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Abstract : Let H be a hypergraph with the vertex set VH and the hyperedge set EH . For v ∈ VH ,
denote nbhd(v) = {e ∈ EH | v ∈ e}. We generalize the definition of vertex-magic labeling in graph
into the definition of vertex-magic labeling in hypergraph as follow. A vertex-magic labeling of H is a
bijective mapping f : VH ∪EH → {1, 2, 3, . . . , |VH |+ |EH |} with a vertex-magic constant Λ such that for
every v ∈ VH , f(v) +

∑
e∈nbhd(v) f(e) = Λ. This paper constructs some magic rectangle sets and applies

them to determine a vertex-magic labeling for a complete 3-uniform hypergraph with 4n vertices where
n ∈ {1, 3, 5, . . .}.
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1 Introduction and Preliminary Results

First of all, let us introduce the vertex-magic labeling of a graph.

Definition 1.1. [1] Let G be a simple graph with the vertex set VG and the edge set EG. For v ∈ VG,
denote N(v) = {u ∈ VG | uv ∈ EG}. A vertex-magic labeling of G is a bijective mapping f : VG ∪ EG →
{1, 2, 3, . . . , |VG|+ |EG|} with a constant λ such that for every vertex v ∈ VG, f(v) +

∑
u∈N(v) f(uv) = λ.

A graph which admits this labeling is said to be vertex-magic.

This labeling was first defined in [1] by MacDougall et al. Plenty of graphs were studied whether
they are vertex-magic or not. For instance, the cycle Cn where n > 3 and the path Pn where n > 2 are
vertex-magic, see [1].
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A hypergraph is the generalization of graphs with the property that each edge (or hyperedge) may
consist of any number of vertices. If every hyperedge has the same number of vertices k, then it is called
k-uniform. The hypergraph with n vertices and has a property that every m vertices lie in exactly one

hyperedge, is called a complete k-uniform hypergraph, denoted by K
(m)
n .

In Figure 1, we represent nK
(3)
4 , which consists of n copies of K

(3)
4 , by n top-viewed tetrahedrons.

The vertices are in the same hyperedge if they appear on the same face of tetrahedron.
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Figure 1: nK
(3)
4

Note that vij denotes the jth vertex of ith tetrahedron. Furthermore, vi1 ∈ ei2 ∩ ei3 ∩ ei4, vi2 ∈ ei1 ∩ ei3 ∩
ei4, v

i
3 ∈ ei1 ∩ ei2 ∩ ei4 and vi4 ∈ ei1 ∩ ei2 ∩ ei3, for all i ∈ {1, 2, 3, . . . , n}.
To generalize the concept of the vertex-magic labelings in graphs, we define the vertex-magic labeling

for hypergraphs in the same sense. By maintaining the sums of vertex-label and its incident hyperedge-
labels, we have a new version of vertex-magic labeling as defined in Definition 1.2.

Definition 1.2. Let H be a hypergraph with the vertex set VH and the hyperedge set EH . For v ∈ VH ,
denote nbhd(v) = {e ∈ EH | v ∈ e}. A vertex-magic labeling of H is a bijective mapping f : VH ∪EH →
{1, 2, 3, . . . , |VH |+ |EH |} with a constant Λ such that for every vertex v ∈ VG, f(v)+

∑
e∈nbhd(v) f(e) = Λ.

A hypergraph which admits this labeling is said to be vertex-magic.

The purpose of this article is to give a vertex-magic labeling for K
(3)
4n . However, it is worth to show

that nK
(3)
4 is vertex-magic.

Theorem 1.3. For all n ∈ N, nK
(3)
4 is vertex-magic.

Proof. Let V
nK

(3)
4

= {vij |i ∈ {1, 2, 3, . . . , n} and j ∈ {1, 2, 3, 4}} and E
nK

(3)
4

= {eij |i ∈ {1, 2, 3, . . . , n} and j ∈

{1, 2, 3, 4}} be the vertex set and the hyperedge set of nK
(3)
4 , respectively. Let vi1 ∈ ei2 ∩ ei3 ∩ ei4, vi2 ∈

ei1 ∩ ei3 ∩ ei4, vi3 ∈ ei1 ∩ ei2 ∩ ei4 and vi4 ∈ ei1 ∩ ei2 ∩ ei3, for all i ∈ {1, 2, 3, . . . , n}.
Notice that nK

