S r U ⊆ (f(Sn−1, a)] for all a ∈ S r U . We would like to show that S r U =
{a ∈ S | (f(Sn−1, a)] = S}. Let a ∈ S r U . By the hypothesis, we have that a ∈ (f(Sn−1, a)], and
so {a} ⊆ (f(Sn−1, a)]. Then In(a) = (f(Sn−1, a) ∪ {a}] = (f(Sn−1, a)] by Corollary 2.2. Since a /∈ U ,
In(a) = S. Hence S = In(a) = (f(Sn−1, a)]. Now, we get SrU ⊆ {a ∈ S | (f(Sn−1, a)] = S}. Conversely,
let a ∈ S be such that S = (f(Sn−1, a)]. If a ∈ U , then In(a) ⊆ U ( S. By Corollary 2.2, we have that
In(a) = (f(Sn−1, a) ∪ {a}] = S ∪ ({a}] = S, which is a contradiction. This implies that a ∈ S r U . This
implies that {a ∈ S | (f(Sn−1, a)] = S} ⊆ S r U . Therefore, S r U = {a ∈ S | (f(Sn−1, a)] = S}, as
desired. In this case, the statement (4) is satisfied.

Hence the proof is completed.

Example 4.2. (1) Let S = {−1, 1} and ≤:= {(−1,−1), (1, 1)}. Define f : Sn → S by

f(xn1 ) = x1 · x2 · . . . · xn

for all x1, x2, . . . , xn ∈ S where · is the usual multiplication. Then (S, f,≤) is an n-simple ordered n-ary
semigroup, this implies that U = ∅. So, S satisfies the condition (1) of Theorem 4.3.

(2) Let S = Nr {1} and and ≤:= idS . Define f : Sn → S by

f(xn1 ) = x1 · x2 · . . . · xn

for all x1, x2, . . . , xn ∈ S where · is the usual multiplication. It is easy to verify that In(a) 6= S for all
a ∈ S. Hence S satisfies the condition (2) of Theorem 4.3.

(3) Consider Z2n+1 , let S = {0, 2, 2n} and ≤:= {(0, 0), (2, 2), (2n, 2n), (0, 2), (0, 2n)}. Define f : Sn →
S by

f(xn1 ) = x1 · x2 · . . . · xn
for all x1, x2, . . . , xn ∈ S where · is the multiplication on Z2n+1 . Thus U = {0, 2n}. It is easy to verify
that S satisfies the condition (3) of Theorem 4.3 by using a = 2.

(4) Let S = N and ≤:= {(a, b) | a ≥ b}. Define f : Sn → S by

f(xn1 ) = x1 · x2 · . . . · xn

for all x1, x2, . . . , xn ∈ S where · is the usual multiplication. Then U = S \ {1}. It is easy to verify that
S satisfies the condition (4) of Theorem 4.3.

Theorem 4.4. If S has a zero element and f(Sn) 6= {0}, then the exactly one of the following statements
is satisfied:

(1) S is 0-n-simple.

(2) In(a) 6= S for all a ∈ S.

(3) There exists a ∈ S such that In(a) = S, a /∈ (f(Sn−1, a)], (f(a, Sn−2, a)] ⊆ U = S r {a} and U is
the unique maximal ordered n-ideal of S.

(4) S r U = {a ∈ S | (f(Sn−1, a)] = S} and U is the unique maximal ordered n-ideal of S.

Proof. This proof is similar to the proof of Theorem 4.3.

5 Remark

1. If we consider n = 2, an ordered n-ary semigroup is an ordered semigroup. In this case, an ordered
n-ideal of an ordered n-ary semigroups is a left ideal of an ordered semigroup.

2. If we consider ≤= idS , an ordered n-ideal of an ordered n-ary semigroup is an n-ideal of an n-ary
semigroup.

The results of this paper generalize some results in [2] and [5].
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