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1 Introduction

In [2], Denecke, Lau, Pöschel, and Schweigert introduced the concept of a hypersubstitution of a given
type τ for universal algebras. The authors use the concept of hypersubstitutions of arbitrary type τ for
the characterization of so-called solid varieties of type τ . A solid variety is a variety which is closed under
the following operation: taking an algebra (A; (fAi )i∈I) of type τ = (ni)i∈I with the universe A and a
family (fAi )i∈I of operations defined on A, where fi is mi-ary for i ∈ I. Then we replace the operation
fAi by any mi-ary term operation tAi , for i ∈ I, and obtain a new algebra (A; (tAi )i∈I), which has also
to belong to the variety. So, a hypersubstitution of a given type τ = (mi)i∈I is a mapping which maps
each operation symbol fi to an mi-ary term, for i ∈ I. Further, a binary operation ◦h defined on the set
Hyp(τ) of all hypersubstitutions of type τ was introduced such that (Hyp(τ); ◦h, σid) is a monoid (see [3]).
This monoid was studied intensively for both arbitrary type and for some fixed type τ . The semigroup
properties of the monoid of hypersubstitutions of type (2) was studied by Denecke and Wismath (see
[4]). In [5], Wismath generalized these results for the monoid of hypersubstitutions of type (n). All
idempotent hypersubstitutions of type (2, 2) are determined by Changphas and Denecke [6]. The order of
all hypersubstitutions of type (2, 2) was studied by the same authors in [7]. Later in [8], Changphas and
Hemvong determined the order of hypersubstitutions of type (2, 1). In 2012, the same authors considered
the order of hypersubstitutions of type (n) (see [9]).
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In this present paper, we focus on the notion of algebraic systems in the sense of Mal’cev [10]. An
algebraic system of type (τ, τ ′) is a triple (A; (fAi )i∈I , (γ

A
j )j∈J) consisting of a universe set A, a family

(fAi )i∈I of operations defined on A, and a family (γAj )j∈J of relations on A, where τ = (mi)i∈I is a

sequence of the arity of each operation fAi and τ ′ = (nj)j∈J is a sequence of the arity of each relation γAj .
There were first attempts to define a concept of a hypersubstitution for algebraic systems. The concept
of such hypersubstitutions, introduced in [1], does not be practicable enough. Another attempt to define
a hypersubstitution for algebraic systems was done by the second author in her Ph.D. Thesis. But this
concept has not proven to be impractical (see [11]).

Therefore, we will introduce a new concept that generalizes the idea of a hypersubstitution (for a
universal algebra) of type τ in a canonical way. An operation fAi on a set A corresponds to the mi-
ary term operation defined on A and a relation γAj corresponds to the “nj-ary relation” on A. So, it
seems quite natural to say that hypersubstitutions (for algebraic systems) of type (τ, τ ′) that we want
to consider assign an operation symbol fi to an mi-ary term, for i ∈ I, and assign a relation symbol
γj to an nj-ary relational term, for j ∈ J . We call such mappings the relational hypersubstitutions of
type (τ, τ ′), and denote the set of all relational hypersubstitutions of type (τ, τ ′) by Relhyp(τ, τ ′). Hence,
this concept of a relational hypersubstitution of type (τ, τ ′) is a canonical extension of the concept of a
hypersubstitution of type τ . It was proven in [11] that a structure (Hyp(τ, τ ′); ◦h, σid) forms a monoid,
and we can see immediately in the proof that that (Relhyp(τ, τ ′); ◦h, σid) is a submonoid of the monoid
(Hyp(τ, τ ′); ◦h, σid).

The aim of this paper is to determine the order of element of submonoid of relational hypersubstitu-
tions of type ((m), (n)), so-called, linear relational hypersubstitutions of type ((m), (n)), where m,n ≥ 1.
That is, we have only one m-ary operation symbol and one n-ary relation symbol.

