Super Edge-Magic Labeling of 5-Uniform and 6-Uniform Hypergraphs Generated by Arbitrary Simple Graphs

Authawich Narissayaporn ${ }^{\dagger}$, Ratinan Boonklurb ${ }^{\dagger \cdot 1}$ and Sirirat Singhun ${ }^{\ddagger}$
${ }^{\dagger}$ Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
e-mail : ab.naris@gmail.com and ratinan.b@chula.ac.th
${ }^{\ddagger}$ Department of Mathematics, Faculty of Science, Ramkhamhaeng University, Bangkok 10241, Thailand
e-mail : sin_sirirat@ru.ac.th

Abstract

The super edge-magic (SEM) labeling on hypergraphs is the extension of the SEM labeling on graphs. For a hypergraph H with vertex set V_{H} and hyperedge set E_{H}, we call a bijective mapping $f: V_{H} \cup E_{H} \rightarrow\left\{1,2,3, \ldots,\left|V_{H}\right|+\left|E_{H}\right|\right\}$ as an SEM labeling of H if and only if (i) there is an integer Λ such that for every $e \in E_{H}, f(e)+\sum_{v \in e} f(v)=\Lambda$ and (ii) $f\left(V_{H}\right)=\left\{1,2,3, \ldots,\left|V_{H}\right|\right\}$. In this article, we define 5-uniform $H^{(5)}(G)$ and 6 -uniform $H^{(6)}(G)$ hypergraphs from an arbitrary simple graph G and show that $H^{(5)}(G)$ is always an SEM hypergraph. However, if G has odd number of edges, then $H^{(6)}(G)$ is an SEM hypergraph. Unfortunately, if G has even number of edges, the SEM labeling for $H^{(6)}(G)$ depends on the structure of the hypergraph. Thus, an example of SEM labeling of $H^{(6)}\left(n C_{4}\right)$, which has even number of edges, is given. Finally, if H is a k-uniform SEM hypergraph, then we can show that H^{\prime}, obtained from H by adding more vertices, is $(k+2 m)$-uniform SEM hypergraph.

Keywords : Super edge-magic labeling; Hypergraph labeling.
2010 Mathematics Subject Classification : 05C78.

1 Introduction

In this paper, we consider simple graphs G having no isolated vertices. A hypergraph H is the pair $\left(V_{H}, E_{H}\right)$ where V_{H} is a finite set and E_{H} is a subset of the power set of V_{H}. The sets V_{H} and E_{H} are called vertex set and hyperedge set of H, respectively, see [1]. Moreover, if every element of E_{H} has the same cardinality k, then H is said to be k-uniform and denoted by $H^{(k)}$. In this paper, we construct 5 -uniform hypergraphs and 6 -uniform hypergraphs from simple graphs as follow.

[^0]Definition 1.1. Let G be a simple graph with the vertex set $\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{p}\right\}$ and the edge set $\left\{e_{1}, e_{2}, e_{3}, \ldots, e_{q}\right\}$. Construct an additional vertex set $\left\{v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}, \ldots, v_{p}^{\prime}\right\}$. For each $e_{k}=v_{i} v_{j}$ of G, define $E_{k}=\left\{e_{k}, v_{i}, v_{i}^{\prime}, v_{j}, v_{j}^{\prime}\right\}$. Then, a hypergraph whose vertex set and hyperedge set are $\bigcup_{k=1}^{q} E_{k}$ and $\bigcup_{k=1}^{q}\left\{E_{k}\right\}$, respectively, is called the 5-uniform hypergraph generated by G and denoted by $H^{(5)}(G)$.
Remark 1.2. From Definition 1.1. $H^{(5)}(G)$ has $2 p+q$ vertices and q hyperedges. Moreover, $V_{H^{(5)}(G)}=$ $\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{p}\right\} \cup\left\{v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}, \ldots, v_{p}^{\prime}\right\} \cup\left\{e_{1}, e_{2}, e_{3}, \ldots, e_{q}\right\}$ and $E_{H^{(5)}(G)}=\left\{E_{1}, E_{2}, E_{3}, \ldots, E_{q}\right\}$.
Example 1.3. Let $K_{1,4}$ be the complete bipartite graph (as known as the star graph S_{4}). Then, $H^{(5)}\left(K_{1,4}\right)$ can be represented as in Figure 1 .

