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Abstract : Based on the recently modified finite integration method (FIM) for solving linear differential
equations by using the Chebyshev polynomial expansion, in this paper, we improve the modified FIM
to be able to handle nonlinear Burgers’ equations with shock waves in one dimension. The main idea
is to approximate the nonlinear term of the Burgers’ equation and apply the modified FIM to construct
the finite integration matrices on each computational grid points which are generated by the zeros of the
Chebyshev polynomial of a certain degree. In addition, the term involving partial derivative with respect
to time is approximated by the forward difference quotient. Illustrative numerical solutions obtained by
the proposed modified FIM algorithm are compared with the traditional FIM, finite difference method
(FDM), finite element method (FEM), other methods and their analytical solution from several examples.
Evidently, the proposed modified FIM algorithm has made a significant improvement in terms of accuracy
and computational time for small values of the viscosity.
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1 Introduction

Most of the principles and behaviors of the natural phenomena can be described by the statements or
relationships involving rates of change. These rates can be expressed in mathematical relations that are
in terms of linear or nonlinear differential equations. Generally, most of the real incidents that appear in
our daily life are inborn nonlinear. Consequently, nonlinear differential equations have been the matter
of study and research interest in several branches of science and engineering. One of the interesting
issues is the Burgers’ equation. It was first introduced by Bateman in 1915 [1]. He mentioned that this
kind of equation was worthy of study and he gave its steady solutions. In 1948, Burgers [2] studied a
mathematical model for turbulence. This model is known as Burgers’ equation. The Burgers’ equation
has some common features with the Navier-Stokes equations, i.e., same kind of nonlinearity and the
presence of the viscosity term. Therefore, one can consider studying turbulence with a simple model
of Burgers’ equation as a test problem instead of the Navier-Stokes equations. Nowadays, the Burgers’
equation, which is a fundamental partial differential equation (PDE), has been hired in a large variety
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of applications in applied mathematics, physics and engineering such as a simplified fluid dynamics
model, modeling of transport with accumulation, advection and diffusion terms, gas dynamics, traffic
flow, modeling of shock waves, heat conduction, acoustic waves, statistics of flow problems, mixing and
turbulent diffusion and so on, see [2], [3] and [4] for details.

Under various boundary conditions and the real problem configuration, it is very unlikely that the
Burgers’ equation can be represented as its analytical solution. The numerical method plays an essential
role in finding approximate solutions to the problems. There are many numerical methods available for
solving the Burgers’ equation such as the finite difference method (FDM), finite element method (FEM),
etc., see [5]. Recently, in terms of a numerical method for solving PDEs, Wen et al. [6] and Li et al.
[7] developed the finite integration method (FIM) with the trapezoidal rule and radial basis function for
solving one- and multi-dimensional linear PDEs. In 2016, Li et al. [8] improved the FIM by using three
numerical quadrature formulas, including Simpson’s rule, Cotes integral and Lagrange interpolation to
solve linear PDEs. They showed that their proposed FIMs, in which we refer as the traditional FIMs,
were highly accurate compared with the FDM. After that in 2018, Boonklurb et al. [9] modified the
FIM using Chebyshev polynomial for solving linear PDEs which gave higher accuracy than the FDM and
traditional FIMs.

In this paper, we improve the modified FIM using the Chebyshev polynomial expansion to be able
to deal with one-dimensional nonlinear Burgers’ equations with a shock wave. In Section 2, for ease
of reference, some preliminary facts and results concerning the Chebyshev polynomial and the method
of constructing the finite integration matrices are presented. At the end of the section, our proposed
modified FIM using Chebyshev polynomial for solving Burgers’ equation is elaborated. We implement
our proposed modified FIM algorithm on several examples to demonstrate its efficiency compare with
the FDM, FEM, traditional FIM, other methods and their analytical solutions for small values of the
viscosity in Section 3. Finally, conclusion and some discussion for the future work are given in Section 4.