2 Preliminaries

For a natural number n, (N denotes the set of all natural numbers) let Xn := {x1, x2, . . . , xn} be a
finite set of variables and let X := {xi : i ∈ N} be countable infinite set. We consider the indexed set
(fi)i∈I of operation symbols, where fi is mi-ary, for i ∈ I, and let τ = (ni)i∈I . Further, we consider the
indexed set (γj)j∈J of relation symbols, where γj is nj-ary, for j ∈ J , and let τ ′ = (nj)j∈J . The pair
(τ, τ ′) is called the type of an algebraic system (see [10]). Let us note that τ is called the type of the
(corresponding) universal algebra. The set Tlin

τ (Xn) of all n-ary linear terms of type τ is the smallest
set containing Xn and is closed under the following operation: if i ∈ I and t1, . . . , tmi ∈ Tlin

τ (Xn) with
var(tk) ∩ var(tl) = ∅ for all 1 ≤ k < l ≤ mi, then fi(t1, . . . , tmi) ∈ Tlin

τ (Xn) (see [12]). Here var(t) is the
set of all variables occurring in the term t.

Definition 2.1 ([1, 11, 13]). For any n ∈ N, we define an n-ary quantifier free linear formula of type
(τ, τ ′) in the following inductive ways.

(i) If t1, t2 ∈ Tlin
τ (Xn) with var(t1) ∩ var(t2) = ∅, then the equation t1 ≈ t2 is an n-ary quantifier free

linear formula of type (τ, τ ′).

(ii) For any j ∈ J , if t1, . . . , tnj ∈ Tlin
τ (Xn) and var(tk) ∩ var(tl) = ∅ for all 1 ≤ k < l ≤ nj, then

γj(t1 . . . , tnj ) is an n-ary quantifier free linear formula of type (τ, τ ′).

(iii) If F is an n-ary quantifier free linear formula of type (τ, τ ′), then ¬F is an n-ary quantifier free
linear formula of type (τ, τ ′).

(iv) If F1 and F2 are n-ary quantifier free linear formulas of type (τ, τ ′), then F1 ∨ F2 is an n-ary
quantifier free linear formula of type (τ, τ ′)..

We denote the set of all n-ary linear formulas and the set of all linear formulas of type (τ, τ ′) by
Flin
(τ,τ ′)(Xn) and Flin

(τ,τ ′)(X), respectively. That is, Flin
(τ,τ ′)(X) :=

⋃
n∈N Flin

(τ,τ ′)(Xn). We let rFlin
(τ,τ ′)(X) be

the set of all linear formulas of type (τ, τ ′) of the form (ii) in Definition 2.1. Remark that Flin
(τ,τ ′)(Xn) = ∅
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if and only if n < nj for all j ∈ J . We note here that for any n ∈ N, we can define an n-ary quantifier
free formula of type (τ, τ ′) by using the usual terms and omitting the conditions var(t1) ∩ var(t2) = ∅
and var(tk) ∩ var(tl) = ∅ for all 1 ≤ k < l ≤ mj (see [1, 11]). In the same manner, the set of all n-ary
quantifier free formulas and the set of all quantifier free formulas of type (τ, τ ′) are denoted by F(τ,τ ′)(Xn)
and F(τ,τ ′)(X), respectively.

For any m,n ∈ N, t1, . . . , tnj ∈ Tlin
τ (Xm), s1, . . . , sm ∈ Tlin

τ (Xn), and F1, F2 ∈ Flin
(τ,τ ′)(Xn) with

var(sk) ∩ var(sl) = ∅ for all 1 ≤ k < l ≤ m. Then we define the superposition partial operation

Rmn : (Tlin
τ (Xm) ∪ Flin

(τ,τ ′)(Xm))× (Tlin
τ (Xn))m (→ Tlin

τ (Xn) ∪ Flin
(τ,τ ′)(Xn)

by the following steps.

(i) Rmn (t1, s1, . . . , sm) := Smn (t1, s1, . . . , sm).

(ii) Rmn (t1 ≈ t2, s1, . . . , sm) := Rmn (t1, s1, . . . , sm) ≈ Rmn (t2, s1, . . . , sm).

(iii) Rmn (γj(t1, . . . , tnj ), s1, . . . , sm) := γj(R
m
n (t1, s1, . . . , sm), . . . , Rmn (tnj , s1, . . . , sm)).

