Thai Journal of Mathematics : (2020) 93–102 Special Issue: The 14^{th} IMT-GT ICMSA 2018

http://thaijmath.in.cmu.ac.th Online ISSN 1686-0209

Linear-Hypersubstitutions for Algebraic Systems of Type ((n);(n)) and Characterization of Their Idempotent Elements

Jintana Joomwong †,1 and Dara Phusanga †

†Division of Mathematics, Faculty of Science, Maejo University, Chiang mai 50290, Thailand e-mail: jintana@mju.ac.th and darapu@mju.ac.th

Abstract: A formula in which each variable occurs at most once is said to be a linear-formula ([1, 2]). A linear-hypersubstitution for algebraic systems of type ((n);(n)) is a mapping $\sigma_{t,F}$ which maps n-ary operation symbols f to n-ary linear-terms $\sigma_{t,F}(f)$ and n-ary relational symbols f to n-ary linear-formulas $\sigma_{t,F}(f)$. Any linear-hypersubstitution $\sigma_{t,F}(f)$ can be extended to a mapping $\widehat{\sigma}_{t,F}(f)$ on the set of all linear-terms of type f and linear-formulas of type f and linear-hypersubstitutions for algebraic systems of type f and linear-hypersubstitutions for algebraic systems of type f and f are defined by using this extension. The set f and f and f are f are f and f are f are f and f are f and f are f and f are f are f and f are f and f are f and f are f and f are f are f are f and f are f are f and f are f are

Keywords: algebraic system; linear-formula; linear-hypersubstitution; idempotent. **2010** Mathematics Subject Classification: 20M07.

1 Introduction

Algebraic systems are understood in the sence of Mal'cev(see [4]). An algebraic system of type (τ, τ') is a triple $\mathcal{A} := (A; (f_i^A)_{i \in I}, (\gamma_j^A)_{j \in J})$ consisting of a non-empty set A, an indexed set $(f_i^A)_{i \in I}$ of operations defined on A where $f_i^A : A^{n_i} \to A$ is n_i -ary and an indexed set of relations $\gamma_j^A \subseteq A^{n_j}$ is an n_j -ary. The pair (τ, τ') with $\tau = (n_i)_{i \in I}$, $\tau' = (n_j)_{j \in J}$ of sequences of positive integers n_i, n_j is called the type of A.

The concept of a term and a formula are one of the fundamental concepts of algebraic system. To be independent, first we repeat the most important definitions and results on hypersubstitutions for algebraic systems (see [5]). Using for $n \geq 1$, an n-ary alphabet $X_n = \{x_1, x_2, \ldots, x_n\}$ of individual variables and the alphabet $(f_i)_{i \in I}$ of operation symbols in the usual way one defines terms of type τ by the following steps:

- (i) Every $x_l \in X_n$ is an *n*-ary term of type τ .
- (ii) If t_1, \ldots, t_{n_i} are *n*-ary terms of type τ and if f_i is an n_i -ary operation symbol of type τ , then $f_i(t_1, \ldots, t_{n_i})$ is an *n*-ary term of type τ .

¹Corresponding author.

Let $W_{\tau}(X_n)$ be the set of all n-ary terms of type τ . If $X = \{x_1, x_2, \ldots\}$ is a countably infinite alphabet, then $W_{\tau}(X) := \bigcup_{n \geq 1} W_{\tau}(X_n)$ denote the set of all terms of type τ (see [6, 7, 8]).

To define quantifier free formulas of type (τ, τ') , we need the logical connectives \neg (for negation), \lor (for disjunction) and the equation symbol \approx .

Definition 1.1. Let $n \in \mathbb{N}^+$. An n-ary quantifier free formula of type (τ, τ') (for short, formula of type (τ, τ')) is defined in the following inductive way:

- (i) If t_1, t_2 are n-ary terms of type τ , then the equation $t_1 \approx t_2$ is an n-ary quantifier free formula of type (τ, τ') .
- (ii) If $j \in J$ and t_1, \ldots, t_{n_j} are n-ary terms of type τ , then $\gamma_j(t_1, \ldots, t_{n_j})$ is an n-ary quantifier free formula of type (τ, τ') .
- (iii) If F is an n-ary quantifier free formula of type (τ, τ') , then $\neg F$ is an n-ary quantifier free formula of type (τ, τ') .
- (iv) If F_1 and F_2 are n-ary quantifier free formulas of type (τ, τ') , then $F_1 \vee F_2$ is an n-ary quantifier free formula of type (τ, τ') .

Let $\mathcal{F}_{(\tau,\tau')}(X_n)$ be the set of all *n*-ary quantifier free formulas of type (τ,τ') and let $\mathcal{F}_{(\tau,\tau')}(X)$:= $\bigcup_{n\geq 1} \mathcal{F}_{(\tau,\tau')}(X_n)$ be the set of all quantifier free formulas of type (τ,τ') .

2 Linear-Terms of Type τ and Linear-Formulas of Type $(\tau, \tau^{'})$

A term in which each variable occurs at most once, is said to be a linear. For a formal definition of n-ary linear-term, we replace (ii) in the definition of terms by a slightly different condition. Let var(t) is the set of all variables occuring in a term t and var(F) is the set of all variables occuring in a formula F.

Definition 2.1. Let $n \in \mathbb{N}^+$. An n-ary linear-term of type τ is defined in the following inductive way:

- (i) Every $x_i \in X_n$ is an n-ary linear-term of type τ .
- (ii) If t_1, \ldots, t_{n_i} are n-ary linear-terms of type τ and $var(t_l) \cap var(t_k) = \emptyset$ for all $1 \le l < k \le n_i$, then $f_i(t_1, \ldots, t_{n_i})$ is an n-ary linear-term of type τ .
- (iii) The set $W_{\tau}^{lin}(X_n)$ of all n-ary linear-terms of type τ is the smallest set which contains x_1, \ldots, x_n and closed under finite applications of (ii)

The set of all linear-terms of type τ over the countably infinite alphabet X is defined by $W_{\tau}^{lin}(X) := \bigcup_{n \geq 1} W_{\tau}^{lin}(X_n)$.

Definition 2.2. Let $n \in \mathbb{N}^+$. An n-ary linear-formula of type (τ, τ') is defined by the following inductive way:

- (i) If t_1, t_2 are n-ary linear-terms of type τ and $var(t_1) \cap var(t_2) = \emptyset$, then the equation $t_1 \approx t_2$ is an n-ary linear-formula of type (τ, τ') .
- (ii) If t_1, \ldots, t_{n_j} are n-ary linear-terms of type τ , $var(t_l) \cap var(t_k) = \emptyset$; $l, k \in \{1, 2, \ldots, n_j\}$ and γ_j is an n_j -ary relational symbol, then $\gamma_j(t_1, \ldots, t_{n_j})$ is an n-ary linear-formula of type (τ, τ') .
- (iii) If F is an n-ary linear-formula of type (τ, τ') , then $\neg F$ is an n-ary linear-formula of type (τ, τ') .
- (iv) If F_1 , F_2 are n-ary linear-formulas of type (τ, τ') and $var(F_1) \cap var(F_2) = \emptyset$, then $F_1 \vee F_2$ is an n-ary linear-formula of type (τ, τ') .

Let $\mathcal{F}^{lin}_{(\tau,\tau')}(X_n)$ be the set of all *n*-ary linear-formulas of type (τ,τ') and let $\mathcal{F}^{lin}_{(\tau,\tau')}(X) := \bigcup_{n\geq 1} \mathcal{F}^{lin}_{(\tau,\tau')}(X_n)$ be the set of all linear-formulas of type (τ,τ') .

For this paper, we consider the type $(\tau, \tau') := ((n); (n))$, then $f(t_1, \ldots, t_n)$ can not be a linear-term, where $t_1, \ldots, t_n \in W_n(X_n) \setminus X_n$ and $F_1 \vee F_2$ can not be a linear-formula, because $var(F_1) \cap vae(F_2) \neq \emptyset$ as the following the example:

Example 2.3. Let $(\tau, \tau') := ((2); (2))$ with a binary operation symbol f and a binary relational symbol γ and let $X_2 = \{x_1, x_2\}$. Then $W^{lin}_{(2)}(X_2) = \{x_1, x_2, f(x_1, x_2), f(x_2, x_1)\}$ and $\mathcal{F}^{lin}_{((2);(2))}(X_2) = \{x_1 \approx x_2, x_2 \approx x_1, \gamma(x_1, x_2), \gamma(x_2, x_1), \neg(x_1 \approx x_2), \neg(x_2 \approx x_1), \neg(\gamma(x_1, x_2)), \neg(\gamma(x_2, x_1)), \neg(\gamma(x_1 \approx x_2)), \ldots\}$.

