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Abstract : The super edge-magic (SEM) labeling on hypergraphs is the extension of the SEM labeling
on graphs. For a hypergraph H with vertex set VH and hyperedge set EH , we call a bijective mapping
f : VH ∪ EH → {1, 2, 3, . . . , |VH | + |EH |} as an SEM labeling of H if and only if (i) there is an integer
Λ such that for every e ∈ EH , f(e) +

∑
v∈e f(v) = Λ and (ii) f(VH) = {1, 2, 3, . . . , |VH |}. In this article,

we define 5-uniform H(5)(G) and 6-uniform H(6)(G) hypergraphs from an arbitrary simple graph G and
show that H(5)(G) is always an SEM hypergraph. However, if G has odd number of edges, then H(6)(G)
is an SEM hypergraph. Unfortunately, if G has even number of edges, the SEM labeling for H(6)(G)
depends on the structure of the hypergraph. Thus, an example of SEM labeling of H(6)(nC4), which has
even number of edges, is given. Finally, if H is a k-uniform SEM hypergraph, then we can show that H ′,
obtained from H by adding more vertices, is (k + 2m)-uniform SEM hypergraph.
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1 Introduction

In this paper, we consider simple graphs G having no isolated vertices. A hypergraph H is the pair
(VH , EH) where VH is a finite set and EH is a subset of the power set of VH . The sets VH and EH are
called vertex set and hyperedge set of H, respectively, see [1]. Moreover, if every element of EH has the
same cardinality k, then H is said to be k-uniform and denoted by H(k). In this paper, we construct
5-uniform hypergraphs and 6-uniform hypergraphs from simple graphs as follow.
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Definition 1.1. Let G be a simple graph with the vertex set {v1, v2, v3, . . . , vp} and the edge set {e1, e2, e3, . . . , eq}.
Construct an additional vertex set {v′1, v′2, v′3, . . . , v′p}. For each ek = vivj of G, define Ek = {ek, vi, v′i, vj , v′j}.
Then, a hypergraph whose vertex set and hyperedge set are

⋃q
k=1Ek and

⋃q
k=1{Ek}, respectively, is called

the 5-uniform hypergraph generated by G and denoted by H(5)(G).

Remark 1.2. From Definition 1.1, H(5)(G) has 2p+ q vertices and q hyperedges. Moreover, VH(5)(G) =
{v1, v2, v3, . . . , vp} ∪ {v′1, v′2, v′3, . . . , v′p} ∪ {e1, e2, e3, . . . , eq} and EH(5)(G) = {E1, E2, E3, . . . , Eq}.

Example 1.3. Let K1,4 be the complete bipartite graph (as known as the star graph S4). Then, H(5)(K1,4)
can be represented as in Figure 1.
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Figure 1: K1,4 and H(5)(K1,4)

Definition 1.4. Let G be a simple graph with the vertex set {v1, v2, v3, . . . , vp} and the edge set {e1, e2, e3, . . . , eq}.
Construct additional vertex sets {v′1, v′2, v′3, . . . , v′p} and {e′1, e′2, e′3, . . . , e′q}. For each edge ek = vivj of G,
define Ek = {ek, e′k, vi, v′i, vj , v′j}. Then, a hypergraph whose vertex set and hyperedge set are

⋃q
k=1Ek

and
⋃q

k=1{Ek}, respectively, is called the 6-uniform hypergraph generated by G and denoted by H(6)(G).

Remark 1.5. From Definition 1.4, H(5)(G) has 2p+ q vertices and q hyperedges.
Moreover, VH(6)(G) = {v1, v2, v3, . . . , vp}∪ {v′1, v′2, v′3, . . . , v′p}∪ {e1, e2, e3, . . . , eq}∪ {e′1, e′2, e′3, . . . , e′q}

and EH(6)(G) = {E1, E2, E3, . . . , Eq}.

Example 1.6. Let P3 be the path graph of size 3. Then, H(6)(P3) can be represented as in Figure 2.

