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Abstract : A formula in which each variable occurs at most once is said to be a linear-formula ([II 2]).
A linear-hypersubstitution for algebraic systems of type ((n);(n)) is a mapping o, , which maps n-ary
operation symbols f to n-ary linear-terms o, ,.(f) and n-ary relational symbols 7 to n-ary linear-formulas
0, (7). Any linear-hypersubstitution o; p can be extended to a mapping @, . on the set of all linear-
terms of type (n) and linear-formulas of type ((n);(n)). A binary operation “o, ” on Hyp!™((n);(n))
the set of all linear-hypersubstitutions for algebraic systems of type ((n);(n)) can be defined by using
this extension. The set Hyp""((n); (n)) together with the identity linear-hypersubstitution (o, ,.),, which
maps (0, ),,(f) == f(z1,...,2,) and (0, ),,(7) := y(21,...,2,) forms a monoid. The concept of an
idempotent element plays an important role in semigroup theory [3]. In this paper, we characterize the
idempotent of the monoid of linear-hypersubstitutions for algebraic systems of type ((n); (n)).
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1 Introduction

Algebraic systems are understood in the sence of Mal’cev(see [4]). An algebraic system of type (7,7") is

a triple A := (A; (ff)ier, ('yJA)jeJ) consisting of a non-empty set A, an indexed set (f;*);cs of operations

3 K3
defined on A where f*: A" — A is n;-ary and an indexed set of relations 'yJA C A" is an nj-ary . The
pair (7,7') with 7 = (n;)ier, 7" = (n;);es of sequences of positive integers n;,n; is called the type of A.

The concept of a term and a formula are one of the fundamental concepts of algebraic system. To be
independent, first we repeat the most important definitions and results on hypersubstitutions for algebraic
systems (see [5]). Using for n > 1, an n-ary alphabet X,, = {z1,29,...,2,} of individual variables and
the alphabet (f;);er of operation symbols in the usual way one defines terms of type 7 by the following

steps :

(i) Every z; € X,, is an n-ary term of type 7.

(ii) If t1,...,t,, are n-ary terms of type 7 and if f; is an n;-ary operation symbol of type 7, then
fi(t1, ..., tn,) is an n-ary term of type 7.

1Corresponding author.
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Let W.(X,,) be the set of all n-ary terms of type 7. If X = {z1,z5,...} is a countably infinite alphabet,

then W, (X) := |J W,(X,,) denote the set of all terms of type 7 (see [0 [7, {]).
n>1

To define quantifier free formulas of type (7,7), we need the logical connectives — (for negation), V
(for disjunction) and the equation symbol ~=.

Definition 1.1. Let n € N*. An n-ary quantifier free formula of type (1,7') (for short, formula of type
(1,7")) is defined in the following inductive way :
(i) If t1,ta are n-ary terms of type T, then the equation t1 = to is an n-ary quantifier free formula of
type (1,7').
(ii) If j € J and t1,...,t,, are n-ary terms of type 7, then v;(t1,...,t,,) is an n-ary quantifier free
formula of type (1,7').
(iii) If F is an n-ary quantifier free formula of type (7,7'), then —F is an n-ary quantifier free formula
of type (7,7').
(iv) If Fy and Fy are n-ary quantifier free formulas of type (7,7’), then Fy V Fy is an n-ary quantifier
free formula of type (1,7').

Let F(+(Xyn) be the set of all n-ary quantifier free formulas of type (7,7’) and let F, .(X)
= U Fir,7(Xn) be the set of all quantifier free formulas of type (7,7').

n>1

2 Linear-Terms of Type 7 and Linear-Formulas of Type (7,7 )

A term in which each variable occurs at most once, is said to be a linear. For a formal definition of
n-ary linear-term, we replace (ii) in the definition of terms by a slightly different condition. Let var(t) is
the set of all variables occuring in a term ¢ and var(F) is the set of all variables occuring in a formula F'.

Definition 2.1. Let n € NT. An n-ary linear-term of type T is defined in the following inductive way :
(i) Bvery xj € X, is an n-ary linear-term of type 7.

(ii) If t1,...,tn, are n-ary linear-terms of type T and var(t;) Nwvar(ty) =0 for all1 <1<k < n; ,
then fi(t1,...,tn,) is an n-ary linear-term of type 7.