3 Superposition of Linear-Terms and Linear-Formulas of Type ((n);(n))

Substituting the variables occurring in a linear-term by other linear-terms one obtains a new linear-term. This can be described by the superposition operation $S_{lin}^n, n \geq 1$ for linear-terms which is inductively defined as follows:

Definition 3.1. Let $n \in \mathbb{N}^+$ and $t, t_1, \ldots, t_n \in W_n^{lin}(X_n)$ such that $var(t_l) \cap var(t_k) = \emptyset$, for $l, k \in \{1, \ldots, n\}$. The operation

$$S_{lin}^n: W_n^{lin}(X_n) \times (W_n^{lin}(X_n))^n \to W_n^{lin}(X_n)$$

is defined in the following inductive way:

- (i) If $t = x_i$, then $S_{lin}^n(x_i, t_1, \dots, t_n) := t_i$; $1 \le i \le n$,
- (ii) If $t = f(s_1, ..., s_n)$ and assume that, $S^n_{lin}(s_l, t_1, ..., t_n)$ is a linear-term already, for $l \in \{1, ..., n\}$ such that $var(S^n_{lin}(s_l, t_1, ..., t_n)) \cap var(S^n_{lin}(s_k, t_1, ..., t_n)) = \emptyset; \ 1 \le l, k \le n,$ then $S^n_{lin}(f(s_1, ..., s_n), t_1, ..., t_n) := f(S^n_{lin}(s_1, t_1, ..., t_n), ..., S^n_{lin}(s_n, t_1, ..., t_n)).$

Now, we will extend this superposition of linear-terms of type (n) to a superposition of linear-formulas of type ((n);(n)) as follows:

Definition 3.2. Let $n \in \mathbb{N}^+$ and $t, t_1, \ldots, t_n \in W_n^{lin}(X_n)$ such that $var(t_l) \cap var(t_k) = \emptyset$; $l, k \in \{1, \ldots, n\}$ and S_{lin}^n be the superposition of linear-terms which have defined above. The operation

$$R_{lin}^n: W_n^{lin}(X_n) \cup \mathcal{F}_{((n);(n))}^{lin}(X_n) \times (W_n^{lin}(X_n))^n \to W_n^{lin}(X_n) \cup \mathcal{F}_{((n);(n))}^{lin}(X_n)$$

 $is\ defined\ in\ the\ following\ inductive\ way:$

- (i) If $t \in W_n^{lin}(X_n)$, then $R_{lin}^n(t, t_1, \dots, t_n) := S_{lin}^n(t, t_1, \dots, t_n)$.
- (ii) If F has the form $s_1 \approx s_2$ and $var(S^n_{lin}(s_1, t_1, \dots, t_n)) \cap var(S^n_{lin}(s_2, t_1, \dots, t_n)) = \emptyset$, then $R^n_{lin}(s_1 \approx s_2, t_1, \dots, t_n) := S^n_{lin}(s_1, t_1, \dots, t_n) \approx S^n_{lin}(s_2, t_1, \dots, t_n)$.
- (iii) If F has the form $\gamma(s_1,\ldots,s_n)$, and assume that $S_{lin}^n(s_l,t_1,\ldots,t_n)$ is already a linear-term; $l \in \{1,\ldots,n\}$ such that $var(S_{lin}^n(s_l,t_1,\ldots,t_n)) \cap var(S_{lin}^n(s_k,t_1,\ldots,t_n)) = \emptyset$; $1 \leq l,k \leq n$, then $R_{lin}^n(\gamma(s_1,\ldots,s_n),t_1,\ldots,t_n) := \gamma(S_{lin}^n(s_1,t_1,\ldots,t_n),\ldots,S_{lin}^n(s_n,t_1,\ldots,t_n))$.
- (iv) If F has the form $\neg F$, and assume that $R_{lin}^n(F, t_1, \ldots, t_n)$ is already a linear-formula, then $R_{lin}^n(\neg F, t_1, \ldots, t_n) := \neg(R_{lin}^n(F, t_1, \ldots, t_n))$.

Theorem 3.3. Let $\beta \in W_n^{lin}(X_n) \cup \mathcal{F}_{((n):(n))}^{lin}(X_n)$. The operation R_{lin}^n satisfies:

(LFC1)
$$R_{lin}^n(R_{lin}^n(\beta, t_1, \dots, t_n), s_1, \dots, s_n) = R_{lin}^n(\beta, R_{lin}^n(t_1, s_1, \dots, s_n), \dots, R_{lin}^n(t_n, s_1, \dots, s_n))$$

whenever $t_1, \dots, t_n, s_1, \dots, s_n \in W_n^{lin}(X_n)$ and $var(t_l) \cap var(t_k) = \emptyset$, $var(s_l) \cap var(s_k) = \emptyset$;
 $l, k \in \{1, \dots, n\}$.

(LFC2) $R_{lin}^n(x_i, t_1, \dots, t_n) = t_i$ whenever $t_1, \dots, t_n \in W_n^{lin}(X_n)$ and $var(t_l) \cap var(t_k) = \emptyset$; $l, k \in \{1, \dots, n\}$.

(LFC3)
$$R_{lin}^n(\beta, x_1, \dots, x_n) = \beta.$$

(i) If F has the form $x_i \approx x_j$ for $i \neq j \in \{1, \dots, n\}$, then

 $\neg (R_{lin}^n(R_{lin}^n(F,t_1,\ldots,t_n),s_1,\ldots,s_n))$

 $R_{lin}^{n}(\neg F, R_{lin}^{n}(t_1, s_1, \dots, s_n), \dots, R_{lin}^{n}(t_n, s_1, \dots, s_n)).$

Proof. Let π be a permutation on the set $\{1, 2, ..., n\}$. For $\beta = t \in W_n^{lin}(X_n)$, we will give a proof of (LFC1) by induction on the complexity of a linear-term t.

```
(i) If t = x_i; 1 \le i \le n, then
       R_{lin}^{n}(R_{lin}^{n}(x_{i},t_{1},\ldots,t_{n}),s_{1},\ldots,s_{n})
              = R_{lin}^n(S_{lin}^n(x_i, t_1, \dots, t_n), s_1, \dots, s_n)
                    S_{lin}^n(t_i,s_1,\ldots,s_n)
                    S_{lin}^{n}(x_{i}, S_{lin}^{n}(t_{1}, s_{1}, \dots, s_{n}), \dots, S_{lin}^{n}(t_{n}, s_{1}, \dots, s_{n}))
                     R_{lin}^{n}(x_i, R_{lin}^{n}(t_1, s_1, \dots, s_n), \dots, R_{lin}^{n}(t_n, s_1, \dots, s_n)).
(ii) If t = f(x_{\pi(1)}, \dots, x_{\pi(n)}) and assume that S_{lin}^n(S_{lin}^n(x_{\pi(l)}, t_1, \dots, t_n), s_1, \dots, s_n)
       =S_{lin}^n(x_{\pi(l)},S_{lin}^n(t_1,s_1,\ldots,s_n),\ldots,S_{lin}^n(t_n,s_1,\ldots,s_n));1\leq l\leq n, then
       R_{lin}^n(R_{lin}^n(f(x_{\pi(1)},\ldots,x_{\pi(n)}),t_1,\ldots,t_n),s_1,\ldots,s_n)
                    R_{lin}^n(S_{lin}^n(f(x_{\pi(1)},\ldots,x_{\pi(n)}),t_1,\ldots,t_n),s_1,\ldots,s_n)
                     R_{lin}^{n}(f(S_{lin}^{n}(x_{\pi(1)},t_{1},\ldots,t_{n}),\ldots,S_{lin}^{n}(x_{\pi(n)},t_{1},\ldots,t_{n})),s_{1},\ldots,s_{n})
                      f(S_{lin}^n(S_{lin}^n(x_{\pi(1)},t_1,\ldots,t_n),s_1,\ldots,s_n),\ldots,S_{lin}^n(S_{lin}^n(x_{\pi(n)},t_1,\ldots,t_n),s_1,\ldots,s_n))
                     f(S_{lin}^n(x_{\pi(1)}, S_{lin}^n(t_1, s_1, \dots, s_n), \dots, S_{lin}^n(t_n, s_1, \dots, s_n)), \dots,
                      S_{lin}^n(x_{\pi(n)}, S_{lin}^n(t_1, s_1, \dots, s_n), \dots, S_{lin}^n(t_n, s_1, \dots, s_n)))
                     S_{lin}^{n}(f(x_{\pi(1)},\ldots,x_{\pi(n)}),S_{lin}^{n}(t_{1},s_{1},\ldots,s_{n}),\ldots,S_{lin}^{n}(t_{n},s_{1},\ldots,s_{n}))
                      R_{lin}^n(f(x_{\pi(1)},\ldots,x_{\pi(n)}),R_{lin}^n(t_1,s_1,\ldots,s_n),\ldots,R_{lin}^n(t_n,s_1,\ldots,s_n)).
```