Thus, every simple graph G has the 5-uniform and 6-uniform hypergraphs generated by it.
The concept of super edge-magic (SEM) labelings in a graph was first introduced in 1998 by Enomoto

et al. [2]. Later, Boonklurb et al. [3] generalized this concept to SEM labeling in hypergraph as stated
in Definition 1.7.

Definition 1.7. [3] For a hypergraph H, the SEM labeling of H is a bijection f : VH∪EH → {1, 2, 3, . . . , |VH |+
|EH |} satisfying

1. there exists a constant Λ such that for all e ∈ EH , f(e) +
∑

v∈e f(v) = Λ and

2. f(VH) = {1, 2, 3, . . . , |VH |}.
A hypergraph admitting the SEM labeling is called SEM hypergraph. Note that this notation agrees in the
case that H is a simple graph.

Example 1.8. Consider H = H(5)(C5 ∪ C6) whose |VH | = 33 and |EH | = 11 as shown in the Figure 3.
In each hyperedge, the sum of 5 vertex-labels and their incident hyperedge-labels is equal to 113. Since all
vertex-labels are 1, 2, 3, . . . , 33, we have that H = H(5)(C5 ∪ C6) is SEM.
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Figure 2: P3 and H(6)(P3)
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Figure 3: An SEM labeling of H(5)(C5 ∪ C6) with Λ = 113

2 The SEM labeling of H(5)(G)

Assume that a simple graph G has p vertices and q edges. By Definition 1.1, the hypergraph H(5)(G)
has 2p+ q vertices and q hyperedges. Since each hyperedge of H(5)(G) is of form Ek = {ek, vi, vj , v′i, v′j}
where ek = vivj , we can give an SEM labeling for H(5)(G) as shown in the following theorem.

Theorem 2.1. Let G be a simple graph with the vertex set {v1, v2, v3, . . . , vp} and the edge set
{e1, e2, e3, . . . , eq}. There exists an SEM labeling for H(5)(G).

Proof. We define a function f : VH(5)(G) ∪ EH(5)(G) → {1, 2, 3, . . . , 2p+ q, 2p+ q + 1, . . . , 2p+ 2q} by

f(vi) = i for i ∈ {1, 2, 3, . . . , p},
f(v′i) = 2p+ 1− i for i ∈ {1, 2, 3, . . . , p},
f(ei) = 2p+ i for i ∈ {1, 2, 3, . . . , q},
f(Ei) = 2p+ 2q + 1− i for i ∈ {1, 2, 3, . . . , q}.
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It is straight forward to prove that f is a bijection. Consider for each k ∈ {1, 2, 3, . . .}, we have that

f(Ek) +
∑

v∈Ek
f(v) = f(Ek) + f(ek) + f(vi) + f(v′i) + f(vj) + f(v′j)

= (2p+ 2q + 1− k) + (2p+ k) + i+ (2p+ 1− i)
+j + (2p+ 1− j)

= 8p+ 2q + 3,

where ek = vivj . Since f(VH(5)(G)) = {f(vi)|i ∈ {1, 2, 3, . . . , p}} ∪ {f(v′i)|i ∈ {1, 2, 3, . . . , p}} ∪ {f(ei)|i ∈
{1, 2, 3, . . . , q}} = {1, 2, 3, . . . , p} ∪ {p + 1, p + 2, p + 3, . . . , 2p} ∪ {2p + 1, 2p + 2, 2p + 3, . . . , 2p + q} =
{1, 2, 3, . . . , 2p+ q}, f is an SEM labeling. Thus, H(5)(G) is SEM.

Example 2.2. Let C5 be a cycle with p = 5 and q = 5. We represent H(5)(C5) in the middle and use
Theorem 2.1 to give an SEM labeling for it as shown in Figure 4. Furthermore, Λ = 8p+ 2q + 3 = 53.
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Figure 4: C5, H
(5)(C5) and an SEM labeling for H(5)(C5) with Λ = 53

Especially, if a graph G admits an SEM labeling, namely fG, then we can extend fG to an SEM
labeling f for H(5)(G) as shown in Theorem 2.3.