Figure 1: $K_{1,4}$ and $H^{(5)}\left(K_{1,4}\right)$

Definition 1.4. Let G be a simple graph with the vertex set $\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{p}\right\}$ and the edge set $\left\{e_{1}, e_{2}, e_{3}, \ldots, e_{q}\right\}$. Construct additional vertex sets $\left\{v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}, \ldots, v_{p}^{\prime}\right\}$ and $\left\{e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}, \ldots, e_{q}^{\prime}\right\}$. For each edge $e_{k}=v_{i} v_{j}$ of G, define $E_{k}=\left\{e_{k}, e_{k}^{\prime}, v_{i}, v_{i}^{\prime}, v_{j}, v_{j}^{\prime}\right\}$. Then, a hypergraph whose vertex set and hyperedge set are $\bigcup_{k=1}^{q} E_{k}$ and $\bigcup_{k=1}^{q}\left\{E_{k}\right\}$, respectively, is called the 6-uniform hypergraph generated by G and denoted by $H^{(6)}(G)$.
Remark 1.5. From Definition 1.4. $H^{(5)}(G)$ has $2 p+q$ vertices and q hyperedges.
Moreover, $V_{H^{(6)}(G)}=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{p}\right\} \cup\left\{v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}, \ldots, v_{p}^{\prime}\right\} \cup\left\{e_{1}, e_{2}, e_{3}, \ldots, e_{q}\right\} \cup\left\{e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}, \ldots, e_{q}^{\prime}\right\}$ and $E_{H^{(6)}(G)}=\left\{E_{1}, E_{2}, E_{3}, \ldots, E_{q}\right\}$.
Example 1.6. Let P_{3} be the path graph of size 3. Then, $H^{(6)}\left(P_{3}\right)$ can be represented as in Figure 2 ,
Thus, every simple graph G has the 5-uniform and 6-uniform hypergraphs generated by it.
The concept of super edge-magic (SEM) labelings in a graph was first introduced in 1998 by Enomoto et al. [2]. Later, Boonklurb et al. 3] generalized this concept to SEM labeling in hypergraph as stated in Definition 1.7
Definition 1.7. [3] For a hypergraph H, the SEM labeling of H is a bijection $f: V_{H} \cup E_{H} \rightarrow\left\{1,2,3, \ldots,\left|V_{H}\right|+\right.$ $\left.\left|E_{H}\right|\right\}$ satisfying

1. there exists a constant Λ such that for all $e \in E_{H}, f(e)+\sum_{v \in e} f(v)=\Lambda$ and
2. $f\left(V_{H}\right)=\left\{1,2,3, \ldots,\left|V_{H}\right|\right\}$.

A hypergraph admitting the SEM labeling is called SEM hypergraph. Note that this notation agrees in the case that H is a simple graph.
Example 1.8. Consider $H=H^{(5)}\left(C_{5} \cup C_{6}\right)$ whose $\left|V_{H}\right|=33$ and $\left|E_{H}\right|=11$ as shown in the Figure 3 . In each hyperedge, the sum of 5 vertex-labels and their incident hyperedge-labels is equal to 113. Since all vertex-labels are $1,2,3, \ldots, 33$, we have that $H=H^{(5)}\left(C_{5} \cup C_{6}\right)$ is SEM.

Figure 2: P_{3} and $H^{(6)}\left(P_{3}\right)$

Figure 3: An SEM labeling of $H^{(5)}\left(C_{5} \cup C_{6}\right)$ with $\Lambda=113$

2 The SEM labeling of $H^{(5)}(G)$

Assume that a simple graph G has p vertices and q edges. By Definition 1.1, the hypergraph $H^{(5)}(G)$ has $2 p+q$ vertices and q hyperedges. Since each hyperedge of $H^{(5)}(G)$ is of form $E_{k}=\left\{e_{k}, v_{i}, v_{j}, v_{i}^{\prime}, v_{j}^{\prime}\right\}$ where $e_{k}=v_{i} v_{j}$, we can give an SEM labeling for $H^{(5)}(G)$ as shown in the following theorem.

Theorem 2.1. Let G be a simple graph with the vertex set $\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{p}\right\}$ and the edge set $\left\{e_{1}, e_{2}, e_{3}, \ldots, e_{q}\right\}$. There exists an SEM labeling for $H^{(5)}(G)$.

Proof. We define a function $f: V_{H^{(5)}(G)} \cup E_{H^{(5)}(G)} \rightarrow\{1,2,3, \ldots, 2 p+q, 2 p+q+1, \ldots, 2 p+2 q\}$ by

$$
\begin{array}{rlrl}
f\left(v_{i}\right) & =i & \text { for } i \in\{1,2,3, \ldots, p\}, \\
f\left(v_{i}^{\prime}\right) & =2 p+1-i & & \text { for } i \in\{1,2,3, \ldots, p\}, \\
f\left(e_{i}\right) & =2 p+i & \text { for } i \in\{1,2,3, \ldots, q\}, \\
f\left(E_{i}\right) & =2 p+2 q+1-i & \text { for } i \in\{1,2,3, \ldots, q\} .
\end{array}
$$

