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Abstract : A ternary semigroup is a nonempty set T together with a ternary operation [ ] : T×T×T →
T, written as (a, b, c) 7→ [abc] satisfying the associative law [[abc]uv] = [a[bcu]v] = [ab[cuv]] for all
a, b, c, u, v ∈ T. A partially ordered ternary semigroup T is called an ordered ternary semigroup if for all
a, b, x, y ∈ T, a ≤ b ⇒ [axy] ≤ [bxy], [xay] ≤ [xby], and [xya] ≤ [xyb]. The concept of ordered ternary
semigroup is a natural generalization of ordered semigroups and ternary semigroups. Let T be the set of
all ordered fuzzy points in an ordered ternary semigroup T. In this paper, we investigate some properties
of ordered fuzzy points of ordered ternary semigroups.
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1 Introduction

The notion of a ternary algebraic system was introduced by Lehmer [1]. He investigated certain
ternary algebraic systems called triplexes which turn out to be ternary groups. The concept of ordered
ternary semigroup is a natural generalization of ordered semigroups and ternary semigroups. A number
of mathematicians have studied the properties of ordered ternary semigroups. Iampan discussed ordered
ideal extensions in ordered ternary semigroups in [2]. In [3], Chinram and Saelee studied fuzzy ideals
and fuzzy filters of ordered ternary semigroups. In [4], Changphas initiated the study of m-systems
and n-systems in ordered ternary semigroups. Yaqoob, Abdullah, Rehman, and Naeem [5] gave some
interesting properties of roughness and fuzziness of ordered ternary semigroups. In [6], Daddi and Pawar
studied the properties of ordered quasi-ideals and ordered bi-ideals in an ordered ternary semigroup. In
[7], Lekkoksung and Jampachon characterized right weakly regular ordered ternary semigroups in terms
of the properties of fuzzy ideals and fuzzy quasi-ideals. Bashir and Du characterized weakly regular
ordered ternary semigroups by fuzzy ideals, fuzzy quasi-ideals, and fuzzy bi-ideals in [8].
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In 1965, the fundamental concept of a fuzzy set was introduced by Zadeh in [9]. Since then, it
opened up applications in various fields. Fuzzy, rough and rough fuzzy ideals and bi-ideals in ternary
semigroups were studied in [10] and [11]. In [12] and [13], Pu and Liu first defined the fuzzy points.
Kim [14] considered the semigroup S of all fuzzy points of a semigroup S, and discussed the relation
between fuzzy interior ideals of S and the subsets of S. In [15], the relation between some ideals of a
semigroup S and the subsets of S was discussed by Hamouda. Then he considered the ternary semigroup
T of all fuzzy points of a ternary semigroup T and discussed the relation between some fuzzy ideals of a
ternary semigroup T and the subsets of T in [16]. Tang and Xie studied ordered fuzzy points of ordered
semigroups in [17] and [18]. Recently, Solano, Suebsung and Chinram [19] extended the concept of fuzzy
points to n-ary semigroups. They gave the relation between i-ideals A of an n-ary semigroup S and the
subsets CA of the n-ary semigroup S of the fuzzy points of an n-ary semigroup S, and ideals A of S and
the subsets CA of S will be shown.

In this paper, we study fuzzy points in ordered ternary semigroups and give some remarkable prop-
erties.

2 Preliminaries

A ternary semigroup is a nonempty set T together with a ternary operation [ ] : T×T×T → T, written
as (a, b, c) 7→ [abc] satisfying the associative law [[abc]uv] = [a[bcu]v] = [ab[cuv]] for all a, b, c, u, v ∈ T. A
partially ordered ternary semigroup T is called an ordered ternary semigroup if for all a, b, x, y ∈ T, a ≤ b
⇒ [axy] ≤ [bxy], [xay] ≤ [xby], and [xya] ≤ [xyb].

Example 2.1. (1) Let (T, [ ]) be a ternary semigroup. Then (T, [ ], idT ) is an ordered ternary semigroup
where idT := {(a, a) | a ∈ T} is an identity relation on T . This follows that every ternary semigroup can
be considered as an ordered ternary semigroup by using a partial order idT .