(3)
4 has 4n vertices and 4n hyperedges. Define f : V

nK
(3)
4
∪ E

nK
(3)
4
→ {1, 2, 3, . . . , 8n}

by

ei1 = 2i− 1 for i ∈ {1, 2, 3, . . . , n},
ei2 = 2i for i ∈ {1, 2, 3, . . . , n},
ei3 = 4n+ 1− 2i for i ∈ {1, 2, 3, . . . , n},
ei4 = 4n+ 2− 2i for i ∈ {1, 2, 3, . . . , n},
vi1 = 4n− 1 + 2i for i ∈ {1, 2, 3, . . . , n},
vi2 = 4n+ 2i for i ∈ {1, 2, 3, . . . , n},
vi3 = 8n+ 1− 2i for i ∈ {1, 2, 3, . . . , n},
vi4 = 8n+ 2− 2i for i ∈ {1, 2, 3, . . . , n}.

It is easy to see that f is bijective. To check vertex-magic property of f , let us consider for all i ∈
{1, 2, 3, . . . , n},
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• at vi1;

f(vi1) +
∑
e∈nbhd(vi1)

f(e) = f(vi1) + f(ei2) + f(ei3) + f(ei4)

= (4n− 1 + 2i) + 2i+ (4n+ 1− 2i) + (4n+ 2− 2i)
= 12n+ 2,

• at vi2;

f(vi2) +
∑
e∈nbhd(vi2)

f(e) = f(vi2) + f(ei1) + f(ei3) + f(ei4)

= (4n+ 2i) + (2i− 1) + (4n+ 1− 2i) + (4n+ 2− 2i)
= 12n+ 2,

• at vi3;

f(vi3) +
∑
e∈nbhd(vi3)

f(e) = f(vi3) + f(ei1) + f(ei2) + f(ei4)

= (8n+ 1− 2i) + (2i− 1) + 2i+ (4n+ 2− 2i)
= 12n+ 2, and

• at vi3;

f(vi4) +
∑
e∈nbhd(vi4)

f(e) = f(vi4) + f(ei1) + f(ei2) + f(ei3)

= (8n+ 2− 2i) + (2i− 1) + 2i+ (4n+ 1− 2i)
= 12n+ 2.

These conclude that f is a vertex-magic labeling for nK
(3)
4 with Λ = 12n+ 2.

In 2009, Krishnappa et al. [2] used the existence of magic squares to conclude that a complete graph
Kn is vertex-magic, except K2. We assure the readers a notion of magic-square, the n × n array whose
elements are 1, 2, 3, . . . , n2 such that all column-sums, row-sums and both diagonal-sums are the same
integer, says magic constant. In fact, the magic property of both diagonal-sums of a magic square is
inessential for constructing a vertex-magic labeling for Kn. Thus, Froncek [3] introduced a new collection
of arrays called a magic rectangle set.

Definition 1.4. [3] A magic rectangle set M = MRS(a, b; c) is a collection of c arrays (a × b) whose
entries are elements of {1, 2, 3, . . . , abc}, each appearing once, with all row-sums in every rectangle equals
to the same constant ρ and all column-sums in every rectangle equals to the same constant σ.

Observe that, adding the number k to every entry of M gives the new arrays which maintain the
row-sums and column-sums properties. We summarize this observation in Lemma 1.5.

Lemma 1.5. Let M = MRS(a, b; c) be a magic rectangle set with ρ and σ. For the number k, denote
k+M be the collection of c arrays whose constructed by adding k to each entry of M. Then, k+M has
these properties;

1. entries of k +M are elements of {k + 1, k + 2, k + 3, . . . , k + abc}, and

2. row-sums and column-sums become ρ+ kb and σ + ka, respectively.

In [3], Froncek gave an algorithm for constructing MRS(a, b; c) where a ≡ b ≡ 0 (mod 2) and b ≥ 4.
Although his algorithm is not suitable for our purpose, we prove our own results on the existence of
MRS(6n − 6, 4;n) for n ∈ {3, 5, 7, . . .} and MRS(4, 4;

(
n
3

)
) for n ∈ {3, 4, 5, . . .} in Lemmas 1.6 and 1.7,

respectively.

Lemma 1.6. If n ∈ {3, 5, 7, . . .}, then MRS(6n− 6, 4;n) exists.
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Proof. For convenience, let α = 24n2 − 24n and xsij be the entry in ith row and jth column of sth array.