It is straight forward to prove that f is a bijection. Consider for each $k \in\{1,2,3, \ldots\}$, we have that

$$
\begin{aligned}
f\left(E_{k}\right)+\sum_{v \in E_{k}} f(v)= & f\left(E_{k}\right)+f\left(e_{k}\right)+f\left(v_{i}\right)+f\left(v_{i}^{\prime}\right)+f\left(v_{j}\right)+f\left(v_{j}^{\prime}\right) \\
= & (2 p+2 q+1-k)+(2 p+k)+i+(2 p+1-i) \\
& +j+(2 p+1-j) \\
= & 8 p+2 q+3,
\end{aligned}
$$

where $e_{k}=v_{i} v_{j}$. Since $f\left(V_{H^{(5)}(G)}\right)=\left\{f\left(v_{i}\right) \mid i \in\{1,2,3, \ldots, p\}\right\} \cup\left\{f\left(v_{i}^{\prime}\right) \mid i \in\{1,2,3, \ldots, p\}\right\} \cup\left\{f\left(e_{i}\right) \mid i \in\right.$ $\{1,2,3, \ldots, q\}\}=\{1,2,3, \ldots, p\} \cup\{p+1, p+2, p+3, \ldots, 2 p\} \cup\{2 p+1,2 p+2,2 p+3, \ldots, 2 p+q\}=$ $\{1,2,3, \ldots, 2 p+q\}, f$ is an SEM labeling. Thus, $H^{(5)}(G)$ is SEM.

Example 2.2. Let C_{5} be a cycle with $p=5$ and $q=5$. We represent $H^{(5)}\left(C_{5}\right)$ in the middle and use Theorem 2.1 to give an SEM labeling for it as shown in Figure 4 Furthermore, $\Lambda=8 p+2 q+3=53$.

Figure 4: $C_{5}, H^{(5)}\left(C_{5}\right)$ and an SEM labeling for $H^{(5)}\left(C_{5}\right)$ with $\Lambda=53$
Especially, if a graph G admits an SEM labeling, namely f_{G}, then we can extend f_{G} to an SEM labeling f for $H^{(5)}(G)$ as shown in Theorem 2.3
Theorem 2.3. Let G be a simple graph with the vertex set $V_{G}=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{p}\right\}$ and the edge set $E_{G}=\left\{e_{1}, e_{2}, e_{3}, \ldots, e_{q}\right\}$. If a graph G admits an SEM labeling f_{G}, then the SEM labeling f for $H^{(5)}(G)$ exists. Moreover, $\left.f\right|_{V_{G} \cup E_{G}}=f_{G}$.

Proof. Assume that G is an SEM graph with the SEM labeling f_{G}. Note that $f_{G}\left(V_{G}\right)=\{1,2,3, \ldots, p\}$, $f_{G}\left(\left(E_{G}\right)=\{p+1, p+2, p+3, \ldots, p+q\}\right.$ and there is constant λ such that for every $e_{k}=v_{i} v_{j} \in E_{G}$, $f_{G}\left(v_{i}\right)+f_{G}\left(v_{j}\right)+f_{G}\left(e_{k}\right)=\lambda$. To construct SEM labeling for $H^{(5)}(G)$ which has the vertex set $V_{H^{(5)}(G)}$ and the hyperedge set $E_{H^{(5)}(G)}$, we define a function $f: V_{H^{(5)}(G)} \cup E_{H^{(5)}(G)} \rightarrow\{1,2,3, \ldots, 2 p+2 q\}$ by

$$
\begin{array}{rlrl}
f\left(v_{i}\right) & =f_{G}\left(v_{i}\right) & & \text { for } i \in\{1,2,3, \ldots, p\}, \\
f\left(v_{i}^{\prime}\right) & =2 p+q+1-f_{G}\left(v_{i}\right) & & \text { for } i \in\{1,2,3, \ldots, p\}, \\
f\left(e_{i}\right) & =f_{G}\left(e_{i}\right) & \text { for } i \in\{1,2,3, \ldots, q\}, \\
f\left(E_{i}\right) & =3 p+2 q+1-f_{G}\left(e_{i}\right) & \text { for } i \in\{1,2,3, \ldots, q\} .
\end{array}
$$

