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Abstract : The game of cops and robbers is a game that is usually played on a finite connected graph
G with two players, cop and robber, according to the following rules: (i) cop chooses a vertex of G to
begin and robber then chooses other vertex of G to begin and (ii) they alternatively move from their
present vertices to adjacent vertices along edges of G where the first move is a turn of cop. However,
they can also choose not to move from their positions at each of their turns as well. If cop catches some
robber after finite moves by occupying the same vertex as robber, it is called cop wins and such a graph
is called a cop-win graph; otherwise, it is called robber wins and such a graph is called a robber-win
graph. Recently, the game of cops and robbers played on a hypergraph has been defined and some rules
of the game have been changed; that is, they can move from their present vertex x to any vertex y which
is in the same hyperedge as vertex x. A hypergraph which cop wins is called a cop-win hypergraph;
otherwise, a robber-win hypergraph. Throughout this paper, we consider the game of cops and robbers on
the products of cop-win hypergraphs. Then, we prove that their cartesian and minimal (maximal) rank
preserving direct products are robber-win hypergraphs, and their standard (normal) strong product is
still a cop-win hypergraph.
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1 Introduction

Let G be a finite connected graph. A vertex-pursuit game of two players, cop and robber, played on
a graph G was first introduced by Nowakowski and Winkler [1]. The rules of the game are defined as
follows:

(i) First, the cop selects some vertex to begin and the robber then selects the other vertex to begin.
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(ii) In each round, the cop and the robber take altenatively moving from their present vertex to other
vertices along edges. However, they can also choose not to move from their positions at each of
their turns as well.

There are two winning strategies to finish the game such as cop can catch robber by occupying the
same vertex as the robber after finite number of moves, or robber can run away. The graph which cop
has the winning strategy is called a cop-win graph; otherwise, a robber-win graph. In [1], the cop-win
graph are characterized and the products of cop-win graphs is a cop-win graph are proved.

Besides playing on graphs, cops and robbers game can be played on other stucture; that is, hyper-
graph.

Definition 1.1. [2] The pair H = (V,E) is called a hypergraph including vertex set V or V (H) which
is a finite set and (hyper)edge set E or E(H) which is a family of subsets of V . A hypergraph in which
all edges have the same size r ≥ 0 is called r-uniform

In 2011, Baird [3] introduced the game of cops and robbers played on hypergraphs. Cop and robber
can move from their present vertex x to any vertex y belonging to the same hyperedge as vertex x, which
is slightly changed from the game played on graphs. A hypergraph which cop wins is called a cop-win
hypergraph and a hypergraph which robber wins is called a robber-win hypergraph.

Definition 1.2. [3] A hypergraph is t-joined if each intersection of hyperedges contains exactly t vertices.
A hyperpath is a sequence of hyperedges E1, E2, E3, . . . , Ek, such that Ei and Ei+1 are t-joined for some
t > 0 and for 1 ≤ i ≤ k − 1 and Ei ∩ Ej = ∅ when j 6= i + 1(mod k). For an integer k > 2, a k-
hypercycle is a collection of k hyperedges E1, E2, E3, . . . , Ek with two hyperedges Ei and Ej incident if
i = j + 1(mod k).

Baird [3] has proved that a path is a cop-win hypergraph and a cycle of length exceed 4 is a robber-win
hypergraph. Throughout this paper, we consider the game of cops and robbers played on the products
of hypergraphs, namely the cartesian product, the direct product and the strong product.