Define x1ij by

x1i1 = i for i ∈ {1, 3, 5, . . . , 3n− 4},
x1i1 = α+ 2− i for i ∈ {2, 4, 6, . . . , 3n− 3},
x1i1 = α− i for i ∈ {3n− 2, 3n, 3n+ 2, . . . , 6n− 5},
x1i1 = i for i ∈ {3n− 1, 3n+ 1, 3n+ 3, . . . , 6n− 6},
x1i2 = α− i for i ∈ {1, 3, 5, . . . , 3n− 4},
x1i2 = i for i ∈ {2, 4, 6, . . . , 3n− 3},
x1i2 = i for i ∈ {3n− 2, 3n, 3n+ 2, . . . , 6n− 5},
x1i2 = α+ 2− i for i ∈ {3n− 1, 3n+ 1, 3n+ 3, . . . , 6n− 6},
x1i3 = 6n− 5 + i for i ∈ {1, 3, 5, . . . , 3n− 4},
x1i3 = α− 6n+ 7− i for i ∈ {2, 4, 6, . . . , 3n− 3},
x1i3 = α− 6n+ 7− i for i ∈ {3n− 2, 3n, 3n+ 2, . . . , 6n− 5},
x1i3 = 6n− 7 + i for i ∈ {3n− 1, 3n+ 1, 3n+ 3, . . . , 6n− 6},
x1i4 = α− 6n+ 7− i for i ∈ {1, 3, 5, . . . , 3n− 4},
x1i4 = 6n− 7 + i for i ∈ {2, 4, 6, . . . , 3n− 3},
x1i4 = 6n− 5 + i for i ∈ {3n− 2, 3n, 3n+ 2, . . . , 6n− 5},
x1i4 = α− 6n+ 7− i for i ∈ {3n− 1, 3n+ 1, 3n+ 3, . . . , 6n− 6}.

For s > 1, the remaining entry xsij are defined recursively by

xsij = xs−1ij + 12n− 12 if xs−1ij < 12n2 − 12n for s ∈ {2, 3, 4, . . . , n},
xsij = xs−1ij − 12n+ 12 if xs−1ij > 12n2 − 12n for s ∈ {2, 3, 4, . . . , n}.

Notice that each of these numbers 1, 2, 3, . . . , 24n2 − 24n appears in a unique array once. It follows by
direct calculation that ρ = 2α+ 2 and σ = (3n− 3)(α+ 1). Thus, MRS(6n− 6, 4;n) exists.

Lemma 1.7. If n ∈ {3, 4, 5, . . .}, then MRS(4, 4; 4
(
n
3

)
) exists.

Proof. For convenience, let α = 64
(
n
3

)
and xsij be the entry in ith row and jth column of sth array. Define

[x1ij ] by 
1 α− 1 8 α− 6
α 2 α− 7 7
3 α− 3 6 α− 4

α− 2 4 α− 5 5

 .
For s > 1, the remaining entry xsij are defined recursively by

xsij = xs−1ij + 8 if xs−1ij < 32
(
n
3

)
for s ∈ {2, 3, 4, . . . ,

(
n
3

)
},

xsij = xs−1ij − 8 if xs−1ij > 32
(
n
3

)
for s ∈ {2, 3, 4, . . . ,

(
n
3

)
}.

Notice that each of these numbers 1, 2, 3, . . . , 16
(
n
3

)
appears in a unique array once. It follows by direct

calculation that ρ = σ = 2α+ 2. Thus, MRS(4, 4; 4
(
n
3

)
) exists.

2 Vertex-Magic Labeling for K
(3)
4n

By the definition of K
(3)
4n , we can construct K

(3)
4n from nK

(3)
4 with some additional hyperedges. Thus,

according to Section 1, we have shown that nK
(3)
4 is vertex-magic. To construct a vertex-magic label-

ing for K
(3)
4n , we use a vertex-magic labeling of nK

(3)
4 and then, by the aids of MRS(6n − 6, 4;n) and

MRS(4, 4; 4
(
n
3

)
), we can give labels to the additional hyperedges in such the way that those labels preserve
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the vertex-magic property. Since nK
(3)
4 has n components from n copies of K

(3)
4 and each of them has 4

vertices, the additional hyperedges of K
(3)
4n are of the followings 2 cases;

1. hyperedges of type-1 are of form {u, v, w} where u and v come from the same component of nK
(3)
4

while w comes from the others components,

2. hyperedges of type-2 are of form {u, v, w} where u, v and w come from different components of

nK
(3)
4 .