(2) Define [ ] : Z− × Z− × Z− → Z− by [abc] = a · b · c for all a, b, c ∈ Z− where · is the usual
multiplication. Then (Z−, [ ],≤) is an ordered ternary semigroup.

Let T be an ordered ternary semigroup. For a subset H of T , let (H] := {t ∈ T | t ≤ h for some
h ∈ H}. For H = {a}, we write (a] instead of ({a}]. For all subsets A,B,C of T, [ABC] := {[abc] | a ∈ A,
b ∈ B, c ∈ C}.

Proposition 2.2. Let A,B and C be subsets of an ordered ternary semigroup T . The following statements
are true.

(1) A ⊆ (A].

(2) If A ⊆ B, then (A] ⊆ (B].

(3) [(A](B](C]] ⊆ ([ABC]].

A fuzzy subset of T is a function from T into the closed interval [0, 1]. The ordered ternary semigroup
T itself is a fuzzy subset of T such that T (x) = 1 for all x ∈ T, denoted also by T. For any two fuzzy
subsets f and g of T ,

f ∩ g is a fuzzy subset of S defined by (f ∩ g)(x) = min{f(x), g(x)} = f(x) ∧ g(x) for all x ∈ T .
f ∪ g is a fuzzy subset of S defined by (f ∪ g)(x) = max{f(x), g(x)} = f(x) ∨ g(x) for all x ∈ T .
f ⊆ g if f(x) ≤ g(x) for all x ∈ T .

The characteristic function of a subset A of T is defined by

CA(x) =

{
1 if x ∈ A,
0 if x 6∈ A.

for all x ∈ T .
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Proposition 2.3. Let A and B be nonempty subsets of an ordered ternary semigroup T. Then A ⊆ B if
and only if CA ⊆ CB .

Let F (T ) be the set of all fuzzy subsets in an ordered ternary semigroup T. For each x ∈ T , we define
Ax := {(a1, a2, a3) ∈ T × T × T | x ≤ [a1a2a3]}. For each f1, f2, f3 ∈ F (T ), the ternary product of f1, f2
and f3 is a fuzzy subset f1 ◦ f2 ◦ f3 defined as follows:

(f1 ◦ f2 ◦ f3)(x) =


∨

(a1a2a3)∈Ax

{f1(a1) ∧ f2(a2) ∧ f3(a3)} if Ax 6= ∅,

0 otherwise,

for all x ∈ T . Then F (T ) is a ternary semigroup with the ternary product ◦.

3 Main Results

Let T be an ordered ternary semigroup. For α ∈ (0, 1] and x ∈ T , an ordered fuzzy point xα of T is
a fuzzy subset in T defined by

xα(y) =

{
α if y ∈ (x],

0 otherwise,

for all y ∈ T . Clearly, xα ◦ yβ ◦ zγ = [xyz]α∧β∧γ for all fuzzy points xα, yβ , zγ of T.

Let f be a fuzzy subset of T . We define a fuzzy subset (f ] by

(f ](x) =
∨
x≤y

f(y)

for all x ∈ T .

Proposition 3.1. Let f, g and h be fuzzy subsets of an ordered ternary semigroup T . The following
statements are true.

(1) f ⊆ (f ].

(2) If f ⊆ g, then (f ] ⊆ (g].

(3) (f ] ◦ (g] ◦ (h] ⊆ (f ◦ g ◦ h].

Proof. (1) Let x ∈ T. Since x ≤ x, (f ](x) =
∨
x≤y

f(y) ≥ f(x). So f ⊆ (f ].

(2) Assume that f ⊆ g. Then f(x) ≤ g(x) for all x ∈ T . So

(f ](x) =
∨
x≤y

f(y) ≤
∨
x≤y

g(y) = (g](x).