For $\beta = F \in \mathcal{F}^{lin}_{((n);(n))}(X_n)$, we will give a proof of (LFC1) by induction on the complexity of a linear-formula F.

```
R_{lin}^{n}(R_{lin}^{n}(x_{i} \approx x_{j}, t_{1}, \dots, t_{n}), s_{1}, \dots, s_{n})
= R_{lin}^{n}(S_{lin}^{n}(x_{i}, t_{1}, \dots, t_{n}) \approx S_{lin}^{n}(x_{j}, t_{1}, \dots, t_{n}), s_{1}, \dots, s_{n})
= S_{lin}^{n}(S_{lin}^{n}(x_{i}, t_{1}, \dots, t_{n}), s_{1}, \dots, s_{n}) \approx S_{lin}^{n}(S_{lin}^{n}(x_{j}, t_{1}, \dots, t_{n}), s_{1}, \dots, s_{n})
= S_{lin}^{n}(S_{lin}^{n}(x_{i}, t_{1}, \dots, t_{n}), s_{1}, \dots, s_{n}) \approx S_{lin}^{n}(S_{lin}^{n}(x_{j}, t_{1}, \dots, t_{n}), s_{1}, \dots, s_{n})
= S_{lin}^{n}(x_{i}, S_{lin}^{n}(t_{1}, s_{1}, \dots, s_{n}), \dots, S_{lin}^{n}(t_{n}, s_{1}, \dots, s_{n})) \approx S_{lin}^{n}(x_{j}, S_{lin}^{n}(t_{1}, s_{1}, \dots, s_{n}), \dots, S_{lin}^{n}(t_{n}, s_{1}, \dots, s_{n}))
= R_{lin}^{n}(x_{i} \approx x_{j}, R_{lin}^{n}(t_{1}, s_{1}, \dots, s_{n}), \dots, R_{lin}^{n}(t_{n}, s_{1}, \dots, s_{n})).
(ii) If F has the form \gamma(x_{\pi(1)}, \dots, x_{\pi(n)}), then
R_{lin}^{n}(R_{lin}^{n}(\gamma(x_{\pi(1)}, \dots, x_{\pi(n)}), t_{1}, \dots, t_{n}), s_{1}, \dots, s_{n})
= R_{lin}^{n}(\gamma(S_{lin}^{n}(x_{\pi(1)}, t_{1}, \dots, t_{n}), \dots, S_{lin}^{n}(x_{\pi(n)}, t_{1}, \dots, t_{n}), s_{1}, \dots, s_{n}))
= \gamma(S_{lin}^{n}(S_{lin}^{n}(x_{\pi(1)}, t_{1}, \dots, t_{n}), \dots, S_{lin}^{n}(x_{\pi(n)}, t_{1}, \dots, t_{n}), s_{1}, \dots, s_{n}))
= \gamma(S_{lin}^{n}(x_{\pi(1)}, S_{lin}^{n}(t_{1}, s_{1}, \dots, s_{n}), \dots, S_{lin}^{n}(t_{n}, s_{1}, \dots, s_{n})), \dots, S_{lin}^{n}(x_{\pi(n)}, t_{1}, \dots, t_{n}), s_{1}, \dots, s_{n}))
= \gamma(S_{lin}^{n}(x_{\pi(1)}, S_{lin}^{n}(t_{1}, s_{1}, \dots, s_{n}), \dots, S_{lin}^{n}(t_{n}, s_{1}, \dots, s_{n})), \dots, S_{lin}^{n}(x_{\pi(n)}, t_{1}, \dots, t_{n}), s_{1}, \dots, s_{n}))
= \gamma(S_{lin}^{n}(x_{\pi(n)}, S_{lin}^{n}(t_{1}, s_{1}, \dots, s_{n}), \dots, S_{lin}^{n}(t_{n}, s_{1}, \dots, s_{n})), \dots, S_{lin}^{n}(t_{n}, s_{1}, \dots, s_{n})), \dots, S_{lin}^{n}(t_{n}, s_{1}, \dots, s_{n}))
= \gamma(S_{lin}^{n}(x_{\pi(n)}, S_{lin}^{n}(t_{1}, s_{1}, \dots, s_{n}), \dots, S_{lin}^{n}(t_{n}, s_{1}, \dots, s_{n})), \dots, S_{lin}^{n}(t_{n}, s_{1}, \dots, s_{n}))
= \gamma(S_{lin}^{n}(x_{\pi(n)}, S_{lin}^{n}(t_{1}, s_{1}, \dots, s_{n}), \dots, S_{lin}^{n}(t_{n}, s_{1}, \dots, s_{n})), \dots, S_{lin}^{n}(t_{n}, s_{1}, \dots, s_{n}))
= R_{lin}^{n}(\gamma(x_{\pi(1)}, \dots, x_{\pi(n)}), R_{lin}^{n}(t_{1}, s_{1}, \dots, s_{n}), \dots, R
```

For (LFC2) is clearly by Definition 3.1(i).

The proof of (LFC3), we will proceed in a similar way considering the completely of a linear-term t.

- (i) If $t = x_i$; $1 \le i \le n$, then $R_{lin}^n(x_i, x_1, \dots, x_n) = S_{lin}^n(x_i, x_1, \dots, x_n) = x_i$.
- (ii) If $t = f(x_{\pi(1)}, \dots, x_{\pi(n)})$ and assume that $R_{lin}^n(x_{\pi(l)}, x_1, \dots, x_n) = x_{\pi(l)}$; $1 \le l \le n$, then $R_{lin}^n(f(x_{\pi(1)}, \dots, x_{\pi(n)}), x_1, \dots, x_n)$ $= S_{lin}^n(f(x_{\pi(1)}, \dots, x_{\pi(n)}), x_1, \dots, x_n)$ $= f(S_{lin}^n(x_{\pi(1)}, x_1, \dots, x_n), \dots, S_{lin}^n(x_{\pi(n)}, x_1, \dots, x_n))$ $= f(x_{\pi(1)}, \dots, x_{\pi(n)}).$

Next, we will proceed in a similar way considering the completely of a linear-formula F.

- (i) If F has the form $x_i \approx x_j$ for $i \neq j \in \{1, \dots, n\}$, then $R_{lin}^n(x_i \approx x_j, x_1, \dots, x_n) = S_{lin}^n(x_i, x_1, \dots, x_n) \approx S_{lin}^n(x_j, x_1, \dots, x_n) = x_i \approx x_j$.
- (ii) If F has the form $\gamma(x_{\pi(1)}, \dots, x_{\pi(n)})$, then $R_{lin}^{n}(\gamma(x_{\pi(1)}, \dots, x_{\pi(n)}), x_{1}, \dots, x_{n})$ $= \gamma(S_{lin}^{n}(x_{\pi(1)}, x_{1}, \dots, x_{n}), \dots, S_{lin}^{n}(x_{\pi(n)}, x_{1}, \dots, x_{n})) = \gamma(x_{\pi(1)}, \dots, x_{\pi(n)}).$
- (iii) If F has the form $\neg F$ and assume that $R_{lin}^n(F, x_1, \ldots, x_n) = F$, then $R_{lin}^n(\neg F, x_1, \ldots, x_n) = \neg (R_{lin}^n(F, x_1, \ldots, x_n)) = \neg F$.