Theorem 2.3. Let G be a simple graph with the vertex set VG = {v1, v2, v3, . . . , vp} and the edge set
EG = {e1, e2, e3, . . . , eq}. If a graph G admits an SEM labeling fG, then the SEM labeling f for H(5)(G)
exists. Moreover, f |VG∪EG

= fG.

Proof. Assume that G is an SEM graph with the SEM labeling fG. Note that fG(VG) = {1, 2, 3, . . . , p},
fG((EG) = {p + 1, p + 2, p + 3, . . . , p + q} and there is constant λ such that for every ek = vivj ∈ EG,
fG(vi) + fG(vj) + fG(ek) = λ. To construct SEM labeling for H(5)(G) which has the vertex set VH(5)(G)

and the hyperedge set EH(5)(G), we define a function f : VH(5)(G) ∪ EH(5)(G) → {1, 2, 3, . . . , 2p+ 2q} by

f(vi) = fG(vi) for i ∈ {1, 2, 3, . . . , p},
f(v′i) = 2p+ q + 1− fG(vi) for i ∈ {1, 2, 3, . . . , p},
f(ei) = fG(ei) for i ∈ {1, 2, 3, . . . , q},
f(Ei) = 3p+ 2q + 1− fG(ei) for i ∈ {1, 2, 3, . . . , q}.

It is easy to see that f |VG∪EG
= fG. Consider for each k ∈ {1, 2, 3, . . . , q}, we have

f(Ek) +
∑

v∈Ek
f(v) = f(Ek) + f(ek) + f(vi) + f(v′i) + f(vj) + f(v′j)

= (3p+ 2q + 1− fG(ek)) + fG(ek)
+fG(vi) + (2p+ q + 1− fG(vi))
+fG(vj) + (2p+ q + 1− fG(vj))

= 7p+ 4q + 3
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is constant, where ek = vivj . Since f(VH(5)(G)) = {f(vi)|i ∈ {1, 2, 3, . . . , p}}∪{f(v′i)|i ∈ {1, 2, 3, . . . , p}}∪
{f(ei)|i ∈ {1, 2, 3, . . . , q}} = {1, 2, 3, . . . , p}∪{2p+1, 2p+2, 2p+3, . . . , 2p+q}∪{p+1, p+2, p+3, . . . , 2p} =
{1, 2, 3, . . . , 2p+ q}, f is an SEM labeling. Thus, H(5)(G) is SEM.

Example 2.4. In Figure 5, C5 is SEM by fG. Since C5 has p = 5 vertices and q = 5 edges, by Theorem
2.3, we have H(5)(C5) admitting an SEM labeling with Λ = 7p+ 4q + 3 = 58.
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Figure 5: An SEM labeling fG of C5 and an SEM labeling of H(5)(C5) given by Theorem 2.3

3 The SEM labeling of H(6)(G)

In section 2, we use the technique that the even consecutive integers can be paired in such a way that their
sum in each pair is the same constant. In this section, we deal with a hypergraph H(6)(G) having 2p+ 2q
vertices and q hyperedge. Since each hyperedge of H(6)(G) is of the form Ek = {ek, e′k, vi, v′i, vj , v′j}, we
first think about how to label ek, e

′
k and Ek so that f(ek) + f(e′k) + f(Ek) is the same constant for all

i ∈ {1, 2, 3, . . . , q}. Fortunately, this task can be done in general if q is odd.

Theorem 3.1. Let G be a simple graph with the vertex set {v1, v2, v3, . . . , vp} and the edge set
{e1, e2, e3, . . . , eq}. If q is odd, then there exists an SEM labeling for H(6)(G).

Proof. Let q be an odd positive integer. Define a function f : VH(6)(G) ∪ EH(6)(G) → {1, 2, 3, . . . , 2p +
2q, 2p+ 2q + 1, . . . , 2p+ 3q} by

f(vi) = i for i ∈ {1, 2, 3, . . . , p},
f(v′i) = 2p+ 1− i for i ∈ {1, 2, 3, . . . , p},
f(ei) = 2p+ i for i ∈ {1, 2, 3, . . . , q},
f(e′i) = 2p+ 3q−1

2 + i for i ∈ {1, 2, 3, . . . , q+1
2 },

f(e′i) = 2p+ q−1
2 + i for i ∈ { q+3

2 , q+5
2 , q+7

2 , . . . , q},
f(Ei) = 2p+ 3q − 2(i− 1) for i ∈ {1, 2, 3, . . . , q+1

2 },
f(Ei) = 2p+ 3q − 1− 2(i− q+3

2 ) for i ∈ { q+3
2 , q+5

2 , q+7
2 , . . . , q}.