Fortunately, the number of hyperedges of type-1 and type-2 are 24n2 − 24n and 64
(
n
3

)
which are equal

to the number of entries in MRS(6n − 6, 4;n) and MRS(4, 4; 4
(
n
3

)
), respectively. In Theorem 2.1, we

prove that if n is odd, then K
(3)
4n admitting a vertex-magic labeling by applying MRS(6n − 6, 4;n) and

MRS(4, 4; 4
(
n
3

)
) to those additional hyperedge-labels.

For simplification purpose, let us define these notations.

1. Let γ1 be a function such that γ1(1) = 1, γ1(2) = 1, γ1(3) = 1, γ1(4) = 2, γ1(5) = 2, γ1(6) = 3.

2. Let γ2 be a function such that γ2(1) = 2, γ2(2) = 3, γ2(3) = 4, γ2(4) = 3, γ2(5) = 4, γ2(6) = 4.

3. Let δ be the dictionary order of X = {(x, y, z) | x, y, z ∈ {1, 2, 3, . . . , n} and x < y < z}, i.e.,
δ(1, 2, 3) = 1, δ(1, 2, 4) = 2, . . . , δ(1, 2, n) = n − 2, δ(1, 3, 4) = n − 1, . . . , δ(n − 2, n − 1, n) =

(
n
3

)
.

Note that δ : X → {1, 2, 3, . . . ,
(
n
3

)
} is bijective and δ−1 exists.

4. Let π1, π2, π3 : R3 → R be the function defined by π1(x, y, z) = x, π2(x, y, z) = y and π3(x, y, z) = z.

Theorem 2.1. If n ∈ {1, 3, 5, . . .}, then K
(3)
4n is vertex-magic.

Proof. It is clear by Theorem 1.3 that K
(3)
4 is vertex-magic. Suppose that n ∈ {3, 5, 7, . . .}. Then,

M1 = MRS(6n − 6, 4;n) and M2 = MRS(4, 4; 4
(
n
3

)
) exist by Lemmas 1.6 and 1.7. Since K

(3)
4n is a

combination of nK
(3)
4 and hyperedges of type-1 and type-2 , we separate the task into 3 steps.

1. Label 1, 2, 3, . . . , 8n to the vertices and hyperedges of nK
(3)
4 by using Theorem 1.3. Note that each

vertex-label and its incident hyperedge-labels add up to 12n+ 2.
2. Consider the type-1 hyperedges. Let ysij be the entry in ith row, jth column and sth array of

8n+M1. For all i ∈ {1, 2, 3, . . . , 6n− 6}, write i = 6p+ q where q ∈ {1, 2, 3, 4, 5, 6}.
(a) If p < s− 1, then let ysij be the label of {vsj , v

p+1
γ1(q)

, vp+1
γ2(q)
}.

(b) If p ≥ s− 1, then let ysij be the label of {vsj , v
p+2
γ1(q)

, vp+2
γ2(q)
}.

We can represent the sth arrays of 8n+M1 as shown in Figure 2.
Consequently, the hyperedges which are incident to vertex vij receives the labels from exactly 1 column

(from the ith array) and 3n−3 rows (3 rows from the other n−1 arrays) of 8n+M1. By the property of
8n+M1, hyperedge-labels incident to each vertex add up to the same constant (σ+ka)+(3n−3)(ρ+kb) =
[(3n− 3)(24n2− 24n+ 1) + 8n(6n− 6)] + (3n− 3)[(48n2− 48n+ 2) + (8n)(4)] = 216n3− 288n2 + 81n− 9.
Note that these labels used are 8n+ 1, 8n+ 2, 8n+ 3, . . . , 24n2 − 16n.

3. Consider the type-2 hyperedges. Let zsij be the entry in ith row, jth column and sth array of

(24n2−16n)+M2. For all s ∈ {1, 2, 3, . . . ,
(
n
3

)
}, write s = 4p+q where q ∈ {1, 2, 3, 4}. Then, let zsij be the

label of {vπ1(γ
−1(p+1))

q , v
π2(γ

−1(p+1))
i , v

π3(γ
−1(p+1))

j }. We can represent the sth arrays of (24n2−16n)+M2

as shown in Figure 3.
Consequently, the hyperedges which are incident to vertex vij receive labels from

(a) all entries of
(
n−i
2

)
arrays,

(b) all entries in 4(i− 1)(n− i) columns, and

(c) all entries in 4
(
i−1
2

)
rows.
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Figure 3: the sth array of (24n2 − 16n) +M2