4 Linear-Hypersubstitutions for Algebraic Systems of Type ((n);(n))

The concept of linear-hypersubstitutions for universal algebras was introduced by Changphas, Denecke and Pibaljomme [9]. We are going to extend this concept to algebraic systems of type ((n); (n)) as the following:

Definition 4.1. Any mapping

$$\sigma: \{f\} \cup \{\gamma\} \to W_n^{lin}(X_n) \cup \mathcal{F}_{((n);(n))}^{lin}(X_n)$$

which maps operation symbols f to linear-terms and relational symbols γ to linear-formulas preserving arities is called a linear-hypersubstitution for algebraic systems (of type ((n);(n))).

Let $Hyp^{lin}((n);(n))$ be the set of all linear-hypersubstitutions for algebraic systems of type ((n);(n)).

We define the extension of linear-hypersubstitutions for algebraic systems of type (n); (n) as follows:

$$\widehat{\sigma}: W_n^{lin}(X_n) \cup \mathcal{F}_{((n);(n))}^{lin}(X_n) \to W_n^{lin}(X_n) \cup \mathcal{F}_{((n);(n))}^{lin}(X_n)$$

inductively defined as follows:

- (i) $\widehat{\sigma}[x] := x$ for any variable $x \in X_n$,
- (ii) $\widehat{\sigma}[f(x_{\pi(1)},\ldots,x_{\pi(n)})] := S_{lin}^n(\sigma(f),\widehat{\sigma}[x_{\pi(1)}],\ldots,\widehat{\sigma}[x_{\pi(n)}]),$
- (iii) $\widehat{\sigma}[x_i \approx x_j] := \widehat{\sigma}[x_i] \approx \widehat{\sigma}[x_j]$ for $i \neq j \in \{1, \dots, n\}$,
- (iv) $\widehat{\sigma}[\gamma(x_{\pi(1)}, \dots, x_{\pi(n)})] := R_{lin}^n(\sigma(\gamma), \widehat{\sigma}[x_{\pi(1)}], \dots, \widehat{\sigma}[x_{\pi(n)}]),$
- (v) $\widehat{\sigma}[\neg F] := \neg \widehat{\sigma}[F]$ for $F \in \mathcal{F}^{lin}_{((n):(n))}(X_n)$.

Then, $\hat{\sigma}$ is called the extension of a linear-hypersubstitution for algebraic system σ .

Next, we defined a binary operation " \circ_{lin} " on $Hyp^{lin}((n);(n))$ by $\sigma_1 \circ_{lin} \sigma_2 := \widehat{\sigma}_1 \circ \sigma_2$ where \circ denotes the usual composition of mapping and $\sigma_1, \sigma_2 \in Hyp^{lin}((n);(n))$. The purpose of this paper, the structure $(Hyp^{lin}((n);(n)), \circ_{lin}, \sigma_{id})$ becomes a monoid. An importent property for extension is proved as follows:

Lemma 4.2. For $n \in \mathbb{N}$, let $\sigma \in Hyp^{lin}((n);(n))$, and let $t_1,...,t_n \in W_n^{lin}(X_n)$ and $var(t_l) \cap var(t_k) = \emptyset$; $1 \le l, k \le n$. Then

$$\widehat{\sigma}[R_{lin}^n(\beta, t_1, ..., t_n)] = R_{lin}^n(\widehat{\sigma}[\beta], \widehat{\sigma}[t_1], ..., \widehat{\sigma}[t_n]),$$

for any $\beta \in W_n^{lin}(X_n) \cup \mathcal{F}_{((n);(n))}^{lin}(X_n)$.

Proof. For $\beta = t \in W_n^{lin}(X_n)$, we will give a proof by induction on the complexity of the definition of a linear-term t.

(i) If $t = x_i$; $1 \le i \le n$, then $\widehat{\sigma}[S^n_{lin}(x_i, t_1, ..., t_n)] = \widehat{\sigma}[t_i] = S^n_{lin}(x_i, \widehat{\sigma}[t_1], ..., \widehat{\sigma}[t_n]) = S^n_{lin}(\widehat{\sigma}[x_i], \widehat{\sigma}[t_1], ..., \widehat{\sigma}[t_n]).$ (ii) If $t = f(x_{\pi(1)}, ..., x_{\pi(n)})$, and assume that

 $\widehat{\sigma}\left[S_{lin}^{n}\left(x_{\pi(l)}, t_{1}, ..., t_{n}\right)\right] = S_{lin}^{n}(\widehat{\sigma}[x_{\pi(l)}], \widehat{\sigma}[t_{1}], ..., \widehat{\sigma}[t_{n}]); 1 \leq l \leq n, \text{ then }$ $\widehat{\sigma}\left[S_{lin}^{n}\left(f(x_{\pi(1)}, ..., x_{\pi(n)}), t_{1}, ..., t_{n}\right)\right]$ $= \widehat{\sigma}[f(S_{lin}^{n}(x_{\pi(1)}, t_{1}, ..., t_{n}), ..., S_{lin}^{n}(x_{\pi(n)}, t_{1}, ..., t_{n}))]$ $= S_{lin}^{n}(\sigma(f), \widehat{\sigma}[S_{lin}^{n}(x_{\pi(1)}, t_{1}, ..., t_{n})], ..., \widehat{\sigma}[S_{lin}^{n}(x_{\pi(n)}, t_{1}, ..., t_{n})])$ $= S_{lin}^{n}(\sigma(f), S_{lin}^{n}(\widehat{\sigma}[x_{\pi(1)}], \widehat{\sigma}[t_{1}], ..., \widehat{\sigma}[t_{n}]), ..., \widehat{\sigma}[t_{n}]), ..., \widehat{\sigma}[t_{n}])$ $= S_{lin}^{n}(S_{lin}^{n}(\sigma(f), \widehat{\sigma}[x_{\pi(1)}], ..., \widehat{\sigma}[x_{\pi(n)}], \widehat{\sigma}[t_{1}], ..., \widehat{\sigma}[t_{n}])$ $= S_{lin}^{n}(\widehat{\sigma}[f(x_{\pi(1)}, ..., x_{\pi(n)})], \widehat{\sigma}[t_{1}], ..., \widehat{\sigma}[t_{n}]).$

For $\beta = F \in \mathcal{F}^{lin}_{((n);(n))}(X_n)$, we will give a proof by induction on the complexity of the definition of a linear-formula F.

- (i) If F has the form $x_i \approx x_j$ for $i \neq j \in \{1, \dots, n\}$, then $\widehat{\sigma}[R^n_{lin}(x_i \approx x_j, t_1, \dots, t_n)] = \widehat{\sigma}[S^n_{lin}(x_i, t_1, \dots, t_n) \approx S^n_{lin}(x_j, t_1, \dots, t_n)] = S^n_{lin}(\widehat{\sigma}[x_i], \widehat{\sigma}[t_1], \dots, \widehat{\sigma}[t_n]) \approx S^n_{lin}(\widehat{\sigma}[x_j], \widehat{\sigma}[t_1], \dots, \widehat{\sigma}[t_n]) = R^n_{lin}(\widehat{\sigma}[x_i \approx x_j], \widehat{\sigma}[t_1], \dots, \widehat{\sigma}[t_n]).$
- (ii) If F has the form $\gamma(x_{\pi(1)}, \dots, x_{\pi(n)})$ and assume that $\widehat{\sigma}[R^n_{lin}(x_{\pi(l)}, t_1, \dots, t_n)] = R^n_{lin}(\widehat{\sigma}[x_{\pi(l)}], (\widehat{\sigma}[t_1], \dots, \widehat{\sigma}[t_n]); 1 \leq l \leq n$, then $\widehat{\sigma}[R^n_{lin}(\gamma(x_{\pi(1)}, \dots, x_{\pi(n)}), t_1, \dots, t_n)]$ $= \widehat{\sigma}[\gamma(S^n_{lin}(x_{\pi(1)}, t_1, \dots, t_n), \dots, S^n_{lin}(x_{\pi(n)}, t_1, \dots, t_n))]$ $= R^n_{lin}(\sigma(\gamma), \widehat{\sigma}[S^n_{lin}(x_{\pi(1)}, t_1, \dots, t_n)], \dots, \widehat{\sigma}[S^n_{lin}(x_{\pi(n)}, t_1, \dots, t_n)])$ $= R^n_{lin}(R^n_{lin}(\sigma(\gamma), \widehat{\sigma}[x_{\pi(1)}], \dots, \widehat{\sigma}[x_{\pi(n)}]), \widehat{\sigma}[t_1], \dots, \widehat{\sigma}[t_n])$ $= R^n_{lin}(\widehat{\sigma}[\gamma(x_{\pi(1)}, \dots, x_{\pi(n)})], \widehat{\sigma}[t_1], \dots, \widehat{\sigma}[t_n]).$
- (iii) If F has the form $\neg F$ and assume that $\widehat{\sigma}[R^n_{lin}(F,t_1,\ldots,t_n)] = R^n_{lin}(\widehat{\sigma}[F],\widehat{\sigma}[t_1],\ldots,\widehat{\sigma}[t_n]), \text{ then }$ $\widehat{\sigma}[R^n_{lin}(\neg F,t_1,\ldots,t_n)]$ $= \neg(\widehat{\sigma}[R^n_{lin}(F,t_1,\ldots,t_n)])$ $= \neg(R^n_{lin}(\widehat{\sigma}[F],\widehat{\sigma}[t_1],\ldots,\widehat{\sigma}[t_n]))$ $= R^n_{lin}(\widehat{\sigma}[\neg F]),\widehat{\sigma}[t_1],\ldots,\widehat{\sigma}[t_n]).$