We can easily check that f is a bijection and f(VH(6)(G)) = {1, 2, 3, . . . , 2p+ 2q}. Consider each Ek,
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• if k ∈ {1, 2, 3, . . . , q+1
2 }, then

f(Ek) +
∑

v∈Ek
f(v) = f(Ek) + f(ek) + f(e′k) + f(vi) + f(v′i)

+f(vj) + f(v′j)

= (2p+ 3q − 2(k − 1)) + (2p+ k) + (2p+ 3q−1
2 + k)

+i+ (2p+ 1− i) + j + (2p+ 1− j)
= 10p+ 9q−1

2 + 4;

• if k ∈ { q+3
2 , q+5

2 , q+7
2 , . . . , q}, then

f(Ek) +
∑

v∈Ek
f(v) = f(Ek) + f(ek) + f(e′k) + f(vi) + f(v′i)

+f(vj) + f(v′j)

= (2p+ 3q − 1− 2(k − q+3
2 )) + (2p+ k)

+(2p+ q−1
2 + k) + i+ (2p+ 1− i) + j + (2p+ 1− j)

= 10p+ 9q−1
2 + 4;

where ek = vivj . Since f(Ek) +
∑

v∈Ek
f(v) is the same constant, H(6)(G) is SEM.

Example 3.2. Let C5 be a cycle with p = 5 and q = 5. We represent H(6)(C5) and use Theorem 3.1 to
label it as shown in Figure 6. Furthermore, Λ = 10p+ 9q−1

2 + 4 = 76.
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Figure 6: C5, H
(6)(C5) and an SEM labeling for H(6)(C5) with Λ = 76

In the case when q is even, it is impossible to distribute 3q consecutive integers into n 3-subsets so that
the sum of elements of each 3-subsets is the same constant. Thus, constructing a labeling for H(6)(G),
where G is a simple graph with even size, depends on a structure of its hypergraph. However, some
hypergraphs are justified to be SEM. For example, in [3], they gave the SEM labelings of H(6)(Cn) and

H(6)(Pn) (note that in [3], they defined H(6)(Cn) and H(6)(Pn) in terms of 2C
(6)
n and 2P

(6)
n , respectively).

In the next section, we show that H(6)(nC4) is SEM.

4 The SEM labeling of H(6)(nC4)

Firstly, we represent nC4 as shown in Figure 7. Note that vij denote the jth vertex of ith cycle.
Furthermore, ek1 = vk1vk2, ek2 = vk2vk3, ek3 = vk3vk4 and ek4 = vk4vk1 are 4 edges of the kth cycle
where k ∈ {1, 2, 3, . . . , n}.

Thus, by the Definition 1.4, H(6)(nC4) can be illustrated by Figure 8. Note that H(6)(nC4) has 16n
vertices and 4n hyperedges. Before constructing the labeling, we prove the following lemma.
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Figure 8: H(6)(nC4)

Lemma 4.1. Let n be a positive integer. The list of consecutive integers 1, 2, 3, . . . , 16n can be paired
into 8n doubleton in such a way that the sums in each doubletons are 6n + 2, 6n + 3, 6n + 4, . . . , 10n +
1, 22n+ 1, 22n+ 2, 22n+ 3, . . . , 26n.

Proof. We define doubletons as the following

1. {1, 10n},

2. {2, 6n}, {3, 6n+ 1}, {4, 6n+ 2}, . . . , {2n+ 1, 8n− 1},

3. {2n+ 2, 4n+ 1}, {2n+ 3, 4n+ 2}, {2n+ 4, 4n+ 3}, . . . , {4n, 6n− 1},

4. {8n, 14n+ 1}, {8n+ 1, 14n+ 2}, {8n+ 2, 14n+ 3}, . . . , {10n− 1, 16n},

5. {10n+ 1, 12n+ 1}, {10n+ 2, 12n+ 2}, {10n+ 3, 12n+ 3}, . . . , {12n, 14n}.