2 Modified FIM by Using Chebyshev Polynomial Expansion for
Solving Burgers’ Equation

Let us consider definitions and some significant properties of the Chebyshev polynomial [10] that are
used to construct the first and higher order integration matrices for solving a one-dimensional nonlinear
Burgers’ equation with shock wave as follow.

Definition 2.1. The Chebyshev polynomial of degree n ≥ 0 is defined by

Tn(x) = cos(n cos−1 x) for x ∈ [−1, 1]. (2.1)

Lemma 2.1. (i) For n ∈ N, the zeros of Chebyshev polynomial Tn(x) are

xk = cos

(
2k − 1

2n
π

)
, k ∈ {1, 2, 3, ..., n}. (2.2)

(ii) For x ∈ [−1, 1], the single layer integrations of Chebyshev polynomial Tn(x) are

T̄0(x) =

∫ x

−1

T0(ξ) dξ = x+ 1,

T̄1(x) =

∫ x

−1

T1(ξ) dξ =
x2

2
− 1

2
,

T̄n(x) =

∫ x

−1

Tn(ξ) dξ =
1

2

[
Tn+1(x)

n+ 1
− Tn−1(x)

n− 1

]
− (−1)n

n2 − 1
, n ∈ {2, 3, 4, ...}.
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(iii) Let {xk}nk=1 be the zeros of Chebyshev polynomial Tn(x) and define the Chebyshev matrix T by

T =


T0(x1) T1(x1) · · · Tn−1(x1)
T0(x2) T1(x2) · · · Tn−1(x2)

...
...

. . .
...

T0(xn) T1(xn) · · · Tn−1(xn)

 .
Then, it has the multiplicative inverse T−1 = 1

ndiag(1, 2, 2, ..., 2)TT .

2.1 Finite Integration Matrices

Let N be a nonnegative integer. Define an approximate solution u(x) of a certain PDE by a linear
combination of the Chebyshev polynomials, i.e.,

u(x) =

N−1∑
n=0

cnTn(x) for x ∈ [−1, 1]. (2.3)

Let x̄k for k ∈ {1, 2, 3, ..., N} be nodal points discretized by the zeros of Chebyshev polynomial TN (x)
defined in (2.2). Substituting each x̄k into (2.3), it can be expressed in matrix form as

u(x̄1)
u(x̄2)

...
u(x̄N )

 =


T0(x̄1) T1(x̄1) · · · TN−1(x̄1)
T0(x̄2) T1(x̄2) · · · TN−1(x̄2)

...
...

. . .
...

T0(x̄N ) T1(x̄N ) · · · TN−1(x̄N )




c0
c1
...

cN−1

 ,
which is denoted by u = Tc. The coefficients cn for n ∈ {0, 1, 2, ..., N−1} can be performed by c = T−1u.
Let us consider the single layer integration of u(x) from −1 to x̄k which is denoted by U(x̄k), we obtain

U(x̄k) =

∫ x̄k

−1

u(ξ) dξ =

N−1∑
n=0

cn

∫ x̄k

−1

Tn(ξ) dξ =

N−1∑
n=0

cnT̄n(x̄k)

for k ∈ {1, 2, 3, ..., N} or in matrix form:
U(x̄1)
U(x̄2)

...
U(x̄N )

 =


T̄0(x̄1) T̄1(x̄1) · · · T̄N−1(x̄1)
T̄0(x̄2) T̄1(x̄2) · · · T̄N−1(x̄2)

...
...

. . .
...