It is easy to see that $\left.f\right|_{V_{G} \cup E_{G}}=f_{G}$. Consider for each $k \in\{1,2,3, \ldots, q\}$, we have

$$
\begin{aligned}
f\left(E_{k}\right)+\sum_{v \in E_{k}} f(v)= & f\left(E_{k}\right)+f\left(e_{k}\right)+f\left(v_{i}\right)+f\left(v_{i}^{\prime}\right)+f\left(v_{j}\right)+f\left(v_{j}^{\prime}\right) \\
= & \left(3 p+2 q+1-f_{G}\left(e_{k}\right)\right)+f_{G}\left(e_{k}\right) \\
& +f_{G}\left(v_{i}\right)+\left(2 p+q+1-f_{G}\left(v_{i}\right)\right) \\
& +f_{G}\left(v_{j}\right)+\left(2 p+q+1-f_{G}\left(v_{j}\right)\right) \\
= & 7 p+4 q+3
\end{aligned}
$$

is constant, where $e_{k}=v_{i} v_{j}$. Since $f\left(V_{H^{(5)}(G)}\right)=\left\{f\left(v_{i}\right) \mid i \in\{1,2,3, \ldots, p\}\right\} \cup\left\{f\left(v_{i}^{\prime}\right) \mid i \in\{1,2,3, \ldots, p\}\right\} \cup$ $\left\{f\left(e_{i}\right) \mid i \in\{1,2,3, \ldots, q\}\right\}=\{1,2,3, \ldots, p\} \cup\{2 p+1,2 p+2,2 p+3, \ldots, 2 p+q\} \cup\{p+1, p+2, p+3, \ldots, 2 p\}=$ $\{1,2,3, \ldots, 2 p+q\}, f$ is an SEM labeling. Thus, $H^{(5)}(G)$ is SEM.

Example 2.4. In Figure 5. S $_{5}$ is SEM by f_{G}. Since C_{5} has $p=5$ vertices and $q=5$ edges, by Theorem 2.3. we have $H^{(5)}\left(C_{5}\right)$ admitting an SEM labeling with $\Lambda=7 p+4 q+3=58$.

Figure 5: An SEM labeling f_{G} of C_{5} and an SEM labeling of $H^{(5)}\left(C_{5}\right)$ given by Theorem 2.3

3 The SEM labeling of $H^{(6)}(G)$

In section 2, we use the technique that the even consecutive integers can be paired in such a way that their sum in each pair is the same constant. In this section, we deal with a hypergraph $H^{(6)}(G)$ having $2 p+2 q$ vertices and q hyperedge. Since each hyperedge of $H^{(6)}(G)$ is of the form $E_{k}=\left\{e_{k}, e_{k}^{\prime}, v_{i}, v_{i}^{\prime}, v_{j}, v_{j}^{\prime}\right\}$, we first think about how to label e_{k}, e_{k}^{\prime} and E_{k} so that $f\left(e_{k}\right)+f\left(e_{k}^{\prime}\right)+f\left(E_{k}\right)$ is the same constant for all $i \in\{1,2,3, \ldots, q\}$. Fortunately, this task can be done in general if q is odd.

Theorem 3.1. Let G be a simple graph with the vertex set $\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{p}\right\}$ and the edge set $\left\{e_{1}, e_{2}, e_{3}, \ldots, e_{q}\right\}$. If q is odd, then there exists an SEM labeling for $H^{(6)}(G)$.

Proof. Let q be an odd positive integer. Define a function $f: V_{H^{(6)}(G)} \cup E_{H^{(6)}(G)} \rightarrow\{1,2,3, \ldots, 2 p+$ $2 q, 2 p+2 q+1, \ldots, 2 p+3 q\}$ by

$$
\begin{aligned}
f\left(v_{i}\right) & =i & & \text { for } i \in\{1,2,3, \ldots, p\}, \\
f\left(v_{i}^{\prime}\right) & =2 p+1-i & & \text { for } i \in\{1,2,3, \ldots, p\}, \\
f\left(e_{i}\right) & =2 p+i & & \text { for } i \in\{1,2,3, \ldots, q\}, \\
f\left(e_{i}^{\prime}\right) & =2 p+\frac{3 q-1}{2}+i & & \text { for } i \in\left\{1,2,3, \ldots, \frac{q+1}{2}\right\}, \\
f\left(e_{i}^{\prime}\right) & =2 p+\frac{q-1}{2}+i & & \text { for } i \in\left\{\frac{q+3}{2}, \frac{q+5}{2}, \frac{q+7}{2}, \ldots, q\right\}, \\
f\left(E_{i}\right) & =2 p+3 q-2(i-1) & & \text { for } i \in\left\{1,2,3, \ldots, \frac{q+1}{2}\right\}, \\
f\left(E_{i}\right) & =2 p+3 q-1-2\left(i-\frac{q+3}{2}\right) & & \text { for } i \in\left\{\frac{q+3}{2}, \frac{q+5}{2}, \frac{q+7}{2}, \ldots, q\right\} .
\end{aligned}
$$

We can easily check that f is a bijection and $f\left(V_{H^{(6)}(G)}\right)=\{1,2,3, \ldots, 2 p+2 q\}$. Consider each E_{k},