(iii) The set W"(X,,) of all n-ary linear-terms of type T is the smallest set which contains 1, ..., x,
and closed under finite applications of (i)

The set of all linear-terms of type 7 over the countably infinite alphabet X is defined by W' (X) :=
U W (X,)
1

n>

Definition 2.2. Let n € NT. An n-ary linear-formula of type (1,7') is defined by the following inductive
way :

(i) If t1,t2 are n-ary linear-terms of type T and var(t1) Nvar(ty) = 0, then the equation t; =ty is an
n-ary linear-formula of type (1,7').

(ii) Ift1,...,tn, are n-ary linear-terms of type 7, var(t;) Nwar(ty) =0 ; I,k € {1,2,...,n;} and ~; is
an nj-ary relational symbol, then v;(t1, ..., tn;) is an n-ary linear-formula of type (1,7').

(iii) If F is an n-ary linear-formula of type (1,7'), then =F is an n-ary linear-formula of type (1,7’).

(iv) If Fy , Fy are n-ary linear-formulas of type (1,7') and var(Fy) Nvar(Fy) =0, then Fy V Fy is an
n-ary linear-formula of type (1,7').
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Let f(li”T,) (X,) be the set of all n-ary linear-formulas of type (7, 7’) and let ]—'(lf_"T,)(X) = U f(li"T/)(Xn)
s ’ n>1 ’

be the set of all linear-formulas of type (7,7").

For this paper, we consider the type (7,7’) := ((n); (n)), then f(¢1,...,t,) can not be a linear-term,
where t1,...,t, € W,(X,,) \ X, and F1 V F; can not be a linear-formula, because var(Fy) Nvae(Fy) # 0
as the following the example:

Example 2.3. Let (1,7') := ((2); (2)) with a binary operation symbol f and a binary relational symbol
v and let Xo = {x1,22}. Then W(légl()ﬁ) = {x1, 22, f(x1,22), f(x2,21)} and f(lzg);(2))(X2) ={r =~

T2, T2 & 21, Y(T1,2), Y(72, 21), (21 & 22), ~(w2 = 1), 2(V(21,72)), 2(V(@2, 1)), ~(=(T1 * 22)),. . .}

3 Superposition of Linear-Terms and Linear-Formulas of Type
((n); (n))

Substituting the variables occuring in a linear-term by other linear-terms one obtains a new linear-
term. This can be described by the superposition operation Sj;, ,n > 1 for linear-terms which is induc-
tively defined as follows :

Definition 3.1. Let n € NT and t,t1,...,t, € W"(X,,) such that var(t;) Nvar(ty) = 0, for I,k €
{1,...,n}. The operation

St : W™ (X)) x (W™ (X))"™ = W™ (X,,)
is defined in the following inductive way :

(i) Ift = m;, then ST, (i, t1,...,tn) :=1;; 1 <i < n,

lin
(it) Ift = f(s1,...,8n) and assume that, S}, (si,t1,...,t,) is a linear-term already, forl € {1,...,n}
such that var(S}, (si,t1, ..., tn)) Nvar(Sy, (S t1, ..., tn)) =0; 1 <1k <mn,

then ST, (f(s1,...,8n),t1, ..o tn) = f(ST, (51,1, tn), .o, Sk (Sns e, - o ).
Now, we will extend this superposition of linear-terms of type (n) to a superposition of linear-formulas
of type ((n); (n)) as follows :

Definition 3.2. Letn € NT and t,ty,...,t, € WY"(X,,) such that var(t;)Nvar(ty) = 0; L,k € {1,...,n}
and S}, be the superposition of linear-terms which have defined above. The operation

n

i = W™ (Xn) Uy () X (W (X))™ = W™ (X)) U F{ () (Xin)
is defined in the following inductive way :

(i) Ift € Whn(X,,), then RL, (t,t1,... tn) == S (t,t1,. .. ts).

lin
(ii) If F has the form s1 = sg and var(S}, (s1,t1,....t,)) Nwvar(Sy, (s2,t1,...,tn)) =0 , then
Rﬁn(sl ~ SQ,fZl, e ,tn) = Sﬁn(sl,th e ,tn) ~ Sﬁn(827t1, e ,tn).