(iv) Rmn (¬F1, s1, . . . , sm) := ¬Rmn (F1, s1, . . . , sm).

(v) Rmn (F1 ∨ F2, s1, . . . , sm) := Rmn (F1, s1, . . . , sm) ∨Rmn (F2, s1, . . . , sm).

This operation define a partial many-sorted algebra

formclonelin(τ, τ ′) := (Tlin
τ (Xn) ∪ Flin

(τ,τ ′)(Xn)n≥1; (Rmn )m,n≥1, (xk)1≤k≤n,n∈N),

moreover, this algebra satisfies the superassociative law (see [14]).

A linear relational hypersubstitution (for algebraic systems) of type (τ, τ ′) is a mapping

σ : {fi : i ∈ I} ∪ {γj : j ∈ J} → Tlin
τ (X) ∪ rFlin

(τ,τ ′)(X)

with σ(fi) ∈ Tlin
τ (Xmi), for i ∈ I, and σ(γj) ∈ rFlin

(τ,τ ′)(Xnj ), for j ∈ J . Denoted by Relhyplin(τ, τ ′)
the set of all linear relational hypersubstitutions of type (τ, τ ′). We define a binary operation ◦h on the
set Relhyp(τ, τ ′). In order to do this, we introduce the extension of a mapping σ ∈ Relhyplin(τ, τ ′) to a
transformation σ̂ on Tlin

τ (X) ∪ Flin
(τ,τ ′)(X) in the following way:

(i) σ̂[xi] := xi for i ∈ N;

(ii) σ̂[fi(t1, . . . , tmi)] is the term Rmim (σ(fi), σ̂[t1], . . . , σ̂[tmi ]), where i ∈ I and t1, . . . , tmi ∈ Tlin
τ (Xm),

i.e., we replace any occurrence of the variable xk in σ(fi) by the term σ̂[tk], for k ∈ {1, . . . ,mi};

(iii) σ̂[γj(t1, . . . , tnj )] is the expression R
nj
n (σ(γj), σ̂[t1], . . . , σ̂[tnj ]), where j ∈ J and t1, . . . , tnj ∈

Tlin
τ (Xn), i.e., we replace any occurrence of the variable xk in the expression σ(γj) by the term

σ̂[tk], for k ∈ {1, . . . , nj}.

We observe that σ̂ restricted to Tlin
τ (X) is the extension of the corresponding linear hypersubstitution

of type τ to terms (see [15, 16]). Let us now consider the binary operation ◦h on Relhyplin(τ, τ ′) defined
by σ1 ◦h σ2 := σ̂1 ◦ σ2 for all linear relational hypersubstitutions σ1, σ2 of type (τ, τ ′). In [14], Denecke
showed that the structure (Hyplin(τ, τ ′); ◦h, σid) forms a monoid. Then the following proposition can be
obtained immediately.

Proposition 2.2. The structure (Relhyplin(τ, τ ′); ◦h, σid) is a submonoid of (Hyplin(τ, τ ′); ◦h, σid).
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3 Substructure of Linear Relational Hypersubstitutions

We introduce here two substructures of the structure (Relhyplin(τ, τ ′); ◦h, σid), moreover, we focus on a
particular type when τ = (m) and τ ′ = (n) with m,n ≥ 1. We denote a linear relational hypersubstitution
σ of type ((m), (n)) by σt,γ(s1,...,sn) if σ(f) = t and σ(γ) = γ(s1, . . . , sn) where t is an m-ary linear term
of type (m) and γ(s1, . . . , sn) is an n-ary linear formula of type ((m), (n)).

Definition 3.1. A linear relational hypersubstitution of type ((m), (n)) is called a linear projection
relational hypersubstitution of type ((m), (n)) if it maps operation symbol f to a variable which pre-
serve arity. The set of all linear projection relational hypersubstitutions of type ((m), (n)) is denoted by
p-Relhyplin((m), (n)).

Definition 3.2. A linear relational hypersubstitution of type ((m), (n)) is called a linear relational pre-
hypersubstitution of type ((m), (n)) if it maps operation symbol f to a non-variable which preserve arity.
The set of all linear relational pre-hypersubstitutions of type ((m), (n)) is denoted by pre-Relhyplin((m), (n)).