- if $k \in\left\{1,2,3, \ldots, \frac{q+1}{2}\right\}$, then

$$
\begin{aligned}
f\left(E_{k}\right)+\sum_{v \in E_{k}} f(v)= & f\left(E_{k}\right)+f\left(e_{k}\right)+f\left(e_{k}^{\prime}\right)+f\left(v_{i}\right)+f\left(v_{i}^{\prime}\right) \\
& +f\left(v_{j}\right)+f\left(v_{j}^{\prime}\right) \\
= & (2 p+3 q-2(k-1))+(2 p+k)+\left(2 p+\frac{3 q-1}{2}+k\right) \\
& +i+(2 p+1-i)+j+(2 p+1-j) \\
= & 10 p+\frac{9 q-1}{2}+4 ;
\end{aligned}
$$

- if $k \in\left\{\frac{q+3}{2}, \frac{q+5}{2}, \frac{q+7}{2}, \ldots, q\right\}$, then

$$
\begin{aligned}
f\left(E_{k}\right)+\sum_{v \in E_{k}} f(v)= & f\left(E_{k}\right)+f\left(e_{k}\right)+f\left(e_{k}^{\prime}\right)+f\left(v_{i}\right)+f\left(v_{i}^{\prime}\right) \\
& +f\left(v_{j}\right)+f\left(v_{j}^{\prime}\right) \\
= & \left(2 p+3 q-1-2\left(k-\frac{q+3}{2}\right)\right)+(2 p+k) \\
& +\left(2 p+\frac{q-1}{2}+k\right)+i+(2 p+1-i)+j+(2 p+1-j) \\
= & 10 p+\frac{9 q-1}{2}+4 ;
\end{aligned}
$$

where $e_{k}=v_{i} v_{j}$. Since $f\left(E_{k}\right)+\sum_{v \in E_{k}} f(v)$ is the same constant, $H^{(6)}(G)$ is SEM.
Example 3.2. Let C_{5} be a cycle with $p=5$ and $q=5$. We represent $H^{(6)}\left(C_{5}\right)$ and use Theorem 3.1 to label it as shown in Figure 6. Furthermore, $\Lambda=10 p+\frac{9 q-1}{2}+4=76$.

Figure 6: $C_{5}, H^{(6)}\left(C_{5}\right)$ and an SEM labeling for $H^{(6)}\left(C_{5}\right)$ with $\Lambda=76$
In the case when q is even, it is impossible to distribute $3 q$ consecutive integers into $n 3$-subsets so that the sum of elements of each 3 -subsets is the same constant. Thus, constructing a labeling for $H^{(6)}(G)$, where G is a simple graph with even size, depends on a structure of its hypergraph. However, some hypergraphs are justified to be SEM. For example, in [3], they gave the SEM labelings of $H^{(6)}\left(C_{n}\right)$ and $H^{(6)}\left(P_{n}\right)$ (note that in [3, they defined $H^{(6)}\left(C_{n}\right)$ and $H^{(6)}\left(P_{n}\right)$ in terms of ${ }^{2} C_{n}^{(6)}$ and ${ }^{2} P_{n}^{(6)}$, respectively). In the next section, we show that $H^{(6)}\left(n C_{4}\right)$ is SEM.

4 The SEM labeling of $H^{(6)}\left(n C_{4}\right)$

Firstly, we represent $n C_{4}$ as shown in Figure 7. Note that $v_{i j}$ denote the j th vertex of i th cycle. Furthermore, $e_{k 1}=v_{k 1} v_{k 2}, e_{k 2}=v_{k 2} v_{k 3}, e_{k 3}=v_{k 3} v_{k 4}$ and $e_{k 4}=v_{k 4} v_{k 1}$ are 4 edges of the k th cycle where $k \in\{1,2,3, \ldots, n\}$.

Thus, by the Definition 1.4. $H^{(6)}\left(n C_{4}\right)$ can be illustrated by Figure 8 . Note that $H^{(6)}\left(n C_{4}\right)$ has $16 n$ vertices and $4 n$ hyperedges. Before constructing the labeling, we prove the following lemma.

Figure 7: $n C_{4}$

Figure 8: $H^{(6)}\left(n C_{4}\right)$

Lemma 4.1. Let n be a positive integer. The list of consecutive integers $1,2,3, \ldots, 16 n$ can be paired into $8 n$ doubleton in such a way that the sums in each doubletons are $6 n+2,6 n+3,6 n+4, \ldots, 10 n+$ $1,22 n+1,22 n+2,22 n+3, \ldots, 26 n$.

Proof. We define doubletons as the following

1. $\{1,10 n\}$,
2. $\{2,6 n\},\{3,6 n+1\},\{4,6 n+2\}, \ldots,\{2 n+1,8 n-1\}$,
3. $\{2 n+2,4 n+1\},\{2 n+3,4 n+2\},\{2 n+4,4 n+3\}, \ldots,\{4 n, 6 n-1\}$,
4. $\{8 n, 14 n+1\},\{8 n+1,14 n+2\},\{8 n+2,14 n+3\}, \ldots,\{10 n-1,16 n\}$,
5. $\{10 n+1,12 n+1\},\{10 n+2,12 n+2\},\{10 n+3,12 n+3\}, \ldots,\{12 n, 14 n\}$.