(iii) If F has the form ~y(s1,...,Sy,), and assume that S}, (si,t1,...,t,) is already a linear-term ;
1€ {1,...,n} such that var(S}, (si,t1,...,tn)) Nvar(Sy, (sk,t1,...,tn)) = 0; 1 < I,k <n, then

Ry (Y(s1,..y8n) b1, oo tn) = (S (81,81, -y tn)s oo s STiy (Smu b, o T0).

(iv) If F' has the form —F, and assume that R}, (F,t1,...,t,) is already a linear-formula , then
R (~Fth, .. tn) == (R (Fy by, ).



96 Thai J. Math. Special Issue (2020)/ J. Joomwong and D. Phusanga

Theorem 3.3. Let 3 € Wi (X,,)U f(léz)‘(n))(Xn), The operation R}, satisfies :

(LFCL)R}, (RE,, (B t1, ...t ),31,...?sn) Ry (B, R, (t1,51, .- 8n)s -, Rt (tn, 1, ..., 8n))
whenever ty,...,tn,81,...,8, € WH™(X,,) and var(t;) N var(ty) = @ var(sl) N var(sk) = 0;

Ik € {1,...7n}.
(LFC2) Rl (wi,t1,...,tn) = t; whenever ti,...,t, € WH™(X,,) and var(t;) Nvar(ty) = 0;
Lke{l,...,n}.

(LFC3) R}, (B, x1,...,2n) = B.

Proof. Let 7 be a permutation on the set {1,2,...,n}. For 8 =t € W!n(X,,), we will give a proof of
(LFC1) by induction on the complexity of a linear-term ¢.

(i) ft=x; ;1 <i<n, then
Ry (R (Tist1, .. ytn), 81,5 8n)
= Rl’;n(Sﬁn(xi,tl,...,tn),sl,...,sn)
Slzn(ti5517"'75n)
St (@i, ST (1,81, o 58n)s oo Sy (Bns S15 -+, Sn))
= Eo(@i, R (B, 81,0y 8n), ooy R (Bny 15025 S0)-

(ii) If t = f(xr@1), ... > Tr(n)) and assume that S7} (Sh, (@), t1, .- tn), 515+, 50)

Sﬁn(xﬂ(l),Sﬁn(tl,Sl,. . .,Sn), .. -751m(tn731a ..y 8 )) 1 <[ < n, then
RZn(Rﬁn(f( (1) .- ‘n'(n))atla-"at ) Sly--- Sn)

= lzn(Slm(f( ﬂ.(l),...,l’ﬂ.(n)) tl,..., ),81,...,Sn)

= Rlln( (Slz (mﬂ(1)7t17"‘7 )7 Slzn(‘rﬂ'(n)atlw~~7tn))7517~~~73n)

= (SZ;W( lin (.’137‘-(1 tl,... ),S, Sn), Sﬁn(Sﬁ:n(.’L‘,,r(n),tl,...,tn),sl,...,sn))

= f(Sll’n,( (1) Slzn(t17517" )7 lzn( n,Sl,--.,Sn) yoe

Slzn( S (tl,Sl,...,Sn),.. Shn(tn,sl,...,sn)))
= Slm(f( 71'(1) i) ‘n'(n))asﬁn(tlasla“-asn)a'"7Sﬁn(tn751w--asn))
= R} (f(z (1),...,xﬂ(n)),Rﬁn(tl,sl,...,sn),...,Rﬁn(tn,sl,...,sn)).

For = F € .7-'“2) n))(Xn), we will give a proof of (LFC1) by induction on the complexity of a linear-
formula F'.

(i) If F has the form x; =~ x; for i # j € {1,...,n}, then
ra (R (s = xj,te, . tn), 81, -, Sn)
= R}, Sk, (@i tr,... ty) = SP(xj,t1, .. tn), 51, .., 8n)
= Sﬁn(Sﬁn<$“t1,...,tn>781,...,8n) %Sl’;n(Sﬁn(xj,tl,...,tn),sl,...,sn)
= Spo (i, ST, (T, 81,y 8n)y -y Sl (Eny S1, .5 ) &
S, St (t1,81, -, Sn)s oy Shin(Bny S15- -+, 8))
= Rlzn(xl ~ melzn(tl»slv . '7Sn)7" 'aRZn(tnvsl,' . 'asn))'