T̄0(x̄N ) T̄1(x̄N ) · · · T̄N−1(x̄N )




c0
c1
...

cN−1

 .
We denote the above matrix by U = T̄c = T̄T−1u := Au, where A = T̄T−1 := [aki]N×N is called the
first order integration matrix for the modified FIM in one dimension, i.e.,

U(x̄k) =

∫ x̄k

−1

u(ξ) dξ =

N∑
i=1

akiu(x̄i)

for k ∈ {1, 2, 3, ..., N}. Next, let us consider the double layer integration of u(x) from −1 to x̄k which is
denoted by U (2)(x̄k), we get

U (2)(x̄k) =

∫ x̄k

−1

∫ ξ2

−1

u(ξ1) dξ1dξ2 =
N∑
i=1

aki

∫ x̄i

−1

u(ξ1) dξ1 =
N∑
i=1

N∑
j=1

akiaiju(x̄j)
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for k ∈ {1, 2, 3, ..., N}. It can be written in matrix form as U(2) = A2u. Similarly, we can calculate the
mth layer integration of u(x) from −1 to x̄k which is denoted by U (m)(x̄k). Then, we have

U (m)(x̄k) =

∫ x̄k

−1

· · ·
∫ ξ2

−1

u(ξ1) dξ1 . . . dξm =

N∑
im=1

· · ·
N∑
j=1

akim . . . ai1ju(x̄j)

for k ∈ {1, 2, 3, ..., N}, whose the matrix form can be expressed as U(m) = Amu, where U(m) =
[U (m)(x̄1), U (m)(x̄2), U (m)(x̄3), ..., U (m)(x̄N )]T .

2.2 The Proposed Numerical Algorithm

Now, we apply the modified FIM using Chebyshev polynomial to construct the numerical algorithm
for solving the one-dimensional nonlinear Burgers’ equation with shock wave to achieve high-performance
computations. Consider the following one-dimensional nonlinear Burgers’ equation

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
, x ∈ (a, b), t ∈ (t0, T ], (2.4)

subject to the initial condition:

u(x, t0) = φ(x), x ∈ [a, b] (2.5)

and the boundary conditions:

u(a, t) = ψ1(t), u(b, t) = ψ2(t), t ∈ (t0, T ], (2.6)

where t and x represent time and space variables, respectively, ν > 0 is the coefficient of kinematic
viscosity defined by ν = 1

Re , Re is the Reynolds number and φ(x) is a given sufficiently smooth function.

First, we transform the space variable x ∈ [a, b] into x̄ ∈ [−1, 1] by using the transformation x̄ =
2x−a−b
b−a and let h = 2

b−a . Then, (2.4) becomes

∂u(x̄, t)

∂t
+ hu(x̄, t)

∂u(x̄, t)

∂x̄
= h2ν

∂2u(x̄, t)

∂x̄2
. (2.7)

Next, we linearize (2.7) by determining the iterations and using the first order forward difference quotient
for the time derivative. Thus, for m ≥ 1, we have

um(x̄)− um−1(x̄)

∆t
+ hum−1(x̄)

∂um(x̄)

∂x̄
= h2ν

∂2um(x̄)

∂x̄2
, (2.8)

where ∆t is a time step, um−1 and um are numerical values in the (m−1)th andmth iterations, respectively.
Applying the modified FIM to eliminate derivative out of (2.8) by taking double layer integration. Then,
we obtain the following equation at point x̄k defined in (2.2),

∫ x̄k

−1

∫ η

−1

(
um − um−1

∆t

)
dξdη + h

∫ x̄k

−1

∫ η

−1

(
um−1 ∂u

m

∂ξ

)
dξdη = h2νum(x̄k) + c1x̄k + c2, (2.9)

where c1 and c2 are the arbitrary constants of integration.
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Let
∫ x̄k

−1

∫ η
−1

(
um−1 ∂um

∂ξ

)
dξdη := q(x̄k). Using the technique of integration by parts to obtain

q(x̄k) =

∫ x̄k

−1

∫ η

−1

(
N−1∑
n=0

cm−1
n Tn(ξ)