This implies that (f ] ⊆ (g].
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(3) Let x ∈ T . If Ax = ∅, then (f ] ◦ (g] ◦ (h](x) = 0 ≤ (f ◦ g ◦ h](x). If Ax 6= ∅, then

(f ] ◦ (g] ◦ (h](x) =
∨

(a1a2a3)∈Ax

{(f ](a1) ∧ (g](a2) ∧ (h](a3)}

=
∨

(a1a2a3)∈Ax

{
∨

a1≤b1

f(b1) ∧
∨

a2≤b2

g(b2) ∧
∨

a3≤b3

h(b3)}

=
∨

(a1a2a3)∈Ax

{
∨

a1≤b1,a2≤b2,a3≤b3

f(b1) ∧ g(b2) ∧ h(b3)}

≤
∨

(a1a2a3)∈Ax

{
∨

[a1a2a3]≤[b1b2b3]

f(b1) ∧ g(b2) ∧ h(b3)}

≤
∨

x≤[a1a2a3]

{f ◦ g ◦ h([a1a2a3])} = (f ◦ g ◦ h](x).

A fuzzy subset of S is called strongly convex if f = (f ].

Proposition 3.2. Let T be an ordered ternary semigroup and f a fuzzy subset of T . Then f is a strongly
convex fuzzy subset of T if and only if for all x, y ∈ T, x ≤ y ⇒ f(y) ≤ f(x).

Proof. Let x, y ∈ T such that x ≤ y. Then, by hypothesis,

f(x) = (f ](x) =
∨
x≤w

f(w) ≥ f(y).

Conversely, for any x ∈ T, since (f ](x) =
∨
x≤y f(y), by hypothesis, we have f(y) ≤ f(x) for all x ≤ y,

(f ](x) ≤ f(x). So, (f ] ⊆ f. And by Proposition 3.1 (1), therefore f = (f ].

For an ordered fuzzy point xα and a fuzzy point f , if xα ⊆ f , we say that xα is contained in f and
use the notation xα ∈ f .

Theorem 3.3. Let T be an ordered ternary semigroup and xα an ordered fuzzy point of T .

(1) If f is a strongly convex fuzzy subset of T , then f =
⋃
xα∈f

xα.

(2) If f is a strongly convex fuzzy subset of T , then xα ∈ f if and only if f(x) ≥ α.

Proof. (1) Assume xα is an ordered fuzzy point such that xα ∈ f . Since xα(y) ≤ f(y), we get

(
⋃
xα∈f

xα)(y) =
∨
xα∈f

xα(y) ≤
∨
xα∈f

f(y) = f(y)

for all y ∈ T. Hence,
⋃
xα∈f

xα ∈ f . Conversely, for each x ∈ T , choose f(x) = α. Let y ∈ T .

Case 1: If y 6∈ (x], then xα(y) = 0 ≤ f(y).
Case 2: If y ∈ (x], then y ≤ x. Since f is strongly convex and y ≤ x, f(y) ≥ f(x) = α ≥ xα(y).

In both cases, we have xα ∈ f and f(x) = xα(x) ≤ (
⋃
xα∈f

xα)(x). Thus, f =
⋃
xα∈f

xα.

(2) Assume that xα ∈ f . By (1), f(x) ≥ xα(x) = α. Conversely, assume that f(x) ≥ α. Let y ∈ T .
Case 1 : If y /∈ (x], then xα(y) = 0 ≤ f(y).
Case 2 : If y ∈ (x], then xα(y) = α and y ≤ x. By Proposition 3.2, f(y) ≥ x ≥ α = xα(y),

In both cases, this means that xα ∈ f .
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Let T be the set of all ordered fuzzy points of an ordered ternary semigroup T . We define an ordered
relation ≤1 on T as follows: for all xλ, yβ ∈ T ,

xλ ≤1 yβ if x ≤ y and λ ≤ β.

Theorem 3.4. Let T be an ordered ternary semigroup. Then T is an ordered ternary semigroup with
the ternary product ◦ and an order ≤1.