(ii) If F' has the form y(2r(1),...,%x(n)), then
Rﬁn(le( (.Tﬂ.(l),...,.Tﬂ.(n)),tl,...,tn),Sl,...7Sn)
= le( (Sﬁn(wﬂ(l),tl,...,tn),. .,Sﬁn(ajﬂ(n),tl,...,tn)),sh...,sn)
VST (St (1), t1y -5 n)s 8155 8n)s o v s STin (ST (Tr(ny s 15 -yt ), 815+ -5 80))
= Y (Tr1), Sttty 81,00y 80)s o, ST (Bny 81,000, 80)), -0
Sl (Xa(n)s Spin(t1, 8155 8n)s oo STt (tns 5154+, 80)))
= ngn(’Y(‘/L’ﬂ'(l)a"-7x7r(n))yRZ;n(t17817...,Sn),...,Rﬁn(tn,sl,...,sn)).

(iii) If F has the form —F and assume that R} (R}, (F,t1,...,tn),81,---,5n)
= Rﬁn(F le(tl’slw : '78n)’ - '7Rlin( nsy S, - - Sn))7 then
lzn(Rlzn(_‘F tl,...,t ) 51,...,Sn)
== Rlzn( ( lzn(F tl,...,tn)),sl,...,sn)
= (R, (RL,(Fiti,...,ty),81,...,5n))
= R} (-F, Rl (t1,51,---,8n),- -, Rl (tn,S1,-- -, Sn))-
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For (LFC2) is clearly by Definition 3.1(i).
The proof of (LFC3), we will proceed in a similar way considering the completely of a linear-term ¢.

(i) Ift =2, ; 1 <i<mn, then
Ry (zi,21,...,2n) = Sh (@i, T1,...,2n) = .
(i) Ift = f(zra),-- - Tr(ny) and assume that R}} (rq),T1,...,%n) = Txq) ; 1 <1 < n, then
Rﬁn(f(x‘n’(l)u cee 7x7r(n))7 T1,.-.- ,l'n)
= Sﬁn(f(x'n'(l)a"'7x7r(n))ax17"'7xn)
= f(Sﬁn(Iﬂ(l), Ty ... ,xn), ey Sﬁn(ajﬂ(n), ... ,l‘n))
= f(@ra),- s Ta(n))-
Next, we will proceed in a similar way considering the completely of a linear-formula F.
(i) If F has the form x; = z; for i # j € {1,...,n} , then
Ry (i =z, x1,...,T0) = S (Tiy 21, ., Tn) &= S (T4, 01, .., Tn) = @ = .
(ii) If F has the form y(2x(1),...,Tr(n)), then
R?zn(’Y(xTr(l)a s axﬂ'(n))a L1y 7x7l)
= VS (@), 1. n), ST (Trn) s T Tn)) = Y(Tr(1)s - Tr(n))-

(iii) If F has the form —F and assume that R} (F,z1,...,2,) = F, then

lin

R (=F,x1,...,2,) = (R}, (Fy2z1,...,2,)) = °F.

4 Linear-Hypersubstitutions for Algebraic Systems of Type
((n);(n))

The concept of linear-hypersubstitutions for universal algebras was introduced by Changphas, De-
necke and Pibaljomme [9]. We are going to extend this concept to algebraic systems of type ((n); (n)) as
the following:

Definition 4.1. Any mapping
o U {r} = W (Xn) U F (i) (Xn)

which maps operation symbols f to linear-terms and relational symbols vy to linear-formulas preserving
arities is called a linear-hypersubstitution for algebraic systems (of type ((n); (n))).

Let Hyp'((n); (n)) be the set of all linear-hypersubstitutions for algebraic systems of type ((n); (n)).

We define the extension of linear-hypersubstitutions for algebraic systems of type ((n);(n)) as follows:
G+ Wo™ (Xn) U F((iystan) (Xn) = W™ (Xn) U F((3) ) (Xn)

inductively defined as follows:

x] := x for any variable x € X,

Q)

[
(ii a[f(:cﬂ (1)s -+ To(n) )] = Sﬂn( (f)7 E[x,r(l)], - ,3[:L‘7r(n)]),
olz; = x| ==0lx;] = olz;| for i # j e {1,...,n},
(iV 8[7( Tr(1)s s Tr(n) )] = Rﬁn(g(7)7 8[‘Tﬂ(l)]a cee ag[xﬂ(n)])v

)
)
(iii)
)
)

o[- F] := —g[F] for F € 12) (n))(Xn)-
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Then, 7 is called the extension of a linear-hypersubstitution for algebraic system o .