Then, the result follows immedietly.

Now, we are ready to show that H(6)(nC4) is SEM.

Theorem 4.2. H(6)(nC4) is SEM.

Proof. Let Sk be the doubleton whose sum of both elements is k. Then, by Lemma 4.1, we have
S6n+2, S6n+3, S6n+4, . . . , S10n+1, S22n+1, S22n+2, S22n+3, . . . , S26n. To construct an SEM labeling f :
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VH(6)(nC4) ∪ EH(6)(nC4) → {1, 2, 3, . . . , 20n}, we define the bijective mapping in such a way that

f({vi1, v′i1}) = S6n+1+i for i ∈ {1, 2, 3, . . . , n},
f({vi2, v′i2}) = S8n+1+i for i ∈ {1, 2, 3, . . . , n},
f({vi3, v′i3}) = S8n+2−i for i ∈ {1, 2, 3, . . . , n},
f({vi4, v′i4}) = S10n+2−i for i ∈ {1, 2, 3, . . . , n},
f({ei1, e′i1}) = S26n+1−i for i ∈ {1, 2, 3, . . . , n},
f({ei2, e′i2}) = S22n+i for i ∈ {1, 2, 3, . . . , n},
f({ei3, e′i3}) = S24n+i for i ∈ {1, 2, 3, . . . , n},
f({ei4, e′i4}) = S23n+i for i ∈ {1, 2, 3, . . . , n},
f(Ei1) = 18n+ 1− i for i ∈ {1, 2, 3, . . . , n},
f(Ei2) = 20n+ 1− i for i ∈ {1, 2, 3, . . . , n},
f(Ei3) = 16n+ i for i ∈ {1, 2, 3, . . . , n},
f(Ei4) = 19n+ 1− i for i ∈ {1, 2, 3, . . . , n}.

It is clear that f(VH(6)(nC4)) = {1, 2, 3, . . . , 16n} by the prove of Lemma 4.1. Also, we have

f(vi1) + f(v′i1) = 6n+ 1 + i,
f(vi2) + f(v′i2) = 8n+ 1 + i,
f(vi3) + f(v′i3) = 8n+ 2− i,
f(vi4) + f(v′i4) = 10n+ 2− i,
f(ei1) + f(e′i1) = 26n+ 1− i,
f(ei2) + f(e′i2) = 22n+ i,
f(ei3) + f(e′i3) = 24n+ i,
f(ei4) + f(e′i4) = 23n+ i.

To verify that f is an SEM labeling, we consider Eij for all i ∈ {1, 2, 3, . . . , n},

• if j = 1, then

f(Ei1) +
∑

v∈Ei1
f(v) = f(Ei1) + (f(ei1) + f(e′i1)) + (f(vi1) + f(v′i1))

+(f(vi2) + f(v′i2))
= (18n+ 1− i) + (26n+ 1− i) + (6n+ 1 + i)

+(8n+ 1 + i)
= 58n+ 4;

• if j = 2, then

f(Ei2) +
∑

v∈Ei2
f(v) = f(Ei2) + (f(ei2) + f(e′i2)) + (f(vi2) + f(v′i2))

+(f(vi3) + f(v′i3))
= (20n+ 1− i) + (22n+ i) + (8n+ 1 + i)

+(8n+ 2− i)
= 58n+ 4;

• if j = 3, then

f(Ei3) +
∑

v∈Ei3
f(v) = f(Ei3) + (f(ei3) + f(e′i3)) + (f(vi3) + f(v′i3))

+(f(vi4) + f(v′i4))
= (16n+ i) + (24n+ i) + (8n+ 2− i)

+(10n+ 2− i)
= 58n+ 4;
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• if j = 4, then

f(Ei4) +
∑

v∈Ei4
f(v) = f(Ei4) + (f(ei4) + f(e′i4)) + (f(vi4) + f(v′i4))

+(f(vi1) + f(v′i1))
= (19n+ 1− i) + (23n+ i) + (10n+ 2− i)

+(6n+ 1 + i)
= 58n+ 4.