Proof. Let (T, [ ],≤) be an ordered ternary semigroup. We obtain ((a1)α1 ◦(a2)α2 ◦(a3)α3)◦(a4)α4 ◦(a5)α5

= (a1)α1
◦ ((a2)α2

◦ (a3)α3
◦ (a4)α4

) ◦ (a5)α5
= (a1)α1

◦ (a2)α2
◦ ((a3)α3

◦ (a4)α4
◦ (a5)α5

) for any ordered
fuzzy points (a1)α1

, (a2)α2
, (a3)α3

, (a4)α4
, (a5)α5

∈ T . Hence, (T , ◦) is a ternary semigroup. Moreover,
(T , ◦,≤1) is an ordered ternary semigroup. Since ”≤” is an ordered relation on T , then ”≤1” is an ordered
relation on T . In the remainder, let (a1)α1

, (a2)α2
, xλ, yβ ∈ T such that (a1)α1

≤1 (a2)α2
. So, a1 ≤ a2

and α1 ≤ α2. Then [a1xy] ≤ [a2xy] and α1 ∧ λ ∧ β ≤ α2 ∧ λ ∧ β. This implies that [a1xy]α1∧λ∧β ≤1

[a2xy]α2∧λ∧β , that is, (a1)α1 ◦ xλ ◦ yβ ≤1 (a2)α2 ◦ xλ ◦ yβ . Similarly, xλ ◦ (a1)α1 ◦ yβ ≤1 xλ ◦ (a2)α2 ◦ yβ
and xλ ◦ yβ ◦ (a1)α1

≤1 xλ ◦ yβ ◦ (a2)α2
. Thus, (T , ◦,≤1) is an ordered ternary semigroup.

Let T be the set of all ordered fuzzy points in an ordered ternary semigroup T. Thus, T is an ordered
ternary subsemigroup of F (T ). For any f ∈ F (T ), f denotes the set of all ordered fuzzy points contained
in f , that is,

f = {xα ∈ T | xα ∈ f}.

For any f1, f2, f3 ∈ F (T ), we define the ternary product of f1, f2 and f3 as follows:

f1 ◦ f2 ◦ f3 = {(a1)α1
◦ (a2)α2

◦ (a3)α3
| (ai)αi ∈ fi}.

Theorem 3.5. Let f1, f2, f3 be strongly convex fuzzy subsets in an ordered ternary semigroup T. Then

(1) f1 ∪ f2 ∪ f3 = f1 ∪ f2 ∪ f3.

(2) f1 ∩ f2 ∩ f3 = f1 ∩ f2 ∩ f3.

Proof. (1) Let xα ∈ f1 ∪ f2 ∪ f3. By Theorem 3.3 (2), (f1 ∪ f2 ∪ f3)(x) ≥ α. This implies f1(x) ≥ α or
f2(x) ≥ α or f3(x) ≥ α. Hence, xα ∈ f1 ∪ f2 ∪ f3. Therefore f1 ∪ f2 ∪ f3 ⊆ f1 ∪ f2 ∪ f3. Conversely, let
xα ∈ f1 ∪ f2 ∪ f3. By Theorem 3.3 (2), f1(x) ≥ α or f2(x) ≥ α or f3(x) ≥ α. So, (f1 ∪ f2 ∪ f3)(x) ≥ α.
Then this implies xα ∈ f1 ∪ f2 ∪ f3. Therefore, f1∪f2∪f3 ⊆ f1 ∪ f2 ∪ f3. Thus, f1 ∪ f2 ∪ f3 = f1∪f2∪f3.

(2) Let xα ∈ f1 ∩ f2 ∩ f3. By Theorem 3.3 (2), (f1 ∩ f2 ∩ f3)(x) ≥ α. This implies f1(x) ≥ α and
f2(x) ≥ α and f3(x) ≥ α. Hence, xα ∈ f1 ∩ f2 ∩ f3. Therefore f1 ∩ f2 ∩ f3 ∈ f1 ∩ f2 ∩ f3. Conversely, let
xα ∈ f1∩f2∩f3. By Theorem 3.3 (2), f1(x) ≥ α and f2(x) ≥ α and f3(x) ≥ α. So, (f1∩f2∩f3)(x) ≥ α.
This implies xα ∈ f1 ∩ f2 ∩ f3. Therefore, f1∩f2∩f3 ⊆ f1 ∩ f2 ∩ f3. Thus, f1 ∩ f2 ∩ f3 = f1∩f2∩f3.