Next, we defined a binary operation ” o, " on Hyp'™((n);(n)) by o1 o,,, 02 := &1 o 02 where o
denotes the usual composition of mapping and o1, 09 € Hyp'"((n); (n)). The purpose of this paper, the
structure (Hyp'™((n); (n)), oin, 0:q4) becomes a monoid. An importent property for extension is proved

as follows:

Lemma 4.2. Forn € N, let 0 € Hyp"™((n); (n)), and let t1,...,t, € W'™(X,,) and var(t;) Nvar(ty,) =
0;1 <1,k <n. Then

[Rlzn<ﬁ ty,...,1 )} Rlzn( [ ]78[t1]”8[tn])7

for any B € Wln(X,) U]:(ZEZ) (n ))(X )-

Proof. For B =t € Wl"(X,,), we will give a proof by induction on the complexity of the definition of a
linear-term t.

(i) If t =451 <i <n, then

0 [Stin (wistr, - tn)] = Olti] = Sp, (wi,0[ta], . 0lta]) = Siin (@[], T[t], .., O[En])-
(ii) It = f(zra)s -+ Tr(n)), and assume that
o [Sﬁn (xﬂ(l) T, ey )] Sia (@l ], alt], ..., O[tn]); 1 <1 < n, then

G [Slin (f(x’ﬂ'(l) -'L'»n—(n)) t1,..,tn )]

= E[f( lm(ZE 1),t1,...,t ),,Sﬁ (l‘ﬂ.(n),tl,...,tn))}
Stn

= Sin(o(f),0 [Slm( m(1), 1, - - 7]1 S OSh (Trmystas - ta)])
= Shu(o(f), S5, (@lrrm) olta], - [t D, Szm( Olzrm)solta], .., Olta])
= S (Shin(o(f),olzr), - [xw(n]) altal,- ... oltnl)

S Gty Emo 5] e Blta]).

For p=F € ]-'(ZZZ) (n))( n), we will give a proof by induction on the complexity of the definition of
a linear-formula F'.

(i) If F has the form x; =~ x; for i # j € {1,...,n}, then
a'\[RZ;n(JJZ ~ xj,th e ,tn)]
= 8[Sl7n($i,t1,...,tn) ~ “n(aij,tl,.. ,tn)]
= Sin(@lzi],olt], ..., olta]) = Sy, (0], alt], - - T[tn])
= R, @z = z5)0t], ..., at]).

n
(ii) If F' has the form y(2r(1),. .., Tx(n)) and assume that
olRy, (e, 1,5 t0)] = le( [Tr@], @[], .-, T[tn]); 1 <1< n, then
8[Rﬁn(’y($ﬂ.(1), cen ,xﬂ.(n)), tl, ce ,tn ]
= G[W(Slm(xﬂ(l),tl,...,tn), Slm(xﬁ(n),th...,tn))]
= Rﬁn( ( ) A[Slm(xﬂl)atl, cee atn)]’ ce ,O’[Sﬁn(ib (n)s t1,... 7tn)])
= Rﬁn(Rﬁn( ( ) a\[xﬂ'(l)]’ s 78[7:#(71)])7 8[t1]7 s 7a[tn])
= Rlzn( [ ( 7r(1)a-~-7937r(n))}7&[t1]7"'7 .
(iii) If F has the form —F and assume that

o[RE, (F t1,...,ty)] = R}, (G[F],0t1],...,0[ts]), then
OR}, (—F t, ... ty)]

= (A[Rlzn(F t17 ce ’tn)D
= (R, (@F],0[t], ..., Ttn]))
= R, (0[=F]),olta], ..., otn])-

Lemma 4.3. For any 01,02 € Hyp'™((n); (n)), we have

(01 0lin 02) = 01 002.
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Proof. For t € W™ (X,,), we will give a proof by induction on the complexity of the definition of a
linear-term t.

z; = 01[xi] = 01[02[xi]] = (01 0 72)[wi].