Definition 1.3. [4] Let H1 = (V1, E2) and H2 = (V2, E2) be hypergraphs. The Cartesian product
H = H1�H2 of two hypergraphs H1 and H2 has the vertex set V (H) = V1 × V2 and the edge set
E(H) = {{x1} × e2 | x1 ∈ V1, e2 ∈ E2} ∪ {e1 × {x2} | e1 ∈ E1, x2 ∈ V2}

Example 1.4. Let H1 = (V1, E1) where V1 = {1, 2, 3} and E1 = {{1, 2, 3}} and H2 = (V2, E2) where
V2 = {a, b} and E1 = {{a, b}}

1 2 3

Figure 1: Hypergraph H1

a b

Figure 2: Hypergraph H2

The vertex set V1 × V2 = {(1, a), (2, a), (3, a), (1, b), (2, b), (3, b)}. We use ij instead of (i, j) in the
following hypergraph.
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1a 2a 3a

1b 2b 3b

Figure 3: The Cartesian Product H1�H2

Definition 1.5. [4] For two hypergraphs H1 = (V1, E1) and H2 = (V2, E2), their minimal rank pre-
serving direct product H1 ×1 H2 has the vertex set V1 × V2. A subset of {(x1, y1), (x2, y2),
(x3, y3), . . . , (xr, yr)} of V1 × V2 is an edge in H1 ×1 H2 if and only if

(i) {x1, x2, x3, . . . , xr} is an edge in H1 and {y1, y2, y3, . . . , yr} is a subset of an edge in H2, or

(ii) {x1, x2, x3, . . . , xr} is a subset of an edge in H1 and {y1, y2, y3, . . . , yr} is an edge in H2.

Example 1.6. We use hypergraphs H1 and H2 in Example 1.4.The vertex set V1×V2 = {(1, a), (2, a), (3, a),
(1, b), (2, b), (3, b)}. We use ij instead of (i, j) in the following hypergraph.

1a 2a 3a

1b 2b 3b

Figure 4: The Minimal Rank Preserving Direct Product H1 ×1 H2

Definition 1.7. [4] For two hypergraphs H1 = (V1, E1) and H2 = (V2, E2), their maximal rank pre-
serving direct product H1 ×2 H2 has the vertex set V1 × V2. A subset of {(x1, y1), (x2, y2),
(x3, y3), . . . , (xr, yr)} of V1 × V2 is an edge in H1 ×2 H2 if and only if

(i) {x1, x2, x3, . . . , xr} is an edge in H1 and there is an edge e2 in E2 such that {y1, y2, y3, . . . , yr} is
a multiset of elements of e2 and e2 ⊆ {y1, y2, y3, . . . , yr}, or

(ii) {y1, y2, y3, . . . , yr} is an edge in H2 and there is an edge e1 in E1 such that {x1, x2, x3, . . . , xr} is
a multiset of elements of e1 and e1 ⊆ {x1, x2, x3, . . . , xr}.

Example 1.8. We use hypergraphs H1 and H2 in Example 1.4. The vertex set V1×V2 = {(1, a), (2, a), (3, a),
(1, b), (2, b), (3, b)}. We use ij instead of (i, j) in the following hypergraph.
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1a 2a 3a

1b 2b 3b

Figure 5: The Maximal Rank Preserving Direct Product H1 ×2 H2

Notice that if H1 and H2 are r-uniform hypergraphs, then H1 ×1 H2 = H1 ×2 H2.

Definition 1.9. [4] For two hypergraphs H1 = (V1, E1) and H2 = (V2, E2), their normal (strong)
product. H1�1H2 has the vertex set V1×V2 and the edge set E(H1�1H2) = E(H1�H2)∪E(H1×1H2).

That is, a subset {(x1, y1), (x2, y2), (x3, y3), . . . , (xr, yr)} of V1×V2 is an edge in H1�1H2 if and only
if

(i) {x1, x2, x3, . . . , xr} ∈ E1 and y1 = y2 = y3 = · · · = yr ∈ V2, or

(ii) {y1, y2, y3, . . . , yr} ∈ E2 and x1 = x2 = x3 = · · · = xr ∈ V1, or

(iii) {x1, x2, x3, . . . , xr} ∈ E1 and {y1, y2, y3, . . . , yr} is a subset of an edge in H2, or

(iv) {y1, y2, y3, . . . , yr} ∈ E2 and {x1, x2, x3, . . . , xr} is a subset of an edge in H1.