Then, the result follows immedietly.
Now, we are ready to show that $H^{(6)}\left(n C_{4}\right)$ is SEM.
Theorem 4.2. $H^{(6)}\left(n C_{4}\right)$ is $S E M$.

Proof. Let S_{k} be the doubleton whose sum of both elements is k. Then, by Lemma 4.1, we have $S_{6 n+2}, S_{6 n+3}, S_{6 n+4}, \ldots, S_{10 n+1}, S_{22 n+1}, S_{22 n+2}, S_{22 n+3}, \ldots, S_{26 n}$. To construct an SEM labeling f :
$V_{H^{(6)}\left(n C_{4}\right)} \cup E_{H^{(6)}\left(n C_{4}\right)} \rightarrow\{1,2,3, \ldots, 20 n\}$, we define the bijective mapping in such a way that

$$
\begin{aligned}
f\left(\left\{v_{i 1}, v_{i 1}^{\prime}\right\}\right) & =S_{6 n+1+i} & \text { for } i \in\{1,2,3, \ldots, n\}, \\
f\left(\left\{v_{22}, v_{i,}^{2}\right\}\right) & =S_{8 n+1+i} & \text { for } i \in\{1,2,3, \ldots, n\}, \\
f\left(\left\{v_{i 3}, v_{i 3}\right\}\right) & =S_{8 n+2-i} & \text { for } i \in\{1,2,3, \ldots, n\}, \\
f\left(\left\{v_{i 4}, v_{i 2}^{\prime}\right\}\right) & =S_{10 n+2-i} & \text { for } i \in\{1,2,3, \ldots, n\}, \\
f\left(\left\{e_{i 1}, e_{i 1}^{\prime}\right\}\right) & =S_{26 n+1-i} & \text { for } i \in\{1,2,3, \ldots, n\}, \\
f\left(\left\{e_{i 2}, e_{i 2}^{\prime}\right\}\right) & =S_{22 n+i} & \text { for } i \in\{1,2,3, \ldots, n\}, \\
f\left(\left\{e_{i 3}, e_{i 3}^{\prime}\right\}\right) & =S_{24 n+i} & \text { for } i \in\{1,2,3, \ldots, n\}, \\
f\left(\left\{e_{i 4}, e_{i 4}^{\prime}\right\}\right) & =S_{23 n+i} & \text { for } i \in\{1,2,3, \ldots, n\}, \\
f\left(E_{i 1}\right) & =18 n+1-i & \text { for } i \in\{1,2,3, \ldots, n\}, \\
f\left(E_{i 2}\right) & =20 n+1-i & \text { for } i \in\{1,2,3, \ldots, n\}, \\
f\left(E_{i 3}\right) & =16 n+i & \text { for } i \in\{1,2,3, \ldots, n\}, \\
f\left(E_{i 4}\right) & =19 n+1-i & \text { for } i \in\{1,2,3, \ldots, n\} .
\end{aligned}
$$

It is clear that $f\left(V_{H^{(6)}\left(n C_{4}\right)}\right)=\{1,2,3, \ldots, 16 n\}$ by the prove of Lemma 4.1. Also, we have

$$
\begin{aligned}
& f\left(v_{i 1}\right)+f\left(v_{i 1}^{\prime}\right)=6 n+1+i, \\
& f\left(v_{i 2}\right)+f\left(v_{i 1}^{\prime}\right)=8 n+1+i, \\
& f\left(v_{i 3}\right)+f\left(v_{i 3}^{\prime}\right)=8 n+2-i, \\
& f\left(v_{i 4}\right)+f\left(v_{i 4}^{\prime}\right)=10 n+2-i, \\
& f\left(e_{i 1}\right)+f\left(e_{12}^{\prime}\right)=26 n+1-i, \\
& f\left(e_{i 2}\right)+f\left(e_{i 2}^{\prime}\right)=22 n+i, \\
& f\left(e_{i 3}\right)+f\left(e_{3}^{\prime}\right)=24 n+i, \\
& f\left(e_{i 4}\right)+f\left(e_{i 4}^{\prime}\right)=23 n+i .
\end{aligned}
$$

To verify that f is an SEM labeling, we consider $E_{i j}$ for all $i \in\{1,2,3, \ldots, n\}$,