(ii) Ift=f(z w(1)s - ,xﬂ.(n)), then
(Ul Olin 02) (xﬂ(l xﬂ(n))]

[f
= Siin((01 otin Uz)(f) (01 %tin 02) [Tr()ls- -, (01 0tin 02) [Tr(w)])
Siin((@1002)(f), (01 0 F2) [wx( 1)] -7(31 0 72)[Tr(n)])

St (@1lo2(f)], 01[02(2 )]s - - - s T1[02[Tr(m)]])
a\—1[‘57;71(02(}0)7ZT\Q[:L'Tr(l)]?'' [ 7r(n)D]

o1 [32[f(x7r(1)7 s 7m7r(n))]]

= (G100)[f(Tr), - Tam))]-

/\

For F € ]-'(ZEZ) n))( n), we will give a proof by induction on the complexity of the definition of a linear-
formula F.

(i) If F' has the form x; = z; for i # j € {1,...,n},
then (01 0y, 02) [2; = ;]
= (01 0%in Uz)A [wz] ~ (01 %in Uz)A [%]
= I =Tj.
= 01[02[wi]] = T1[02[x;]]
= (01002)[wi] = (01 002)z;]
= (01009)[z; = ;).
(ii) If F' has the form v(2x(1),...,%x(n)), then
(J Olin 02) [’Y(‘Tn(l), EER) xﬂ(n))] N R
= R, (01 01in 02)(7), (01 0in 02) [Zx ()], - -+, (01 Otin 02) [Tr(n)])
= Rﬁn((al 00’2)('7)’*%'77(1)7-“’1'77(71))
Rp, @1[o2(V)], Ta(1)s - -+ s Ta(n))
= 01[02[V(Tr1)s -+ s Tr(n)]]
= (81 o 32)[’}/(‘%77(1), ce ,xw(n))].
(iii) If F" has the form —F and assume that (o7 oy, 02) [F] = (01 0 02)[F], the
(0101in02) [2F] ==((0101in02) [F]) = ~((61002)[F]) = 51[~(c2[F])] = - ( )] = (61002)[~(F)]. O

Let 0,4 be a linear-hypersubstitution for algebraic systems of type ((n);(n)) which maps the opera-
tion symbols f to the linear-term f(xi,...,x,), and the relational symbols v to the linear-formula

7(1’17 cee 5‘Tn)'
Lemma 4.4. Let n € N*. For anyt € Wi"(X,,) and any F € ‘F(lzZ);(n))(Xﬂ)' We have

=

51[62

aid[t] =t and /O'\id[F] =F.

Proof. Let t € Wkn(X,,), we will give a proof by induction on the complexity of the definition of a
linear-term t.

(i) Ift==a; ;i €1 <i<n, then 5;4[x;] = ;.

(ii) Ift = f(.rﬂ,(l), ... ,.I‘ﬂ(n)), m € P,, then 3id[f($7r(1 ,xﬂ(n))}

- Sﬁn(o—ld(f)v 31'61[:17#(1)]3 o aa—id[ Tr(n)])

= Sp(f(@r, .. Tn), Tr(1)s - Tr(n)) )

F(Shn (@1, @n(1)s - Ta(n))s - -+ Sl (T T (1) -+ Tm()))
= f(xw(l); ce ,.’I,‘ﬂ.(n)).
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For F € }"(léz),(n))(Xn), we will give a proof by induction on the complexity of the definition of a linear-
formula F.

(i) If F has the form z; ~ x; for i # j € {1,...,n}, then 6;4[z; = x;] = 0i[zi] = Tualx;] =z = z;.
(ii) If F" has the form y(2x(1),. .., Zx(n)), then
Eid['y(zﬂ(l), ‘e ;Iﬂ'(n))]

= R}, (0i(7),0idlrrl, - - -5 CidlTr(n)]

= Rﬁn(ly(xlﬂ'“7$n)vx7r(1)7-~-ax7r(n))
= ’)/(Sﬁ-n(l‘l, xﬂ(l), ce ,Z‘,T(n)), ey Sﬁn(xn, xw(l), N ,.’L‘W(n)))
= Y(@xq),- -1 Ta(n))-
(iii) If F" has the form —F and assume that 6;4[F] = F, then 64[~F] = —(0[F]) = —F. O

All together, we obtain a monoid.
Theorem 4.5. Hyp!™((n); (n)) := (Hyp""((n); (n)); otin, 0id) is a monoid.