Lemma 3.1 ([15]). The extension of any linear hypersubstitution maps a linear terms to linear terms.

Lemma 3.2 ([14]). The extension of any linear hypersubstitution of type (τ, τ ′) maps a linear formula
of the form γ(s1, . . . , snj ) to a linear formula of the form γ(t1, . . . , tnj ).

By Lemma 3.1 and 3.2, we have the followings proposition.

Proposition 3.3. The algebras

p-Relhyplin((m), (n)) := (p-Relhyplin((m), (n)); ◦h)

and the algebra
pre-Relhyplin((m), (n)) := (pre-Relhyplin((m), (n)); ◦h, σid)

is a subsemigroup and a submonoid of the monoid Relhyplin((m), (n)), respectively.

In this paper, we will determine the order of elements in the monoid of linear relational hypersubsti-
tutions of a particular type ((m), (n)). Let S be a semigroup and a ∈ S. The order of a is defined as the
cardinality of 〈a〉 the subsemigroup generated by a.

4 The Order of Linear Projection Relational Hypersubstitu-
tions

In this section, we will focus on the order of elements in p-Relhyplin((m), (n)) the semigroup of
linear projection relational hypersubstitutions of type ((m), (n)) by separating our consideration into two
cases; (i) m = 1 and n ≥ 1, and (ii) m ≥ 2 and n ≥ 1.

4.1 Case (i): m = 1 and n ≥ 1

We denote an m-ary term f(· · · f(x1)) of type (1) with k occurrence of the operation symbol f by f (k)(x1).
Note that f (0)(x1) = x1. Let K := (N)n r {(0, . . . , 0)} and K′ := (N)n. For every (k1, . . . , kn) ∈ K′, we
let

p-Relhyplin,(k1,...,kn)((1), (n)) := {σx1,γ(f(k1)(xα(1)),...,f(kn)(xα(n)))
: α ∈ Sn},

where Sn is a symmetric group on n. Then we can see that

p-Relhyplin((1), (n)) :=
⋃

(k1,...,kn)∈K′
p-Relhyplin,(k1,...,kn)((1), (n)).
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Proposition 4.1. Let (k1, . . . , kn) ∈ K′. The structure

p-Relhyplin,(k1,...,kn)((1), (n)) := (p-Relhyplin,(k1,...,kn)((1), (n)); ◦h)

is a subsemigroup of p-Relhyplin((1), (n)).

Proof. Clearly, p-Relhyplin,(k1,...,kn)((1), (n)) ⊆ p-Relhyplin((1), (n)). Let σ1, σ2 ∈ p-Hyplin
(k1,...,kn)((1), (n)).

Then
σ1 = σx1,γ(f(k1)(xα(1)),...,f(kn)(xα(n)))

and σ2 = σx1,γ(f(k1)(xβ(1)),...,f(kn)(xβ(n)))

for some α, β ∈ Sn. It is clear that (σx1,γ(f(k1)(xα(1)),...,f(kn)(xα(n)))
◦h σx1,γ(f(k1)(xβ(1)),...,f(kn)(xβ(n)))

)(f) =

x1. Now, we consider

(σx1,γ(f(k1)(xα(1)),...,f(kn)(xα(n)))
◦h σx1,γ(f(k1)(xβ(1)),...,f(kn)(xβ(n)))

)(γ)

= σ̂x1,γ(f(k1)(xα(1)),...,f(kn)(xα(n)))
[σx1,γ(f(k1)(xβ(1)),...,f(kn)(xβ(n)))

(γ)]

= σ̂x1,γ(f(k1)(xα(1)),...,f(kn)(xα(n)))
[γ(f (k1)(xβ(1)), . . . , f

(kn)(xβ(n)))]

= R1
n(σx1,γ(f(k1)(xα(1)),...,f(kn)(xα(n)))

(γ), σ̂x1,γ(f(k1)(xα(1)),...,f(kn)(xα(n)))
[f (k1)(xβ(1))],

. . . , σ̂x1,γ(f(k1)(xα(1)),...,f(kn)(xα(n)))
[f (kn)(xβ(n))])

= R1
n(γ(f (k1)(xα(1)), . . . , f

(kn)(xα(n))), xβ(1), . . . , xβ(n))

= γ(R1
n(f (k1)(xα(1)), xβ(1), . . . , xβ(n)), . . . , R

1
n(f (kn)(xα(n)), xβ(1), . . . , xβ(n))

= γ(f (k1)(xβα(1)), . . . , f
(kn)(xβα(n))).