Lemma 4.3. For any $\sigma_1, \sigma_2 \in Hyp^{lin}((n);(n))$, we have

 $(\sigma_1 \circ_{lin} \sigma_2)^{\widehat{}} = \widehat{\sigma}_1 \circ \widehat{\sigma}_2.$

Proof. For $t \in W_n^{lin}(X_n)$, we will give a proof by induction on the complexity of the definition of a linear-term t.

```
(i) If t = x_i; 1 \le i \le n, then (\sigma_1 \circ_{lin} \sigma_2)^{\widehat{}} [x_i] = x_i = \widehat{\sigma}_1[x_i] = \widehat{\sigma}_1[\widehat{\sigma}_2[x_i]] = (\widehat{\sigma}_1 \circ \widehat{\sigma}_2)[x_i].

(ii) If t = f(x_{\pi(1)}, \dots, x_{\pi(n)}), then (\sigma_1 \circ_{lin} \sigma_2)^{\widehat{}} [f(x_{\pi(1)}, \dots, x_{\pi(n)})]

= S_{lin}^n((\sigma_1 \circ_{lin} \sigma_2)(f), (\sigma_1 \circ_{lin} \sigma_2)^{\widehat{}} [x_{\pi(1)}], \dots, (\sigma_1 \circ_{lin} \sigma_2)^{\widehat{}} [x_{\pi(n)}])

= S_{lin}^n(\widehat{\sigma}_1 \circ \sigma_2)(f), (\widehat{\sigma}_1 \circ \widehat{\sigma}_2)[x_{\pi(1)}], \dots, (\widehat{\sigma}_1 \circ \widehat{\sigma}_2)[x_{\pi(n)}])

= S_{lin}^n(\widehat{\sigma}_1[\sigma_2(f)], \widehat{\sigma}_1[\widehat{\sigma}_2[x_{\pi(1)}]], \dots, \widehat{\sigma}_1[\widehat{\sigma}_2[x_{\pi(n)}]])

= \widehat{\sigma}_1[S_{lin}^n(\sigma_2(f), \widehat{\sigma}_2[x_{\pi(1)}], \dots, \widehat{\sigma}_2[x_{\pi(n)}])]

= \widehat{\sigma}_1[\widehat{\sigma}_2[f(x_{\pi(1)}, \dots, x_{\pi(n)})]]

= (\widehat{\sigma}_1 \circ \widehat{\sigma}_2)[f(x_{\pi(1)}, \dots, x_{\pi(n)})].
```

For $F \in \mathcal{F}^{lin}_{((n);(n))}(X_n)$, we will give a proof by induction on the complexity of the definition of a linear-formula F.

```
(i) If F has the form x_i \approx x_j for i \neq j \in \{1, \dots, n\}, then (\sigma_1 \circ_{lin} \sigma_2) \widehat{\ } [x_i \approx x_j]
= (\sigma_1 \circ_{lin} \sigma_2) \widehat{\ } [x_i] \approx (\sigma_1 \circ_{lin} \sigma_2) \widehat{\ } [x_j]
= x_i \approx x_j.
= \widehat{\sigma_1} [\widehat{\sigma_2}[x_i]] \approx \widehat{\sigma_1} [\widehat{\sigma_2}[x_j]]
= (\widehat{\sigma_1} \circ \widehat{\sigma_2}) [x_i] \approx (\widehat{\sigma_1} \circ \widehat{\sigma_2}) [x_j]
= (\widehat{\sigma_1} \circ \widehat{\sigma_2}) [x_i \approx x_j].
(ii) If F has the form \gamma(x_{\pi(1)}, \dots, x_{\pi(n)}), then
(\sigma_1 \circ_{lin} \sigma_2) \widehat{\ } [\gamma(x_{\pi(1)}, \dots, x_{\pi(n)})]
= R_{lin}^n ((\sigma_1 \circ_{lin} \sigma_2)(\gamma), (\sigma_1 \circ_{lin} \sigma_2) \widehat{\ } [x_{\pi(1)}], \dots, (\sigma_1 \circ_{lin} \sigma_2) \widehat{\ } [x_{\pi(n)}])
= R_{lin}^n (\widehat{\sigma_1} \circ \widehat{\sigma_2}) [\gamma(x_{\pi(1)}, \dots, x_{\pi(n)})
= R_{lin}^n (\widehat{\sigma_1} [\sigma_2(\gamma)], x_{\pi(1)}, \dots, x_{\pi(n)})
= \widehat{\sigma_1} [\widehat{\sigma_2} [\gamma(x_{\pi(1)}, \dots, x_{\pi(n)})]]
= (\widehat{\sigma_1} \circ \widehat{\sigma_2}) [\gamma(x_{\pi(1)}, \dots, x_{\pi(n)})].
(iii) If F has the form \neg F and assume that (\sigma_1 \circ_{lin} \sigma_2) \widehat{\ } [F] = (\widehat{\sigma_1} \circ \widehat{\sigma_2}) [F], then
(\sigma_1 \circ_{lin} \sigma_2) \widehat{\ } [\neg F] = \neg((\sigma_1 \circ_{lin} \sigma_2) \widehat{\ } [F]) = \neg((\widehat{\sigma_1} \circ \widehat{\sigma_2}) [F]) = \widehat{\sigma_1} [\widehat{\sigma_2} [\neg(F)]] = \widehat{\sigma_1} [\widehat{\sigma_2} [\neg(F)]]
```

Let σ_{id} be a linear-hypersubstitution for algebraic systems of type ((n); (n)) which maps the operation symbols f to the linear-term $f(x_1, \ldots, x_n)$, and the relational symbols γ to the linear-formula $\gamma(x_1, \ldots, x_n)$.

Lemma 4.4. Let $n \in \mathbb{N}^+$. For any $t \in W_n^{lin}(X_n)$ and any $F \in \mathcal{F}_{((n);(n))}^{lin}(X_n)$. We have

$$\widehat{\sigma}_{id}[t] = t \text{ and } \widehat{\sigma}_{id}[F] = F.$$

Proof. Let $t \in W_n^{lin}(X_n)$, we will give a proof by induction on the complexity of the definition of a linear-term t.

(i) If $t = x_i$; $i \in 1 \le i \le n$, then $\widehat{\sigma}_{id}[x_i] = x_i$.

(ii) If
$$t = f(x_{\pi(1)}, \dots, x_{\pi(n)}), \pi \in P_n$$
, then $\widehat{\sigma}_{id}[f(x_{\pi(1)}, \dots, x_{\pi(n)})]$

$$= S_{lin}^n(\sigma_{id}(f), \widehat{\sigma}_{id}[x_{\pi(1)}], \dots, \widehat{\sigma}_{id}[x_{\pi(n)}])$$

$$= S_{lin}^n(f(x_1, \dots, x_n), x_{\pi(1)}, \dots, x_{\pi(n)}))$$

$$= f(S_{lin}^n(x_1, x_{\pi(1)}, \dots, x_{\pi(n)}), \dots, S_{lin}^n(x_n, x_{\pi(1)}, \dots, x_{\pi(n)}))$$

$$= f(x_{\pi(1)}, \dots, x_{\pi(n)}).$$

For $F \in \mathcal{F}^{lin}_{((n);(n))}(X_n)$, we will give a proof by induction on the complexity of the definition of a linear-formula F.