Proof. Using Lemma 4.3 and using the fact that o is associative, it can be shown that o;, is associative.
In fact, for every o1, 09,03 € Hyp'™((n); (n)) we have
01 %in (02 %1in 03) = 010 (0201, 03) =010 (02003) = (01002)003
= (01 01in 02) 003 = (01 %1in 02) Olin T3.

Using Lemma 4.4 shows that ;4 is an identity element with respect to o;,. First, we will show that ;4

is left identity element. Let 8 € {f} U {7}, then (o4 01in 0)(8) = (Giq 0 0)(B) = Tialc(B)] = o(B).
Now, we will show that o,, is a right identity element as follows:

If 5= f, then
(0oun0ia)(f) = (600ia)(f) =0lowl(f)] =0lf(z1,...,2n)]
= Sin(a(f).olza),.. ., 0za]) = Sh,(0(f) 21, 2n) =0(f)
If 8 =, then
(0oun0ia)(7) = (Go0ia)(y) =7loi(y)] =0[y(@1,... . 25)]
= Rp,(0(7),0lz],...,0[za]) =0(v).
Therefore o4 0jin, 0 = 0 = 0 Oyin Tid- O]

5 All Idempotent Elements of Linear-Hypersubstitutions for
Algebraic Systems of Type ((n);(n))

In this section, we will characterize all idempotent elements of linear-hypersubstitutions for algebraic
systems of type ((n);(n)). A linear-hypersubstitutions for algebraic systems o which map f to a linear-
term ¢t and ~ to a linear-formula F' preserves arities is denoted by o := o p that means o, p(f) =t and
o, () = F. First, we will recall the definition of an idempotent element.

Definition 5.1. [3] Let (S;-) be a semigroup and a € S is called idempotent element if a - a = a.
In general, we denote the set of all idempotent elements of S by E(S).

Proposition 5.2. For any t € W' (X,,) and F € ]-'“” )iy (Xn). The element oy p € Hyp'™((n); (n))

is an idempotent if and only if o, .[t] =1t and T, . [F] =F.

Proof. Assume that o, . is an idempotent, i.e. (o, .

) f) =0 F(f) and (Ut,F Olin O't,F)(’Y)

) Olin O, +
O’t,F(’Y)' Then 8t,F[t] = Ut,F[O-t,F(f)} = (Ut,F Olin T, )( ) = 0O r f) =t and Ot,F[F] - Ut,F[Ut, ( )} =
(0, p01n0, »)(7) =0, -(7) = F. Conversely, let 7, [ ] =t and Et)F[F] = F, we have (0, . oun0o, .)(f) =
at,F[O—t,F(f)] = at,F[t] =t= Ut,F(f) and ( O, r Olin Oy, F)(,Y) = a—t,F[Ut,F(Py ] = at,F[F] =F= O—t,F(PY)'
This shows that o, , is an idempotent element. O

Proposition 5.3. Ift =22 € X,, and F =: xy m xy, for | # k € {1,...,n}, then o, . € Hyp""((n); (n))
s an idempotent element.
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Proof. For n € Nt Let 0, ., € Hyp""((n);(n)) , t =2 € X, and F =y m ay, for | # k € {1,...,n}.
We have 0, .[zr] = 2 =t and 0, .[v; = 2] = 0, . [21] = 0, .[vx] = 21 = 2, = F. By Proposition 5 2 we
get o, . is an idempotent element. O

Proposition 5.4. Forn e N*. Ift =2 € X,, and F = v(x1,...,2,), then o, . € Hyp'™((n); (n)) is an
idempotent element.

Proof. Let o, . € Hyp"""((n); (n)),t =1z € X,, and F =: y(z1,...,z,). We have 7, ,[z] = z and

&t,F[’Y(l‘h s 71'71)] = Rlzn( t,,F(’Y)’ 01,,1:‘[:171]7 ce 7Ut,F[gjn])
= R (v(x1,...,2n),21,...,Tpn)
= NSk (z1, 2, ), S (T, T, T)
= y(x1,...,2n).

By Proposition 5.2, o, .. is an idempotent element. O

t,F

Proposition 5.5. Forn € NT.Ift = f(x1,...,2,) and F = x; =~ xy, for | # k € {1,...,n}, then
o, » € Hyp'"((n); (n)) is an idempotent element.