Since α, β ∈ Sn, βα ∈ Sn. This implies that σ1 ◦h σ2 ∈ p-Relhyplin,(k1,...,kn)((1), (n)).

Proposition 4.2. Let (k1, . . . , kn) ∈ K. Then we have

p-Relhyplin,(0,...,0)((1), (n)) := (p-Relhyplin,(0,...,0)((1), (n)); ◦h)

and
p-Relhyplin,(k1,...,kn)((1), (n)) := (p-Relhyplin,(k1,...,kn)((1), (n)); ◦h)

are isomorphic.

Proof. It is clear that the mapping

ϕ : p-Relhyplin,(0,...,0)((1), (n))→ p-Relhyplin,(k1,...,kn)((1), (n))

defined by ϕ(σx1,γ(xα(1),...,xα(n))) = σx1,γ(f(k1)(xα(1)),...,f(kn)(xα(n)))
for all α ∈ Sn is an isomorphism.

Theorem 4.3. The symmetric group (Sn; ◦) and p-Relhyplin,(0,...,0)((1), (n)) are anti-isomorphic.

Proof. We define the mapping

ϕ : p-Relhyplin,(0,...,0)((1), (n))→ Sn

by ϕ(σx1,γ(xα(1),...,xα(n))) = α. It is not difficult to see that ϕ is bijective. Next, we show that ϕ is an

anti-homomorphism. Let σx1,γ(xα(1),...,xα(n)), σx1,γ(xα′(1),...,xα′(n))
∈ p-Relhyplin,(0,...,0)((1), (n)). Then

ϕ(σx1,γ(xα(1),...,xα(n)) ◦h σx1,γ(xα′(1),...,xα′(n))
)

= ϕ(σx1,γ(x(α′α)(1),...,x(α′α)(n))
)

= α′ ◦ α
= ϕ(σx1,γ(xα′(1),...,xα′(n))

) ◦h ϕ(σx1,γ(xα(1),...,xα(n))).

Therefore, we obtain as desire.
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Corollary 4.4. Let σx1,γ(xα(1),...,xα(n)) ∈ p-Hyplin,(0,...,0)((1), (n)). Then the order of σx1,γ(xα(1),...,xα(n))

is equal to the order of α in the symmetric group on n.

By Proposition 4.2 and Corollary 4.4, we conclude the following result.

Theorem 4.1. The order of a linear projection relational hypersubstitution of type ((1), (n)) is equal to
the order of a permutation on n.

4.2 Case (ii): m ≥ 2 and n ≥ 1

For any i ∈ {1, . . . , n}, we let Bi := {σxi,γ(xα(1),...,xα(n)) : α ∈ Sn}. Then we can see that

p-Relhyplin((m), (n)) :=

n⋃
i=1

Bi.

It is clear that Bi is closed under ◦h. Therefore, we obtain the following proposition.

Proposition 4.5. The algebra Bi := (Bi; ◦r) is a subsemigroup of p-Relhyplin((m), (n)).

Theorem 4.6. Let i ∈ {1, . . . , n}. The symmetric group (Sn; ◦) and Bi are anti-isomorphic.

Proof. By the same arguments of Theorem 4.3, we can show that the mapping

ϕ : Bi → Sn

defined by ϕ(σxi,γ(xα(1),...,xα(n))) = α is an anti-isomorphism.

By the above theorem, we have the following result.

Theorem 4.2. The order of a linear projection relational hypersubstitution of type ((m), (n)) is equal to
the order of a permutation on n.