- if $j=1$, then

$$
\begin{aligned}
f\left(E_{i 1}\right)+\sum_{v \in E_{i 1}} f(v)= & f\left(E_{i 1}\right)+\left(f\left(e_{i 1}\right)+f\left(e_{i 1}^{\prime}\right)\right)+\left(f\left(v_{i 1}\right)+f\left(v_{i 1}^{\prime}\right)\right) \\
& +\left(f\left(v_{i 2}\right)+f\left(v_{i 2}^{\prime}\right)\right) \\
= & (18 n+1-i)+(26 n+1-i)+(6 n+1+i) \\
& +(8 n+1+i) \\
= & 58 n+4 ;
\end{aligned}
$$

- if $j=2$, then

$$
\begin{aligned}
f\left(E_{i 2}\right)+\sum_{v \in E_{i 2}} f(v)= & f\left(E_{i 2}\right)+\left(f\left(e_{i 2}\right)+f\left(e_{i 2}^{\prime}\right)\right)+\left(f\left(v_{i 2}\right)+f\left(v_{i 2}^{\prime}\right)\right) \\
& +\left(f\left(v_{i 3}\right)+f\left(v_{i 3}^{\prime}\right)\right) \\
= & (20 n+1-i)+(22 n+i)+(8 n+1+i) \\
= & +(8 n+2-i) \\
= & 58 n+4 ;
\end{aligned}
$$

- if $j=3$, then

$$
\begin{aligned}
f\left(E_{i 3}\right)+\sum_{v \in E_{i 3}} f(v)= & f\left(E_{i 3}\right)+\left(f\left(e_{i 3}\right)+f\left(e_{i 3}^{\prime}\right)\right)+\left(f\left(v_{i 3}\right)+f\left(v_{i 3}^{\prime}\right)\right) \\
& +\left(f\left(v_{i 4}\right)+f\left(v_{i 4}^{\prime}\right)\right) \\
= & (16 n+i)+(24 n+i)+(8 n+2-i) \\
& +(10 n+2-i) \\
= & 58 n+4 ;
\end{aligned}
$$

- if $j=4$, then

$$
\begin{aligned}
f\left(E_{i 4}\right)+\sum_{v \in E_{i 4}} f(v)= & f\left(E_{i 4}\right)+\left(f\left(e_{i 4}\right)+f\left(e_{i 4}^{\prime}\right)\right)+\left(f\left(v_{i 4}\right)+f\left(v_{i 4}^{\prime}\right)\right) \\
& +\left(f\left(v_{i 1}\right)+f\left(v_{i 1}^{\prime}\right)\right) \\
= & (19 n+1-i)+(23 n+i)+(10 n+2-i) \\
& +(6 n+1+i) \\
= & 58 n+4 .
\end{aligned}
$$

Thus, the sum $f\left(E_{i j}\right)+\sum_{v \in E_{i j}} f(v)$ is the same constant for every hyperedge $E_{i j}$ of $H^{(6)}\left(n C_{4}\right)$. Therefore, $H^{(6)}\left(n C_{4}\right)$ is SEM.

Example 4.3. To construct an SEM labeling for $H^{(6)}\left(2 C_{4}\right)$. Notice that $n=2$ and $\left|V_{H^{(6)}\left(2 C_{4}\right)}\right|=16 n=$ 32. By using Lemma 4.1, we have doubletons,

- $\{2,12\},\{6,9\},\{3,13\},\{7,10\},\{4,14\},\{8,11\},\{5,15\}\{1,20\}$,
- $\{16,29\},\{21,25\},\{17,30\},\{22,26\},\{18,31\},\{23,27\},\{19,32\}\{24,28\}$,
whose sums in each doubleton are $14,15,16, \ldots, 21$ and $45,46,47, \ldots, 52$, orderly. By Theorem 4.2, we give labeling as follow,
$v_{11} \rightarrow 2$,
$e_{12} \rightarrow 16$,
$v_{23} \rightarrow 3$,
$e_{24} \rightarrow 22$,
$v_{11}^{\prime} \rightarrow 12$,
$e_{12}^{\prime} \rightarrow 29$,
$v_{23}^{\prime} \rightarrow 13$,
$e_{24}^{\prime} \rightarrow 26$,
$v_{12} \rightarrow 4, \quad e_{13} \rightarrow 18$,
$v_{24} \rightarrow 5, \quad E_{11} \rightarrow 36$,
$v_{12}^{\prime} \rightarrow 14, \quad \quad e_{13}^{\prime} \rightarrow 31$,
$v_{24}^{\prime} \rightarrow 15, \quad E_{12} \rightarrow 40$,
$v_{13} \rightarrow 7, \quad \quad e_{14} \rightarrow 17$,
$e_{21} \rightarrow 19, \quad E_{13} \rightarrow 33$,
$v_{13}^{\prime} \rightarrow 10$,
$e_{14}^{\prime} \rightarrow 30$
$e_{21}^{\prime} \rightarrow 32$,
$E_{14} \rightarrow 38$,
$v_{14} \rightarrow 1$
$e_{22} \rightarrow 21$,
$E_{21} \rightarrow 35$,
$v_{14}^{\prime} \rightarrow 20$,
$e_{22}^{\prime} \rightarrow 25$,
$E_{22} \rightarrow 39$,
$e_{11} \rightarrow 24$,
$e_{23} \rightarrow 23$,
$E_{23} \rightarrow 34$,
$e_{11}^{\prime} \rightarrow 28$,
$v_{21} \rightarrow 6$,
$E_{24} \rightarrow 37$.