)
∂um

∂ξ
dξdη

=

∫ x̄k

−1

N−1∑
n=0

cm−1
n

(
Tn(η)um(η)−

∫ η

−1

T ′n(ξ)um(ξ) dξ

)
dη

=

∫ x̄k

−1

N−1∑
n=0

cm−1
n Tn(η)um(η) dη −

∫ x̄k

−1

∫ η

−1

N−1∑
n=0

cm−1
n T ′n(ξ)um(ξ) dξdη

=

∫ x̄k

−1

um−1(η)um(η) dη −
∫ x̄k

−1

∫ η

−1

T′(ξ)cm−1um(ξ) dξdη

=

∫ x̄k

−1

um−1(η)um(η) dη −
∫ x̄k

−1

∫ η

−1

T′(ξ)T−1um−1um(ξ) dξdη, (2.10)

where T′(ξ) = [T ′0(ξ), T ′1(ξ), T ′2(ξ), ..., T ′N−1(ξ)] and cm−1 = T−1um−1 as defined in Section 2.1. Thus,
for k ∈ {1, 2, 3, ..., N}, (2.10) can be expressed in matrix form as

q = Adiag
(
um−1

)
um −A2diag

(
T′T−1um−1

)
um, (2.11)

where q = [q(x̄1), q(x̄2), q(x̄3), ..., q(x̄N )]T . Consequently, by consuming (2.11) and the idea of Boonklurb
et al. [9], we can convert (2.9) into the matrix form as follow.(

1

∆t
A2 + hAdiag

(
um−1

)
− hA2diag

(
T′T−1um−1

)
− h2νI

)
um − c1x− c2i =

1

∆t
A2um−1, (2.12)

where I is the identity matrix with size N ×N , A = T̄T−1, x = [x̄1, x̄2, x̄3, ..., x̄N ]T , i = [1, 1, 1, ..., 1]T ,
um = [um(x̄1), um(x̄2), u(x̄3), ..., um(x̄N )]T , um−1 = [um−1(x̄1), um−1(x̄2), um−1(x̄3), ..., um−1(x̄N )]T and

T′ =


T′(x̄1)
T′(x̄2)

...
T′(x̄N )

 =


T ′0(x̄1) T ′1(x̄1) · · · T ′N−1(x̄1)
T ′0(x̄2) T ′1(x̄2) · · · T ′N−1(x̄2)

...
...

. . .
...

T ′0(x̄N ) T ′1(x̄N ) · · · T ′N−1(x̄N )

 .
From the given boundary conditions (2.6), we can change them into the vector forms by using linear
combination of Chebyshev polynomial at mth iterations as following:

um(−1) =

N−1∑
n=0

cmn Tn(−1) =

N−1∑
n=0

cmn (−1)n := tlc
m = tlT

−1um = ψ1(tm), (2.13)

um(1) =

N−1∑
n=0

cmn Tn(1) =

N−1∑
n=0

cmn (1)n := trc
m = trT

−1um = ψ2(tm), (2.14)

where tm = t0 +m∆t for m ∈ N, tl = [1,−1, 1, ..., (−1)N−1] and tr = [1, 1, 1, ..., 1].

Finally, from (2.12), (2.13) and (2.14), we can construct the following system of iterative linear
equations for a total of N + 2 unknowns containing um, c1 and c2 K −x −i

tlT
−1 0 0

trT
−1 0 0

 um

c1
c2

 =

 1
∆tA

2um−1

ψ1(tm)
ψ2(tm)

 , (2.15)
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where K = 1
∆tA

2 + hAdiag
(
um−1

)
− hA2diag

(
T′T−1um−1

)
− h2νI. Then, the solution um can be

approximated by solving the system (2.15) with strating from the given initial condition (2.5) that is
u0 = [φ(x1), φ(x2), φ(x3), ..., φ(xN )]T , where xk = 1

2 [(b− a)x̄k + a+ b] for k ∈ {1, 2, 3, ..., N}.