5 The Order of Linear Relational Pre-Hypersubstitutions

Now, we will consider the order of linear relational pre-hypersubstitutions of type ((m), (n)). We will
separate our consideration into two cases; m = 1 and n ≥ 1, and m ≥ 2 and n ≥ 1.

5.1 Case (i): m = 1 and n ≥ 1

We define the sets
B1 := {σf(x1),γ(f(xα(1)),...,f(xα(n))) : α ∈ Sn}.

and
B2 := {σf(l)(x1),γ(f(k1)(xα(1)),...,f(kn)(xα(n)))

: l > 1, (k1, . . . , kn) ∈ K, α ∈ Sn}.

Then it is clear that pre-Relhyplin((1), (n)) = B1 ∪ B2. We can see that B1 is closed under ◦h. Hence,
we have the following proposition.

Proposition 5.1. The structure
B1 := (B1; ◦h, σid)

is a submonoid of pre-Relhyplin((1), (n)).

By the similar argument of Theorem 4.3, we obtain the following results.
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Proposition 5.2. The monoid B1 and the symmetric group (Sn; ◦) are anti-isomorphic.

Corollary 5.3. The order of any element in B1 is equal to the order of a permutation on n.

Next, we will first show that B2 := (B2; ◦h, σid) is a submonoid of pre-Relhyplin((1), (n)).

Lemma 5.4. Let σ ∈ B2. Then for each 1 ≤ i ≤ n, we have that σ̂[f (k)(xi)] = f (k)(xi) for all k ≥ 1.

Proof. This is obvious by induction on k.

Lemma 5.5. Let k, l > 1 and σf(k)(x1),γ(s1,...,sn), σf(l)(x1),γ(t1,...,tn) ∈ B2. Then

(σf(k)(x1),γ(s1,...,sn) ◦h σf(l)(x1),γ(t1,...,tn))(f) = f (kl)(x1).

Proof. We will give a proof by induction on l. If l = 2, then

(σf(k)(x1),γ(s1,...,sn) ◦h σf(l)(x1),γ(t1,...,tn))(f)

= σ̂f(k)(x1),γ(s1,...,sn)[σf(l)(x1),γ(t1,...,tn)(f)]

= σ̂f(k)(x1),γ(s1,...,sn)[f
(l)(x1)]

= R1
1(σf(k)(x1),γ(s1,...,sn)(f), σ̂f(k)(x1),γ(s1,...,sn)[f

(l−1)(x1)])

= R1
1(f (k)(x1), R1

1(σf(k)(x1),γ(s1,...,sn)(f), σ̂f(k)(x1),γ(s1,...,sn)[x1]))

= R1
1(f (k)(x1), R1

1(f (k)(x1), x1))

= R1
1(f (k)(x1), f (k)(x1))

= f (2k)(x1) = f (kl)(x1).

Now, we assume that

(σf(k)(x1),γ(s1,...,sn) ◦h σf(l−1)(x1),γ(t1,...,tn))(f) = f (k(l−1))(x1).

Then

(σf(k)(x1),γ(s1,...,sn) ◦h σf(l)(x1),γ(t1,...,tn))(f)

= σ̂f(k)(x1),γ(s1,...,sn)[σf(l)(x1),γ(t1,...,tn)(f)]

= σ̂f(k)(x1),γ(s1,...,sn)[f
(l)(x1)]

= R1
1(σf(k)(x1),γ(s1,...,sn)(f), σ̂f(k)(x1),γ(s1,...,sn)[f

(l−1)(x1)])

= R1
1(f (k)(x1), f (k(l−1))(x1))

= f (kl)(x1).

Thus, we obtain as desire.