Theorem 3.6. Let f1, f2, f3 be strongly convex fuzzy subsets in an ordered ternary semigroup T. Then
f1 ◦ f2 ◦ f3 ⊆ f1 ◦ f2 ◦ f3.

Proof. Let xα ∈ f1 ◦ f2 ◦ f3. Then xα = (a1)α1
◦ (a2)α2

◦ (a3)α3
for some (ai)αi ∈ fi. By Theorem 3.3 (2),

this implies that xα = [a1a2a3]α1∧α2∧α3
and (fi)(ai) ≥ αi for all i. So, x = [a1a2a3] and α = α1∧α2∧α3.

Therefore, (fi)(ai) ≥ αi ≥ α for all i. Hence, (f1 ◦ f2 ◦ f3)(x) ≥ α. Therefore, by Theorem 3.3 (2),
xα ∈ f1 ◦ f2 ◦ f3.

Theorem 3.7. Let A be a nonempty subset of an ordered ternary semigroup T . Then (A] ⊆ A if and
only if CA is strongly convex.

Proof. Assume that (A] ⊆ A. Let x.y ∈ T such that x ≤ y. If x ∈ A, then CA(x) = 1 ≥ CA(y). If
x /∈ A, this implies that y /∈ A, then CA(x) ≥ 0 = CA(y). By Proposition 3.2, CA is strongly convex.
Conversely, assume that CA is strongly convex. Let x ∈ (A]. Then there exists y ∈ A such that x ≤ y.
By Proposition 3.2, CA(x) ≥ CA(y) = 1. This implies that CA(x) = 1, hence x ∈ A.
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Theorem 3.8. Let A be a nonempty subset of an ordered ternary semigroup T such that (A] ⊆ A. Then
xα ∈ CA if and only if x ∈ A.

Proof. Assume that xα ∈ CA. By Theorem 3.3 (2), we have CA(x) ≥ α. Hence, CA(x) = 1. This implies
x ∈ A. Conversely, assume that x ∈ A. Then CA(x) = 1 ≥ α for all α ∈ (0, 1]. By Theorem 3.3 (2), this
implies that xα ∈ CA.

Theorem 3.9. Let A and B be nonempty subsets an ordered ternary semigroup T such that (A] ⊆ A
and (B] ⊆ B, then A ⊆ B if and only if CA ⊆ CB .

Proof. Assume that A ⊆ B. Let xα ∈ CA. By Theorem 3.8, x ∈ A. Since A ⊆ B, x ∈ B. By Theorem
3.8, xα ∈ CB . Thus, CA ⊆ CB . Conversely, assume that CA ⊆ CB . Let x ∈ A. By Theorem 3.8, xα ∈ CA.
Since CA ⊆ CB , xα ∈ CB . By Theorem 3.8, x ∈ B. Thus, A ⊆ B.

Theorem 3.10. For any strongly convex fuzzy subsets f and g of an ordered ternary semigroup T , then
f ⊆ g if and only if f ⊆ g.

Proof. Assume that f ⊆ g. Thus, f(x) ≤ g(x) for all x ∈ T . Let xα ∈ f . Then xα ∈ f . By Theorem 3.3
(2), we have g(x) ≥ f(x) ≥ α. Hence, xα ∈ g by Theorem 3.3 (2). Conversely, assume that f ⊆ g. Let
x ∈ T . If f(x) = 0, then f(x) ≤ g(x). Assume f(x) 6= 0 and let α = f(x). Then xα ∈ f . So xα ∈ g.
Hence, g(x) ≥ α = f(x) by Theorem 3.3 (2). So f ⊆ g.
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