- (i) If F has the form $x_i \approx x_j$ for $i \neq j \in \{1, \dots, n\}$, then $\widehat{\sigma}_{id}[x_i \approx x_j] = \widehat{\sigma}_{id}[x_i] \approx \widehat{\sigma}_{id}[x_j] = x_i \approx x_j$. (ii) If F has the form $\gamma(x_{\pi(1)},\ldots,x_{\pi(n)})$, then
- $\widehat{\sigma}_{id}[\gamma(x_{\pi(1)},\ldots,x_{\pi(n)})]$
 - $R_{lin}^n(\sigma_{id}(\gamma), \widehat{\sigma}_{id}[x_{\pi(1)}], \dots, \widehat{\sigma}_{id}[x_{\pi(n)}]$
 - $R_{lin}^{n}(\gamma(x_1,\ldots,x_n),x_{\pi(1)},\ldots,x_{\pi(n)}) \\ \gamma(S_{lin}^{n}(x_1,x_{\pi(1)},\ldots,x_{\pi(n)}),\ldots,S_{lin}^{n}(x_n,x_{\pi(1)},\ldots,x_{\pi(n)}))$
 - $\gamma(x_{\pi(1)},\ldots,x_{\pi(n)}).$
- (iii) If F has the form $\neg F$ and assume that $\widehat{\sigma}_{id}[F] = F$, then $\widehat{\sigma}_{id}[\neg F] = \neg(\widehat{\sigma}_{id}[F]) = \neg F$.

All together, we obtain a monoid.

Theorem 4.5. $\mathcal{H}yp^{lin}((n);(n)) := (\mathcal{H}yp^{lin}((n);(n)); \circ_{lin}, \sigma_{id})$ is a monoid.

Proof. Using Lemma 4.3 and using the fact that \circ is associative, it can be shown that \circ_{lin} is associative. In fact, for every $\sigma_1, \sigma_2, \sigma_3 \in Hyp^{lin}((n);(n))$ we have

$$\sigma_{1} \circ_{lin} (\sigma_{2} \circ_{lin} \sigma_{3}) = \widehat{\sigma}_{1} \circ (\sigma_{2} \circ_{lin} \sigma_{3}) = \widehat{\sigma}_{1} \circ (\widehat{\sigma}_{2} \circ \sigma_{3}) = (\widehat{\sigma}_{1} \circ \widehat{\sigma}_{2}) \circ \sigma_{3}
= (\sigma_{1} \circ_{lin} \sigma_{2}) \circ \sigma_{3} = (\sigma_{1} \circ_{lin} \sigma_{2}) \circ_{lin} \sigma_{3}.$$

Using Lemma 4.4 shows that σ_{id} is an identity element with respect to \circ_{lin} . First, we will show that σ_{id} is left identity element. Let $\beta \in \{f\} \cup \{\gamma\}$, then $(\sigma_{id} \circ_{lin} \sigma)(\beta) = (\widehat{\sigma}_{id} \circ \sigma)(\beta) = \widehat{\sigma}_{id}[\sigma(\beta)] = \sigma(\beta)$. Now, we will show that σ_{id} is a right identity element as follows:

If $\beta = f$, then

$$(\sigma \circ_{lin} \sigma_{id})(f) = (\widehat{\sigma} \circ \sigma_{id})(f) = \widehat{\sigma}[\sigma_{id}(f)] = \widehat{\sigma}[f(x_1, \dots, x_n)] = S_{lin}^n(\sigma(f), \widehat{\sigma}[x_1], \dots, \widehat{\sigma}[x_n]) = S_{lin}^n(\sigma(f), x_1, \dots, x_n) = \sigma(f).$$

If $\beta = \gamma$, then

$$(\sigma \circ_{lin} \sigma_{id})(\gamma) = (\widehat{\sigma} \circ \sigma_{id})(\gamma) = \widehat{\sigma}[\sigma_{id}(\gamma)] = \widehat{\sigma}[\gamma(x_1, \dots, x_n)]$$

$$= R_{lin}^n(\sigma(\gamma), \widehat{\sigma}[x_1], \dots, \widehat{\sigma}[x_n]) = \sigma(\gamma).$$

Therefore $\sigma_{id} \circ_{lin} \sigma = \sigma = \sigma \circ_{lin} \sigma_{id}$.

All Idempotent Elements of Linear-Hypersubstitutions for 5 Algebraic Systems of Type ((n);(n))

In this section, we will characterize all idempotent elements of linear-hypersubstitutions for algebraic systems of type (n); (n). A linear-hypersubstitutions for algebraic systems σ which map f to a linearterm t and γ to a linear-formula F preserves arities is denoted by $\sigma := \sigma_{t,F}$ that means $\sigma_{t,F}(f) = t$ and $\sigma_{t,F}(\gamma) = F$. First, we will recall the definition of an idempotent element.

Definition 5.1. [3] Let $(S; \cdot)$ be a semigroup and $a \in S$ is called idempotent element if $a \cdot a = a$. In general, we denote the set of all idempotent elements of S by E(S).

Proposition 5.2. For any $t \in W_n^{lin}(X_n)$ and $F \in \mathcal{F}_{((n);(n))}^{lin}(X_n)$. The element $\sigma_{t,F} \in Hyp^{lin}((n);(n))$ is an idempotent if and only if $\widehat{\sigma}_{t,F}[t] = t$ and $\widehat{\sigma}_{t,F}[F] = F$.