Note that when we want to calculate a numerical solution u at arbitrary x ∈ [a, b] for the terminal
time T , we can find it from (2.3) with corresponding to x̄ = 2x−a−b

b−a as follow

u(x, T ) =

N−1∑
n=0

cnTn(x̄) = T(x̄)c = T(x̄)T−1um, (2.16)

where T(x̄) = [T0(x̄), T1(x̄), T2(x̄), ..., TN−1(x̄)] and um is the final mth iterative solution of (2.15).

Algorithm 2.1 Algorithm to find a numerical solution of the Burgers’ equation by modified
FIM using Chebyshev polynomial

Input: a, b, x, ν, t0, T,N,∆t, φ(x), ψ1(t), ψ2(t).
Output: An approximate solution u(x, T ).
1: Set x̄k = − cos

(
2k−1
2N π

)
for k ∈ {1, 2, 3, ..., N}.

2: Set xk = 1
2 [(b− a)x̄k + a+ b] for k ∈ {1, 2, 3, ..., N}.

3: Compute h,x, i, tl, tr, I,T
′, T̄,T−1,A.

4: Construct u0 = [φ(x1), φ(x2), φ(x3), ..., φ(xN )]T .
5: Set m = 0.
6: while tm ≤ T do
7: Set m = m+ 1.
8: Set tm = t0 +m∆t.
9: Find um by solving the linear system (2.15).

10: end while
11: Find u(x, T ) = T(x̄)T−1um, where x̄ = 2x−a−b

b−a .

3 Numerical Examples

In this section, we have applied the proposed Algorithm 2.1 based on the modified FIM using Cheby-
shev polynomial for finding the approximate solutions of one-dimensional nonlinear Burgers’ equations
with shock wave in order to illustrate the efficiency and accuracy. In the following Examples 3.1 and 3.2,
the analytical solutions were obtained by using the Hopf-Cole transformation that Benton and Platzman
[11] have surveyed. Their analytic solutions involve an infinite series, which may converge very slowly for
the small viscosity ν. Then, Miller [12] has shown that these problems produce oscillations and instabil-
ities for ν < 0.01. We see from our result that our proposed Algorithm 2.1 can reduce the effect of these
problems, especially for small ν. The presented method also can be performed on Examples 3.3 and 3.4
that contain shock waves in their exact solutions. The accuracy of the numerical results is measured in
term of error norms L∞, L1, L2 and absolute error Ea.

Example 3.1. Consider the Burgers’ equation (2.4) with initial and boundary conditions

u(x, 0) = sin(πx), x ∈ [0, 1],

u(0, t) = u(1, t) = 0, t > 0. (3.1)

The analytical solution given by Cole [13] of this equation is

u(x, t) =
2πν

∑∞
n=1 an exp(−n2π2νt)n sin(nπx)

a0 +
∑∞
n=1 an exp(−n2π2νt) cos(nπx)

, (3.2)
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where the Fourier coefficients a0 and an are

a0 =

∫ 1

0

exp{−(2πν)−1[1− cos(πx)]}dx,

an = 2

∫ 1

0

exp{−(2πν)−1[1− cos(πx)]} cos(nπx)dx, n ∈ {1, 2, 3, ...}.

The numerical solutions u(x, T ) of Example 3.1 achieved by the proposed Algorithm 2.1 for choosing
∆t = 0.0001 and N = 80 with the viscosity ν = 0.01 are shown in Table 3.1. They have been compared
with the numerical results obtained by the FEM [14], FDM [13], traditional FIM [15] and their analytical
solutions measured by the absolute error Ea.

x T Exact
FEM [14] FDM [13] Traditional FIM [15] Modified FIM CBS

u(x, T ) Ea u(x, T ) Ea u(x, T ) Ea u(x, T ) Ea

0.25 0.4 0.34191 0.34819 6.28× 10−3 0.34244 5.30× 10−4 0.34183 8.00× 10−5 0.34191 1.1647× 10−6