Thus, the sum f(Eij) +
∑

v∈Eij
f(v) is the same constant for every hyperedge Eij of H(6)(nC4).

Therefore, H(6)(nC4) is SEM.

Example 4.3. To construct an SEM labeling for H(6)(2C4). Notice that n = 2 and |VH(6)(2C4)| = 16n =
32. By using Lemma 4.1, we have doubletons,

• {2, 12}, {6, 9}, {3, 13}, {7, 10}, {4, 14}, {8, 11}, {5, 15}{1, 20},

• {16, 29}, {21, 25}, {17, 30}, {22, 26}, {18, 31}, {23, 27}, {19, 32}{24, 28},

whose sums in each doubleton are 14, 15, 16, . . . , 21 and 45, 46, 47, . . . , 52, orderly. By Theorem 4.2, we
give labeling as follow,

v11 → 2,

v′11 → 12,

v12 → 4,

v′12 → 14,

v13 → 7,

v′13 → 10,

v14 → 1,

v′14 → 20,

e11 → 24,

e′11 → 28,

e12 → 16,

e′12 → 29,

e13 → 18,

e′13 → 31,

e14 → 17,

e′14 → 30,

v21 → 6,

v′21 → 9,

v22 → 8,

v′22 → 11,

v23 → 3,

v′23 → 13,

v24 → 5,

v′24 → 15,

e21 → 19,

e′21 → 32,

e22 → 21,

e′22 → 25,

e23 → 23,

e′23 → 27,

e24 → 22,

e′24 → 26,

E11 → 36,

E12 → 40,

E13 → 33,

E14 → 38,

E21 → 35,

E22 → 39,

E23 → 34,

E24 → 37.

We illustrate the labeling as shown in Figure 9. Moreover, Λ = 58n+ 4 = 120.

5 Conclusion an Discussion

In this article, we construct hypergraphs H(5)(G) and H(6)(G) from an arbitrary simple graph G. Even
if G is or is not SEM graph, we still can prove that H(5)(G) is always an SEM 5-uniform hypergraph and
H(6)(G) is an SEM 6-uniform hypergraph if G has even number of edges. For H(6)(G) with even number
of edges, we give only example of an SEM labeling for H(6)(nC4). There is a way to add more vertices
to an SEM hypergraph H and preserve its SEM property. This method is similar to the one in [3] and
we give a short proof here.

Theorem 5.1. Let H be a hypergraph with p vertices and q hyperedges. If H is SEM, then there exists
an SEM hypergraph with p+ 2q vertices and q hyperedges.

Proof. Assume that H admits the SEM labeling f and has hyperedge set EH = {E1, E2, E3, . . . , Eq}.
Thus, f(EH) = {p+1, p+2, p+3, . . . , p+q}. Let V ′ = {v1, v2, v3, . . . , v2q} be the set of new vertices. Define
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Figure 9: an SEM labeling for H(6)(2C4) with Λ = 120

E′i = Ei ∪ {vi, v2q−i} for i ∈ {1, 2, 3, . . . , q}. To show that hypergraph H ′ with vertex set VH′ = VH ∪ V ′
and hyperedge set EH′ = ∪qi=1{E′i} is SEM, we give a mapping f ′ by

f ′(v) = f(v) for all v ∈ VH ,
f ′(vi) = p+ i for all i ∈ {1, 2, 3, . . . , 2q},
f ′(E′i) = f(Ei) + 2q for all i ∈ {1, 2, 3, . . . , q}.

It is straight forward to check that f ′(VH ∪ V ′) = {1, 2, 3, . . . , p + 2q} = |VH′ | and f(e) +
∑

v∈e f(v) is
the same constant for each e ∈ EH′ . Thus, H ′ is SEM.

By Theorem 5.1, if H is a k-uniform hypergraph then H ′ is a (k + 2)-uniform hypergraph. Hence,
we can obatain a (k + 2m)-uniform SEM hypergraph by iterating the process in Theorem 5.1 m times.
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