Proof. Let o, . € Hyp"""((n); (n)),t =: f(z1,...,2,) and F =: 2 ~ ay, for | # k € {1,...,n}. We have

&t,F[f(x17 s 7:1777)] = Sl'm( t,F(f)’O't‘F[zl}v ce 78t,F[xn])
= Sp.(flz1,...,zn),21,...,2p)
= fSh(xn, 21, 2n), . S (@0, 21, L 2y
= f(atl,...,xn).

By Proposition 5.3, we get @, ..[r; = x1] = x; = x}. Therefore o, . is an idempotent element. O

t,F

Proposition 5.6. Forn € NT.Ift = f(zy,...,x,) and F = y(z1,...,x,), then o, . € Hyp"™((n); (n))
is an idempotent element.

Proof. In a similar way to the proof of Proposition 5.3 and Proposition 5.4, we proceed for 7, .[f(z1,...,2y)]
= f(z1,...,2n) and G, L [y(21,...,20)] = y(21,...,2,), respectively. O

Proposition 5.7. Let o, . € Hyp'™(((n);(n)). If o, ,[t| =t and F = z; = xy, for | # k € {1,...,n},

then o, . is an idempotent element.

Proof. Let o, . € Hyp""((n);(n)). For 7, [t] =t and F = 2y =~ xj for | # k € {1,...,n}, we get
(Ut ~F Cun Oy, F) f) = at,ﬁF[at.ﬁF (f)] at ﬁF[t] =t= O, _F (f) and (O-t,—\F Olin O-t,—\F)(’Y)
=0, —~F[ (’Y ] gy, ﬂF[jF} = ﬁ(at,ﬂ?[}:‘]) =-F = Oy r (’Y) O

-

||/—\

If p is a permutation on set {1,2,...,n} such that p replaces each element by the element itself, p is
called the identity permutation on set {1,2,...,n}. Thus

(1 2 3 ... n
P=\1 23 ...n)
Proposition 5.8. Let n € NT and p be an identity permutation on the set {1,2,....,n}. Ift =:

f@r@ys s nm) or F =i Y(Tx(1); -, Tx(n)) where m is a permutation such that & # p, then o, . €
Hyp"™((n ) (n)) is not an idempotent element.

Proof. If t = f(xr1),...,%r(n)), then

(Ut,F Olin atF)(f) = atF‘[o-tF(f)] f at,F[f(xW(1)7/'\' . 71'7r(n))]
= Sﬁn(at,F(f)7 g, ['1:71'(1)] -0, R [xﬂ'(n)]
- Slm(f( (1) - Tr(n)) Tr(1)y--- 7x7\'(n))

(Slzn( Tr(l)vl.'rr(l)v s 71.7r(n))7 R Sﬁn(xﬂ'(n)7xﬂ'(1)7 cee 7x7r(n))'
f(wﬁ(l 7-~-ax7r(n)) (7T 7é p)
o) (f)-

RN N
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If F= 7($w(1)7 s 7:E7r(n))7 then
(Ut,F Olin Ut,F)(’y) at,F [Ut,F(’y)] f at,F [’7(1'77(1)7 e "rﬂ'(n))]
= R;’én(at,F(ry)7O-t,F[xﬂ'(l)L s 7Ut,F[‘T7T(’I’L)]
= Rﬁ-n(V(ZEﬂ—(l), s 7*T"n'(n))a Lr(1)s -« s Lr(n)
V(Sﬁn(xﬂ(l)v Tr(1)y--- 7x7r(n))a B Slrzn(xfr(n)a Tr(1)y--- 7x7r(n))'

7é ’Y(xﬂ'(l)v'“axﬂ'(n)) (7'(' 7& p)
7 0,e)(7)-
Therefore o, ,. is not an idempotent element. O

Proposition 5.9. Lett = € X;, and F = ¥(@x(1), - - ., Tr(n)) whenever T # p, theno, , € Hyp'™((n); (n))
is not an idempotent element.

Proof. Tt is an immediate consequence of Proposition 5.8. O

6 Conclusion

The main result of the paper is the characterization idempotent elements of linear-hypersubstitutions
for algebraic systems of type ((n);(n)). We investigated that all these linear-hypersubstitutions for
algebraic systems of type ((n);(n)) which satisfy the conditions are idempotent by using Proposition
5.3-5.7.
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