0.6 0.26896 0.27536 6.40× 10−3 0.26905 9.00× 10−5 0.26891 5.00× 10−5 0.26896 5.2590× 10−7

0.8 0.22148 0.22752 6.04× 10−3 0.22145 3.00× 10−5 0.22145 3.00× 10−5 0.22148 2.8243× 10−7

1.0 0.18819 0.19375 5.56× 10−3 0.18813 6.00× 10−5 0.18817 2.00× 10−5 0.18819 1.7484× 10−7

3.0 0.07511 0.07754 2.43× 10−3 0.07509 2.00× 10−5 0.07510 1.00× 10−5 0.07511 2.5503× 10−8

0.50 0.4 0.66071 0.66543 4.72× 10−3 0.67152 1.08× 10−2 0.66054 1.70× 10−4 0.66070 1.4588× 10−5

0.6 0.52942 0.53525 5.83× 10−3 0.53406 4.64× 10−3 0.52931 1.10× 10−4 0.52941 6.4394× 10−6

0.8 0.43914 0.44526 6.12× 10−3 0.44143 2.29× 10−3 0.43906 8.00× 10−5 0.43914 3.2064× 10−6

1.0 0.37442 0.38047 6.05× 10−3 0.37568 1.26× 10−3 0.37437 5.00× 10−5 0.37442 1.7819× 10−6

3.0 0.15018 0.15362 3.44× 10−3 0.15020 2.00× 10−3 0.15017 1.00× 10−5 0.15018 9.2911× 10−8

0.75 0.4 0.91026 0.91201 1.75× 10−3 0.94675 3.65× 10−2 0.90998 2.80× 10−4 0.91019 7.2687× 10−5

0.6 0.76724 0.77132 4.08× 10−3 0.78474 1.75× 10−2 0.76705 1.90× 10−4 0.76721 3.0208× 10−5

0.8 0.64740 0.65254 5.14× 10−3 0.65659 9.19× 10−3 0.64727 1.30× 10−4 0.64738 1.3926× 10−5

1.0 0.55605 0.56157 5.52× 10−3 0.56135 5.30× 10−3 0.55596 9.00× 10−5 0.55604 7.2688× 10−6

3.0 0.22481 0.22874 3.92× 10−3 0.22502 2.10× 10−3 0.22483 2.00× 10−5 0.22481 1.8491× 10−7

Table 3.1: Comparison results of Example 3.1 for ∆t = 0.0001, ν = 0.01 and N = 80 at different time T

Example 3.2. Consider the Burgers’ equation (2.4) with boundary condition (3.1) and initial condition

u(x, 0) = 4x(1− x), x ∈ [0, 1].

The analytical solution of this equation is given by (3.2) with the Fourier coefficients

a0 =

∫ 1

0

exp{−x2(3ν)−1(3− 2x)}dx,

an = 2

∫ 1

0

exp{−x2(3ν)−1(3− 2x)} cos(nπx)dx, n ∈ {1, 2, 3, ...}.

In order to compare the approximate solutions u(x, T ) attained by Algorithm 2.1 of Example 3.2
at the different times T with the numerical solutions from Asaithambi [16], Kutluay [14], Xu [17] and
Ganaie [18] and their analytical solutions by using the parameters ∆t = 0.0001 and N = 80 with the
viscosity ν = 0.01 are shown in Table 3.2 which measured by the absolute error Ea.