Since the row-sums and column-sums of (24n2 − 16n) +M2 are equal, hyperedge-labels at each vertex
add up to the same constant (σ + ka)(4

(
n−i
2

)
+ 4(i − 1)(n − i) + 4

(
i−1
2

)
) = [(128

(
n
3

)
+ 2) + (24n2 −

16n)(4)](2n2 − 6n + 4) = 128
3 n5 − 64n4 − 448

3 n3 + 260n2 − 292
3 n + 8. Note that these labels used are

24n2 − 16n+ 1, 24n2 − 16n+ 2, 24n2 − 16n+ 3, . . . , 24n2 − 16n+ 64
(
n
3

)
= 4n+

(
4n
3

)
.

These concludes that K
(3)
4n is vertex-magic when n is odd. Moreover, in case of n ∈ {3, 5, 7, . . .}, the

vertex-magic constant Λ = (12n+2)+(216n3−288n2+81n−9)+(128
3 n5−64n4− 448

3 n3+260n2− 292
3 n+8) =

128
3 n5 − 64n4 + 200

3 n3 − 28n2 − 13
3 n+ 1.
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Example 2.1. To show that K
(3)
12 whose having 12 vertices and

(
12
3

)
= 220 hyperedges is vertex-magic,

we first give a vertex-magic labeling for 3K
(3)
4 as shown in Figure 4.

24 23

14

13

11

2

12

1 22 21

16

15

9

4

10

3 20 19

18

17

7

6

8

5

Figure 4: a vertex-magic labeling of 3K
(3)
4

Then, we construct 24 + MRS(12, 4; 3) and 168 + MRS(4, 4; 4) as follow.

v11 v12 v13 v14
v21v

2
2 25 167 38 156

v21v
2
3 168 26 155 37

v21v
2
4 27 165 40 154

v22v
2
3 166 28 153 39

v22v
2
4 29 163 42 152

v23v
2
4 164 30 151 41

v31v
3
2 161 31 150 44

v31v
3
3 32 162 43 149

v31v
3
4 159 33 148 46

v32v
3
3 34 160 45 147

v32v
3
4 157 35 146 48

v33v
3
4 36 158 47 145

v21 v22 v23 v24
v11v

1
2 49 143 62 132

v11v
1
3 144 50 131 61

v11v
1
4 51 141 64 130

v12v
1
3 142 52 129 63

v12v
1
4 53 139 66 128

v13v
1
4 140 54 127 65

v31v
3
2 137 55 126 68

v31v
3
3 56 138 67 125

v31v
3
4 135 57 124 70

v32v
3
3 58 136 69 123

v32v
3
4 133 59 122 72

v33v
3
4 60 134 71 121

v31 v32 v33 v34
v11v

1
2 73 119 86 108

v11v
1
3 120 74 107 85

v11v
1
4 75 117 88 106

v12v
1
3 118 76 105 87

v12v
1
4 77 115 90 104

v13v
1
4 116 78 103 89

v21v
2
2 113 79 102 92

v21v
2
3 80 114 91 101

v21v
2
4 111 81 100 94

v22v
2
3 82 112 93 99

v22v
2
4 109 83 98 96

v23v
2
4 84 110 95 97

v11 v21 v22 v23 v24
v31 169 231 176 226
v32 232 170 225 175
v33 171 229 174 228
v34 230 172 227 173

v12 v21 v22 v23 v24
v31 177 223 184 218
v32 224 178 217 183
v33 179 221 182 220
v34 222 180 219 181

v13 v21 v22 v23 v24
v31 185 215 194 210
v32 216 186 209 191
v33 187 213 190 212
v34 214 188 221 189

v14 v21 v22 v23 v24
v31 193 207 200 202
v32 208 194 201 199
v33 195 205 198 204
v34 206 196 203 197

These arrays inform the labels of type-1 and type-2 hyperedges, for example {v11 , v12 , v23} and {v13 , v22 , v34}
receive labels 62 and 188, respectively. Moreover, Λ = 6720.

3 Conclusion and Discussion

The existence of MRS(6n−6, 4;n) and MRS(4, 4; 4
(
n
3

)
) implies the existence of a vertex-magic labeling

of K
(3)
4n . However, we still cannot construct MRS(6n− 6, 4;n) for n is even. Thus, our future work is to

complete the vertex-magic labeling for K
(3)
4n and possibly other K

(3)
m for 4 6 |m.
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