 $\textit{Proof.} \text{ Assume that } \sigma_{\scriptscriptstyle t,F} \text{ is an idempotent, i.e. } (\sigma_{\scriptscriptstyle t,F} \circ_{lin} \sigma_{\scriptscriptstyle t,F})(f) = \sigma_{\scriptscriptstyle t,F}(f) \text{ and } (\sigma_{\scriptscriptstyle t,F} \circ_{lin} \sigma_{\scriptscriptstyle t,F})(\gamma) = \sigma_{\scriptscriptstyle t,F}(f) \text{ and } (\sigma_{\scriptscriptstyle t,F} \circ_{lin} \sigma_{\scriptscriptstyle t,F})(\gamma) = \sigma_{\scriptscriptstyle t,F}(f) \text{ and } (\sigma_{\scriptscriptstyle t,F} \circ_{lin} \sigma_{\scriptscriptstyle t,F})(\gamma) = \sigma_{\scriptscriptstyle t,F}(f) \text{ and } (\sigma_{\scriptscriptstyle t,F} \circ_{lin} \sigma_{\scriptscriptstyle t,F})(\gamma) = \sigma_{\scriptscriptstyle t,F}(f) \text{ and } (\sigma_{\scriptscriptstyle t,F} \circ_{lin} \sigma_{\scriptscriptstyle t,F})(\gamma) = \sigma_{\scriptscriptstyle t,F}(f) \text{ and } (\sigma_{\scriptscriptstyle t,F} \circ_{lin} \sigma_{\scriptscriptstyle t,F})(\gamma) = \sigma_{\scriptscriptstyle t,F}(f) \text{ and } (\sigma_{\scriptscriptstyle t,F} \circ_{lin} \sigma_{\scriptscriptstyle t,F})(\gamma) = \sigma_{\scriptscriptstyle t,F}(f) \text{ and } (\sigma_{\scriptscriptstyle t,F} \circ_{lin} \sigma_{\scriptscriptstyle t,F})(\gamma) = \sigma_{\scriptscriptstyle t,F}(f) \text{ and } (\sigma_{\scriptscriptstyle t,F} \circ_{lin} \sigma_{\scriptscriptstyle t,F})(\gamma) = \sigma_{\scriptscriptstyle t,F}(f) \text{ and } (\sigma_{\scriptscriptstyle t,F} \circ_{lin} \sigma_{\scriptscriptstyle t,F})(\gamma) = \sigma_{\scriptscriptstyle t,F}(f) \text{ and } (\sigma_{\scriptscriptstyle t,F} \circ_{lin} \sigma_{\scriptscriptstyle t,F})(\gamma) = \sigma_{\scriptscriptstyle t,F}(f) \text{ and } (\sigma_{\scriptscriptstyle t,F} \circ_{lin} \sigma_{\scriptscriptstyle t,F})(\gamma) = \sigma_{\scriptscriptstyle t,F}(f) \text{ and } (\sigma_{\scriptscriptstyle t,F} \circ_{lin} \sigma_{\scriptscriptstyle t,F})(\gamma) = \sigma_{\scriptscriptstyle t,F}(f) \text{ and } (\sigma_{\scriptscriptstyle t,F} \circ_{lin} \sigma_{\scriptscriptstyle t,F})(\gamma) = \sigma_{\scriptscriptstyle t,F}(f) \text{ and } (\sigma_{\scriptscriptstyle t,F} \circ_{lin} \sigma_{\scriptscriptstyle t,F})(\gamma) = \sigma_{\scriptscriptstyle t,F}(f) \text{ and } (\sigma_{\scriptscriptstyle t,F} \circ_{lin} \sigma_{\scriptscriptstyle t,F})(\gamma) = \sigma_{\scriptscriptstyle t,F}(f) \text{ and } (\sigma_{\scriptscriptstyle t,F} \circ_{lin} \sigma_{\scriptscriptstyle t,F})(\gamma) = \sigma_{\scriptscriptstyle t,F}(f) \text{ and } (\sigma_{\scriptscriptstyle t,F} \circ_{lin} \sigma_{\scriptscriptstyle t,F})(\gamma) = \sigma_{\scriptscriptstyle t,F}(f) \text{ and } (\sigma_{\scriptscriptstyle t,F} \circ_{lin} \sigma_{\scriptscriptstyle t,F})(\gamma) = \sigma_{\scriptscriptstyle t,F}(f) \text{ and } (\sigma_{\scriptscriptstyle t,F} \circ_{lin} \sigma_{\scriptscriptstyle t,F})(\gamma) = \sigma_{\scriptscriptstyle t,F}(f) \text{ and } (\sigma_{\scriptscriptstyle t,F} \circ_{lin} \sigma_{\scriptscriptstyle t,F})(\gamma) = \sigma_{\scriptscriptstyle t,F}(f) \text{ and } (\sigma_{\scriptscriptstyle t,F} \circ_{lin} \sigma_{\scriptscriptstyle t,F})(\gamma) = \sigma_{\scriptscriptstyle t,F}(f) \text{ and } (\sigma_{\scriptscriptstyle t,F} \circ_{lin} \sigma_{\scriptscriptstyle t,F})(\gamma) = \sigma_{\scriptscriptstyle t,F}(f) \text{ and } (\sigma_{\scriptscriptstyle t,F} \circ_{lin} \sigma_{\scriptscriptstyle t,F})(\gamma) = \sigma_{\scriptscriptstyle t,F}(f) \text{ and } (\sigma_{\scriptscriptstyle t,F} \circ_{lin} \sigma_{\scriptscriptstyle t,F})(\gamma) = \sigma_{\scriptscriptstyle t,F}(f) \text{ and } (\sigma_{\scriptscriptstyle t,F} \circ_{lin} \sigma_{\scriptscriptstyle t,F})(\gamma) = \sigma_{\scriptscriptstyle t,F}(f) \text{ and } (\sigma_{\scriptscriptstyle t,F} \circ_{lin} \sigma_{\scriptscriptstyle t,F})(\gamma) = \sigma_{\scriptscriptstyle t,F}(f) \text{ and } (\sigma_{\scriptscriptstyle t,F} \circ_{lin} \sigma_{\scriptscriptstyle t,F})(\gamma) = \sigma_{\scriptscriptstyle t,F}(f) \text{ and } (\sigma_{\scriptscriptstyle t,F} \circ_{lin} \sigma_{\scriptscriptstyle t,F})(\gamma) = \sigma_{\scriptscriptstyle t,F}(f) \text{ and } (\sigma_{\scriptscriptstyle t,F} \circ_{lin} \sigma_{\scriptscriptstyle t,F})(\gamma) = \sigma_{\scriptscriptstyle t,F}(f) \text{ and } (\sigma_{\scriptscriptstyle t,F} \circ_{lin} \sigma_{\scriptscriptstyle t,F})(\gamma) = \sigma_{\scriptscriptstyle t,F}(f) \text{ and } (\sigma_{\scriptscriptstyle t,F} \circ_{lin} \sigma_{\scriptscriptstyle t,F})(\gamma) = \sigma_{\scriptscriptstyle t,F}(f) \text{ and } (\sigma_{\scriptscriptstyle t,F} \circ_{lin} \sigma_{\scriptscriptstyle t,F})(\gamma) = \sigma_{\scriptscriptstyle t,F}(f) \text{ and } (\sigma_{\scriptscriptstyle t,F} \circ_{lin} \sigma_{\scriptscriptstyle t,F})(\gamma) = \sigma_{\scriptscriptstyle t$ $\sigma_{t,F}(\gamma). \text{ Then } \widehat{\sigma}_{t,F}[t] = \widehat{\sigma}_{t,F}[\sigma_{t,F}(f)] = (\sigma_{t,F} \circ_{lin} \sigma_{t,F})(f) = \sigma_{t,F}(f) = t \text{ and } \widehat{\sigma}_{t,F}[F] = \widehat{\sigma}_{t,F}[\sigma_{t,F}(\gamma)] = (\sigma_{t,F} \circ_{lin} \sigma_{t,F})(\gamma) = \sigma_{t,F}(\gamma) = t \text{ and } \widehat{\sigma}_{t,F}[F] = F, \text{ we have } (\sigma_{t,F} \circ_{lin} \sigma_{t,F})(f) = \widehat{\sigma}_{t,F}[\sigma_{t,F}(f)] = \widehat{\sigma}_{t,F}[f] = F = \sigma_{t,F}(\gamma).$ This shows that $\sigma_{t,F}(f) = \sigma_{t,F}(f) = \sigma_{t,F}(f) = \sigma_{t,F}(f) = \sigma_{t,F}(f) = \sigma_{t,F}(f)$ This shows that $\sigma_{t,F}$ is an idempotent element.

Proposition 5.3. If $t =: x \in X_n$ and $F =: x_l \approx x_k$ for $l \neq k \in \{1, ..., n\}$, then $\sigma_{t,F} \in Hyp^{lin}((n); (n))$ is an idempotent element.

Proof. For $n \in \mathbb{N}^+$. Let $\sigma_{t,F} \in Hyp^{lin}((n);(n))$, $t =: x \in X_n$ and $F =: x_l \approx x_k$ for $l \neq k \in \{1,\ldots,n\}$. We have $\widehat{\sigma}_{t,F}[x] = x = t$ and $\widehat{\sigma}_{t,F}[x_l \approx x_k] = \widehat{\sigma}_{t,F}[x_l] \approx \widehat{\sigma}_{t,F}[x_k] = x_l \approx x_k = F$. By Proposition 5.2, we get $\sigma_{t,F}$ is an idempotent element.

Proposition 5.4. For $n \in \mathbb{N}^+$. If $t = x \in X_n$ and $F = \gamma(x_1, \dots, x_n)$, then $\sigma_{t,F} \in Hyp^{lin}((n);(n))$ is an idempotent element.

Proof. Let
$$\sigma_{t,F} \in Hyp^{lin}((n);(n)), t =: x \in X_n \text{ and } F =: \gamma(x_1, \dots, x_n).$$
 We have $\widehat{\sigma}_{t,F}[x] = x$ and $\widehat{\sigma}_{t,F}[\gamma(x_1, \dots, x_n)] = R_{lin}^n(\sigma_{t,F}(\gamma), \widehat{\sigma}_{t,F}[x_1], \dots, \widehat{\sigma}_{t,F}[x_n])$

$$= R_{lin}^n(\gamma(x_1, \dots, x_n), x_1, \dots, x_n)$$

$$= \gamma(S_{lin}^n(x_1, x_1, \dots, x_n), \dots, S_{lin}^n(x_n, x_1, \dots, x_n))$$

$$= \gamma(x_1, \dots, x_n).$$

By Proposition 5.2, $\sigma_{\scriptscriptstyle t,F}$ is an idempotent element.

Proposition 5.5. For $n \in \mathbb{N}^+$. If $t = f(x_1, \ldots, x_n)$ and $F = x_l \approx x_k$, for $l \neq k \in \{1, \ldots, n\}$, then $\sigma_{t,F} \in Hyp^{lin}((n);(n))$ is an idempotent element.