Example 3.3. Consider (2.4) for t > 0 with boundary condition (3.1) and initial condition

u(x, 0) =
2πν sin(πx)

σ + cos(πx)
, x ∈ [0, 1].
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x T Exact Asai [16] Kutluay [14] Xu [17] Ganaie [18]
Modified FIM CBS

u(x, T ) Ea

0.25 0.4 0.36226 0.36232 0.36911 0.3622 0.36225 0.36226 2.9384× 10−6

0.6 0.28204 0.28209 0.28903 0.2820 0.28204 0.28204 1.3140× 10−6

0.8 0.23045 0.23049 0.23703 0.2304 0.23047 0.23045 6.8861× 10−7

1.0 0.19469 0.19472 0.20069 0.1947 0.19472 0.19469 4.1704× 10−7

3.0 0.07613 0.07614 0.07865 0.0761 0.07613 0.07613 5.5231× 10−8

0.50 0.4 0.68368 0.68380 0.68818 0.6836 0.68368 0.68366 2.0152× 10−5

0.6 0.54832 0.54840 0.55425 0.5483 0.54836 0.54831 1.0251× 10−5

0.8 0.45371 0.45377 0.46011 0.4537 0.45373 0.45371 5.5454× 10−6

1.0 0.38568 0.38572 0.39206 0.3856 0.38568 0.38567 3.2320× 10−6

3.0 0.15218 0.15219 0.15576 0.1522 0.15218 0.15218 1.8408× 10−7

0.75 0.4 0.92050 0.92101 0.92194 0.9205 0.92050 0.92043 7.0462× 10−5

0.6 0.78299 0.78324 0.78676 0.7830 0.78300 0.78296 3.4963× 10−5

0.8 0.66272 0.66285 0.66777 0.6627 0.66269 0.66270 1.8200× 10−5

1.0 0.56932 0.56940 0.57491 0.5693 0.56932 0.56931 1.0371× 10−5

3.0 0.22774 0.22786 0.23183 0.2277 0.22774 0.22774 3.9847× 10−7

Table 3.2: Comparison results of Example 3.2 for ∆t = 0.0001, ν = 0.01 and N = 80 at different time T

The analytical solution given by Wood [19] for an arbitrary constant σ of this equation is

u(x, t) =
2πν exp(−π2νt) sin(πx)

σ + exp(−π2νt) cos(πx)
.

The approximate results of Example 3.3 obtained by the presented Algorithm 2.1 for σ = 2, N = 40,
T = 0.001 and ∆t = 0.0001 with the different viscosity values ν = 0.5, 0.2, 0.1 are compared with those
achieved by Mittal [20] and Ganaie [18]. We can see in Table 3.3 that the modified FIM has lower both of
L∞ and L2 error norms than the other two methods. In Table 3.4, we compare our solutions versus the
solutions reported in Mittal [20] and Rahman [21] for σ = 100, T = 1 and ∆t = 0.01 with the viscosity
ν = 0.005 at the different nodal numbers N = 10, 20, 40, 80 which observe that the L∞ and L2 errors of
our proposed FIM still provides much less than the errors of both Mittal and Rahman.

ν
Mittal [20] Ganaie [18] Modified FIM CBS

L∞ L2 L∞ L2 L∞ L2 L1

0.5 7.44× 10−5 2.79× 10−5 2.00× 10−5 3.54× 10−6 1.2721× 10−5 2.1025× 10−6 2.0417× 10−6

0.2 1.22× 10−5 4.57× 10−6 3.00× 10−6 5.24× 10−7 8.2543× 10−7 3.9663× 10−7 2.6183× 10−7

0.1 3.08× 10−6 1.15× 10−6 2.00× 10−6 3.54× 10−7 1.0395× 10−7 4.9837× 10−8 3.2863× 10−8

Table 3.3: Comparison results of Example 3.3 for σ = 2, N = 40, T = 0.001, ∆t = 0.0001 at various
viscosity values ν = 0.5, 0.2, 0.1

N
Mittal [20] Rahman [21] Modified FIM CBS

L∞ L2 L∞ L2 L∞ L2 L1

10 1.215× 10−7 8.631× 10−8 1.2458× 10−7 8.8189× 10−8 3.6359× 10−9 2.5761× 10−9 2.0901× 10−9