Lemma 5.6. Let (k1, . . . , kn), (l1, . . . , ln) ∈ K, k, l > 1 and

σf(k)(x1),γ(f(k1)(xα(1)),...,f(kn)(xα(n)))
, σf(l)(x1),γ(f(l1)(xβ(1)),...,f(ln)(xβ(n)))

∈ B2

Then

(σf(k)(x1),γ(f(k1)(xα(1)),...,f(kn)(xα(n)))
◦h σf(l)(x1),γ(f(l1)(xβ(1)),...,f(ln)(xβ(n)))

)(γ)

= γ(f (k1+lα(1))(xβα(1)), . . . , f
(kn+lα(n))(xβα(n))).
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Proof. By Lemma 5.4, we have that

(σf(k)(x1),γ(f(k1)(xα(1)),...,f(kn)(xα(n)))
◦h σf(l)(x1),γ(f(l1)(xβ(1)),...,f(ln)(xβ(n)))

)(γ)

= σ̂f(k)(x1),γ(f(k1)(xα(1)),...,f(kn)(xα(n)))
[σf(l)(x1),γ(f(l1)(xβ(1)),...,f(ln)(xβ(n)))

(γ)]

= σ̂f(k)(x1),γ(f(k1)(xα(1)),...,f(kn)(xα(n)))
[γ(f (l1)(xβ(1)), . . . , f

(ln)(xβ(n)))]

= Rnn(γ(f (k1)(xα(1)), . . . , f
(kn)(xα(n))),

σ̂f(k)(x1),γ(f(k1)(xα(1)),...f(kn)(xα(n)))
[f (l1)(xβ(1))],

. . . σ̂f(k)(x1),γ(f(k1)(xα(1)),...f(kn)(xα(n)))
[f (l1)(xβ(n))])

= Rnn(γ(f (k1)(xα(1)), . . . , f
(kn)(xα(n))), f

(l1)(xβ(1)), . . . , f
(ln)(xβ(n)))

= γ(f (k1+lα(1))(xβα(1)), . . . , f
(kn+lα(n))(xβα(n))).

By Lemmas 5.5 and 5.6, we conclude that:

Proposition 5.1. The structure B2 := (B2; ◦h, σid) is a submonoid of pre-Relhyplin((1), (n)).

Corollary 5.2. Let α ∈ B2. Then the order of α is infinite.

Therefore, we obtain the following theorem.

Theorem 5.3. The order of a linear relational pre-hypersubstitution of type ((1), (n)) is either equal to
the order of a permutation on n, or infinite.

5.2 Case (ii): m ≥ 2 and n ≥ 1

We observe that

pre-Relhyplin((m), (n)) := {σf(xα(1),...,xα(m)),γ(xα′(1),...,xα′(n))
: α ∈ Sm, α′ ∈ Sn}.

Proposition 5.7. The algebra

pre-Relhyplin((m), (n)) := (pre-Relhyplin((m), (n)); ◦h, σid)

anti-isomorphics to the direct product Sm × Sn, where Sm and Sn is a symmetric group on m and n,
respectively.

Proof. Let ϕ : pre-Relhyplin((m), (n))→ Sm × Sn be a mapping defined by

ϕ(σf(xα(1),...,xα(m)),γ(xα′(1),...,xα′(n))
) = (α, α′).

It is not difficult to see that ϕ is a bijection. To show that ϕ is an anti-isomorphism. Let σ1, σ2 ∈
pre-Relhyplin((m), (n)). Then

σ1 = σf(xα(1),...,xα(m)),γ(xα′(1),...,xα′(n))
and σ2 = σf(xβ(1),...,xβ(m)),γ(xβ′(1),...,xβ′(n))

for some α ∈ Sm and α′ ∈ Sn. Thus,

ϕ(σf(xα(1),...,xα(m)),γ(xα′(1),...,xα′(n))
◦h σf(xβ(1),...,xβ(m)),γ(xβ′(1),...,xβ′(n))

)

= ϕ(σf(xβα(1),...,xβα(m)),γ(xβ′α′(1),...,xβ′α′(n))
)

= (βα, β′α′)

= (β, β′) ◦ (α, α′)

= ϕ(σf(xβ(1),...,xβ(m)),γ(xβ′(1),...,xβ′(n))
) ◦ ϕ(σf(xα(1),...,xα(m)),γ(xα′(1),...,xα′(n))

).

Thus, we obtain as desire.
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Therefore, we obtain the following theorem.

Theorem 5.4. The order of a linear relational pre-hypersubstitution of type ((m), (n)) is the order of an
element of direct product of symmetric group on m and n.
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