Proof. Let
$$\sigma_{t,F} \in Hyp^{lin}((n);(n)), t =: f(x_1, \dots, x_n) \text{ and } F =: x_l \approx x_k, \text{ for } l \neq k \in \{1, \dots, n\}.$$
 We have $\widehat{\sigma}_{t,F}[f(x_1, \dots, x_n)] = S^n_{lin}(\sigma_{t,F}(f), \widehat{\sigma}_{t,F}[x_1], \dots, \widehat{\sigma}_{t,F}[x_n])$

$$= S^n_{lin}(f(x_1, \dots, x_n), x_1, \dots, x_n)$$

$$= f(S^n_{lin}(x_1, x_1, \dots, x_n), \dots, S^n_{lin}(x_n, x_1, \dots, x_n)$$

$$= f(x_1, \dots, x_n).$$

By Proposition 5.3, we get $\hat{\sigma}_{t,F}[x_l \approx x_k] = x_l \approx x_k$. Therefore $\sigma_{t,F}$ is an idempotent element.

Proposition 5.6. For $n \in \mathbb{N}^+$. If $t = f(x_1, \dots, x_n)$ and $F = \gamma(x_1, \dots, x_n)$, then $\sigma_{t,F} \in Hyp^{lin}((n); (n))$ is an idempotent element.

Proof. In a similar way to the proof of Proposition 5.3 and Proposition 5.4, we proceed for $\widehat{\sigma}_{t,F}[f(x_1,\ldots,x_n)] = f(x_1,\ldots,x_n)$ and $\widehat{\sigma}_{t,F}[\gamma(x_1,\ldots,x_n)] = \gamma(x_1,\ldots,x_n)$, respectively.

Proposition 5.7. Let $\sigma_{t,F} \in Hyp^{lin}(((n);(n)))$. If $\widehat{\sigma}_{t,F}[t] = t$ and $F = x_l \approx x_k$ for $l \neq k \in \{1,\ldots,n\}$, then $\sigma_{t,F}$ is an idempotent element.

Proof. Let
$$\sigma_{t,F} \in Hyp^{lin}((n);(n))$$
. For $\widehat{\sigma}_{t,F}[t] = t$ and $F = x_l \approx x_k$ for $l \neq k \in \{1,\ldots,n\}$, we get $(\sigma_{t,\neg F} \circ_{lin} \sigma_{t,\neg F})(f) = \widehat{\sigma}_{t,\neg F}[\sigma_{t,\neg F}(f)] = \widehat{\sigma}_{t,\neg F}[t] = t = \sigma_{t,\neg F}(f)$ and $(\sigma_{t,\neg F} \circ_{lin} \sigma_{t,\neg F})(\gamma) = \widehat{\sigma}_{t,\neg F}[\sigma_{t,\neg F}(\gamma)] = \widehat{\sigma}_{t,\neg F}[\neg F] = \neg(\widehat{\sigma}_{t,\neg F}[F]) = \neg F = \sigma_{t,\neg F}(\gamma)$.

If ρ is a permutation on set $\{1, 2, \dots, n\}$ such that ρ replaces each element by the element itself, ρ is called the identity permutation on set $\{1, 2, \dots, n\}$. Thus

$$\rho = \left(\begin{array}{cccc} 1 & 2 & 3 & \dots & n \\ 1 & 2 & 3 & \dots & n \end{array}\right)$$

Proposition 5.8. Let $n \in \mathbb{N}^+$ and ρ be an identity permutation on the set $\{1, 2, ..., n\}$. If $t = f(x_{\pi(1)}, ..., x_{\pi(n)})$ or $F = \gamma(x_{\pi(1)}, ..., x_{\pi(n)})$ where π is a permutation such that $\pi \neq \rho$, then $\sigma_{t,F} \in Hyp^{lin}(n)$ is not an idempotent element.

$$\begin{array}{lll} \textit{Proof.} & \text{If } t = f(x_{\pi(1)}, \dots, x_{\pi(n)}), \text{ then} \\ & (\sigma_{t,F} \circ_{lin} \sigma_{t,F})(f) & = & \widehat{\sigma}_{t,F}[\sigma_{t,F}(f)] = \widehat{\sigma}_{t,F}[f(x_{\pi(1)}, \dots, x_{\pi(n)})] \\ & = & S_{lin}^n(\sigma_{t,F}(f), \widehat{\sigma}_{t,F}[x_{\pi(1)}], \dots, \widehat{\sigma}_{t,F}[x_{\pi(n)}] \\ & = & S_{lin}^n(f(x_{\pi(1)}, \dots, x_{\pi(n)}), x_{\pi(1)}, \dots, x_{\pi(n)}) \\ & = & f(S_{lin}^n(x_{\pi(1)}, x_{\pi(1)}, \dots, x_{\pi(n)}), \dots, S_{lin}^n(x_{\pi(n)}, x_{\pi(1)}, \dots, x_{\pi(n)}). \\ & \neq & f(x_{\pi(1)}, \dots, x_{\pi(n)}) & (\because \pi \neq \rho) \\ & \neq & \sigma_{t,F})(f). \end{array}$$

```
If F = \gamma(x_{\pi(1)}, \dots, x_{\pi(n)}), then  (\sigma_{t,F} \circ_{lin} \sigma_{t,F})(\gamma) = \widehat{\sigma}_{t,F}[\sigma_{t,F}(\gamma)] = \widehat{\sigma}_{t,F}[\gamma(x_{\pi(1)}, \dots, x_{\pi(n)})] 
 = R_{lin}^n(\sigma_{t,F}(\gamma), \widehat{\sigma}_{t,F}[x_{\pi(1)}], \dots, \widehat{\sigma}_{t,F}[x_{\pi(n)}] 
 = R_{lin}^n(\gamma(x_{\pi(1)}, \dots, x_{\pi(n)}), x_{\pi(1)}, \dots, x_{\pi(n)}) 
 = \gamma(S_{lin}^n(x_{\pi(1)}, x_{\pi(1)}, \dots, x_{\pi(n)}), \dots, S_{lin}^n(x_{\pi(n)}, x_{\pi(1)}, \dots, x_{\pi(n)}). 
 \neq \gamma(x_{\pi(1)}, \dots, x_{\pi(n)}) \qquad (\because \pi \neq \rho) 
 \neq \sigma_{t,F})(\gamma). 
Therefore \sigma_{t,F} is not an idempotent element.
```

Proposition 5.9. Let $t = x \in X_n$ and $F = \gamma(x_{\pi(1)}, \dots, x_{\pi(n)})$ whenever $\pi \neq \rho$, then $\sigma_{t,F} \in Hyp^{lin}((n); (n))$ is not an idempotent element.

Proof. It is an immediate consequence of Proposition 5.8.

6 Conclusion

The main result of the paper is the characterization idempotent elements of linear-hypersubstitutions for algebraic systems of type ((n);(n)). We investigated that all these linear-hypersubstitutions for algebraic systems of type ((n);(n)) which satisfy the conditions are idempotent by using Proposition 5.3-5.7.

Acknowledgement(s): This research is supported by Faculty of Science, Maejo University, Thailand.

References

- [1] K. Denecke, The partial clone of linear-formulas, preprint (2018), Potsdam.
- [2] K. Denecke, The partial clone of linear-terms, Siberian Mathematiced Journal (2016) 589-598.
- [3] J.M. Howie, An Introduction to Semigroup Theory, Aeademie Press Inc., London, New York, San Francisco, (1976).
- [4] A. I. Mal'cev, Algebraic Systems, Akademie-Verlag, Berlin 1973.
- [5] D. Phusanga, Derived Algebraic Systems, Ph.D.Thesis, Potsdam 2013.
- [6] K. Denecke, S. L. Wismath, Universal Algebra and Applications in Theoretical Computer Science, Chapman and Hall/CRC, 2002.
- [7] J. Koppitz, K. Denecke, M-solid Varieties, Springer, 2006.
- [8] S. Leeratanavalee and K. Denecke, Generalized Hypersubstitutions and Strongly Solid Varieties, General Algebra and Applications, Proc. of 59th Workshop on General Algebra; 15th Conference for Young Algebraists Potsdam 2000 Shaker Verlag(2000), 135-145.
- [9] T. Changphas, K. Denecke and B. Pibaljomme, Linear Terms and Linear Hypersubstitutions, Southeast Asian Bull. Math, 40 (2016).

(Received 21 November 2018) (Accepted 21 June 2019)