20 3.062× 10−8 2.153× 10−8 3.3944× 10−8 2.4029× 10−8 3.6387× 10−9 2.5760× 10−9 2.2032× 10−9

40 7.644× 10−9 5.378× 10−9 1.1249× 10−8 7.9424× 10−9 3.6485× 10−9 2.5760× 10−9 2.2604× 10−9

80 1.917× 10−9 1.345× 10−9 5.5490× 10−9 3.9178× 10−9 3.6485× 10−9 2.5760× 10−9 2.2892× 10−9

Table 3.4: Comparison results of Example 3.3 for σ = 100, ν = 0.005, T = 1, ∆t = 0.01 at different
number of nodes N = 10, 20, 40, 80
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Example 3.4. Consider the Burgers’ equation (2.4) for t ≥ 1 with initial condition

u(x, 1) =
x

1 + exp
(

4x2−1
16ν

) , x ∈ [0, 1].

The analytical solution given by Harris [22] with t0 = exp
(

1
8ν

)
of this equation is

u(x, t) =
x
t

1 +
√

t
t0

exp
(
x2

4νt

) .
In our computation of Example 3.4 for the various times T = 1.7, 2.4, 3.1 by using Algorithm 2.1, we

choose N = 100, ∆t = 0.001 with the viscosity ν = 0.005. The L∞ and L2 errors are compared with the
numerical solutions obtained by procedures of Ashpazzadeh [23] and Dogan [24] as shown in Table 3.5.
From this table, it is clearly seen that our method produces much better solutions than [23] and [24].

T
Ashpazzadeh [23] Dogan [24] Modified FIM CBS

L∞ L2 L∞ L2 L∞ L2 L1

1.7 2.943× 10−3 1.117× 10−3 8.099× 10−3 2.107× 10−3 1.9019× 10−3 4.8257× 10−4 1.7867× 10−4

2.4 2.081× 10−3 9.830× 10−4 1.165× 10−2 3.345× 10−3 1.1086× 10−3 5.9616× 10−4 2.4819× 10−4

3.1 4.790× 10−3 2.191× 10−3 1.587× 10−2 4.820× 10−3 2.0850× 10−3 6.3400× 10−4 2.8144× 10−4

Table 3.5: Comparison results of Example 3.4 for N = 100,∆t = 0.001, ν = 0.005 at T = 1.7, 2.4, 3.1

In Figure 1, each subfigure displays the numerical solutions of all Examples 3.1-3.4 at different times T ,
respectively. The graphical representations in Figure 2 show the correctly physical behavior of numerical
solutions through these problems obtained by our modified FIM for small kinematic viscosity values
ν = 0.0001 when ∆t = 0.01 and N = 400.

(a) Example 3.1 (b) Example 3.2

(c) Example 3.3 (d) Example 3.4

Figure 1: Our numerical solutions at different times of Examples 3.1-3.4 for ν = 0.0001
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(a) Example 3.1 (b) Example 3.2

(c) Example 3.3 (d) Example 3.4

Figure 2: Physical behavior of our numerical solutions of Examples 3.1-3.4 for ν = 0.0001

4 Conclusion and Discussion

In this paper, we proposed the numerical algorithm based on the modified FIM by using Chebyshev
polynomial expansion for solving one-dimensional nonlinear Burgers’ equation with shock wave to demon-
strate the efficiency and accuracy of the procedure without the adaptively discretizing node nearby the
peak. The present Algorithm 2.1 can reduce the oscillations and instabilities for small viscosity ν that
can observe from the graphical behavior of several numerical examples in Section 3. Our algorithm sig-
nificantly improves those traditional FIM in terms of accuracy under the same parameters and conditions
that gives higher accuracy than other methods. The current implementation deal with a one-dimensional
Burgers’ equation, we believe that the proposed Algorithm 2.1 is directly extendable to higher dimensional
nonlinear PDEs with the time derivative that is confidently taken in our future works.
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