We illustrate the labeling as shown in Figure 9. Moreover, $\Lambda=58 n+4=120$.

5 Conclusion an Discussion

In this article, we construct hypergraphs $H^{(5)}(G)$ and $H^{(6)}(G)$ from an arbitrary simple graph G. Even if G is or is not SEM graph, we still can prove that $H^{(5)}(G)$ is always an SEM 5 -uniform hypergraph and $H^{(6)}(G)$ is an SEM 6 -uniform hypergraph if G has even number of edges. For $H^{(6)}(G)$ with even number of edges, we give only example of an SEM labeling for $H^{(6)}\left(n C_{4}\right)$. There is a way to add more vertices to an SEM hypergraph H and preserve its SEM property. This method is similar to the one in [3] and we give a short proof here.

Theorem 5.1. Let H be a hypergraph with p vertices and q hyperedges. If H is SEM, then there exists an SEM hypergraph with $p+2 q$ vertices and q hyperedges.

Proof. Assume that H admits the SEM labeling f and has hyperedge set $E_{H}=\left\{E_{1}, E_{2}, E_{3}, \ldots, E_{q}\right\}$. Thus, $f\left(E_{H}\right)=\{p+1, p+2, p+3, \ldots, p+q\}$. Let $V^{\prime}=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{2 q}\right\}$ be the set of new vertices. Define

Figure 9: an SEM labeling for $H^{(6)}\left(2 C_{4}\right)$ with $\Lambda=120$
$E_{i}^{\prime}=E_{i} \cup\left\{v_{i}, v_{2 q-i}\right\}$ for $i \in\{1,2,3, \ldots, q\}$. To show that hypergraph H^{\prime} with vertex set $V_{H^{\prime}}=V_{H} \cup V^{\prime}$ and hyperedge set $E_{H^{\prime}}=\cup_{i=1}^{q}\left\{E_{i}^{\prime}\right\}$ is SEM, we give a mapping f^{\prime} by

$$
\begin{aligned}
f^{\prime}(v) & =f(v) & & \text { for all } v \in V_{H}, \\
f^{\prime}\left(v_{i}\right) & =p+i & & \text { for all } i \in\{1,2,3, \ldots, 2 q\}, \\
f^{\prime}\left(E_{i}^{\prime}\right) & =f\left(E_{i}\right)+2 q & & \text { for all } i \in\{1,2,3, \ldots, q\} .
\end{aligned}
$$

It is straight forward to check that $f^{\prime}\left(V_{H} \cup V^{\prime}\right)=\{1,2,3, \ldots, p+2 q\}=\left|V_{H^{\prime}}\right|$ and $f(e)+\sum_{v \in e} f(v)$ is the same constant for each $e \in E_{H^{\prime}}$. Thus, H^{\prime} is SEM.

By Theorem 5.1, if H is a k-uniform hypergraph then H^{\prime} is a $(k+2)$-uniform hypergraph. Hence, we can obatain a $(k+2 m)$-uniform SEM hypergraph by iterating the process in Theorem 5.1 m times.

Acknowledgement: The Scholarship from the Graduate School, Chulalongkorn University to Commemorate the $72^{\text {nd }}$ anniversary of his Majesty King Bhumibala Aduladeja is gratefully acknowledged.

References

[1] V. I., Voloshin, Introduction to Graph and Hypergraph Theory, New York, Nova Science Publishers, Inc., (2009).
[2] H. Enomoto, A. S. Llado, T. Nakamigawa, and G. Ringel, Super edge-magic graphs, SUT J. Math., 34, (1998) 105-109.
[3] R. Boonklurb, A. Narissayaporn, and S. Singhun, Super edge-magic labeling of m-node k-uniform hyperpaths and m-node k-uniform hypercycles, AKCE Int. J. Graphs Comb., 13(3), (2016) 218-229.
(Received 23 November 2018)
(Accepted 12 June 2019)

[^0]: ${ }^{0}$ This research was supported by the Scholarship from the Graduate School, Chulalongkorn University to Commemorate the $72^{\text {nd }}$ anniversary of his Majesty King Bhumibala Aduladeja
 ${ }^{1}$ Corresponding author email.