Example 1.10. We use hypergraphs H1 and H2 in Example 1.4. The vertex set V1×V2 = {(1, a), (2, a), (3, a),
(1, b), (2, b), (3, b)}. We use ij instead of (i, j) in the following hypergraph.

1a 2a 3a

1b 2b 3b

Figure 6: The Normal (Strong) Product H1 �1 H2

Definition 1.11. [4] For two hypergraphs H1 = (V1, E1) and H2 = (V2, E2), their standard strong
product. H1�2H2 has the vertex set V1×V2 and the edge set E(H1�2H2) = E(H1�H2)∪E(H1×2H2).

That is, a subset {(x1, y1), (x2, y2), (x3, y3), . . . , (xr, yr)} of V1×V2 is an edge in H1�2H2 if and only
if

(i) {x1, x2, x3, . . . , xr} ∈ E1 and y1 = y2 = y3 = · · · = yr ∈ V2, or

(ii) {y1, y2, y3, . . . , yr} ∈ E2 and x1 = x2 = x3 = · · · = xr ∈ V1, or

(iii) {x1, x2, x3, . . . , xr} ∈ E1 and there is an edge e2 in E2 such that {y1, y2, y3, . . . , yr} is a multiset of
elements of e2 and e2 ⊆ {y1, y2, y3, . . . , yr}, or
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(iv) {y1, y2, y3, . . . , yr} ∈ E2 and there is an edge e1 in E1 such that {x1, x2, x3, . . . , xr} is a multiset of
elements of e1 and e1 ⊆ {x1, x2, x3, . . . , xr}

Example 1.12. We use hypergraphs H1 and H2 in Example 1.4. The vertex set V1×V2 = {(1, a), (2, a), (3, a),
(1, b), (2, b), (3, b)}. We use ij instead of (i, j) in the following hypergraph.

1a 2a 3a

1b 2b 3b

Figure 7: The Standard Strong Product H1 �2 H2

2 The Cartesian Product and Direct Product of Cop-Win Hy-
pergraphs

According to the definition of the cartesian product, we see that a subset {(x1, y1), (x2, y2),
(x3, y3), . . . , (xr, yr)} of V1 × V2 is an edge in H1�H2 if and only if

(i) {x1, x2, x3, . . . xr} ∈ E1 and y1 = y2 = y3 = · · · = yr ∈ V2, or

(ii) {y1, y2, y3, . . . yr} ∈ E2 and x1 = x2 = x3 = · · · = xr ∈ V1.

Theorem 2.1. The cartesian product of cop-win hypergraphs is a robber-win hypergraph.

Proof. Assume that H1 = (V1, E1) and H2 = (V2, E2) are cop-win hypergraphs. We see that a sub-
hypergraph H ′ with any four vertice of the form (xi1 , yj1), (xi1 , yj2), (xi2 , yj1), (xi2 , yj2) where xi1 , xi2 ∈
V1, yj1 , yj2 ∈ V2, i1 6= i2 and j1 6= j2 forms a cycle of length 4. By [3], such a cycle is a robber-win
hypergraph, so is a subhypergraph H ′. Thus, H1�H2 is a robber-win hypergraph.

From Definitions 1.5 and 1.7, we observe that for each vertex (xi, yj) in H1 ×∗ H2 where ∗ is 1 or 2,
there are at least one vertex of the form (xi, yj′) and at least one vertex of the form (xi′ , yj) which are
not adjacent to (xi, yj) where i 6= i′ and j 6= j′.

Theorem 2.2. The minimal (maximal) rank preserving direct product of cop-win hypergraphs is a robber-
win hypergraph.

Proof. Let k and l be positive integers. Assume that H1 = (V1, E1) and H2 = (V2, E2) are cop-win
hypergraphs where V1 = {x1, x2, x3, . . . , xk} and V2 = {y1, y2, y3, . . . , yl}.

First of all, cop selects one vertex in H1 ×∗H2, say (xi1 , yi2) where 1 ≤ i1 ≤ k and 1 ≤ i2 ≤ l. Then,
robber selects other vertices so that he can avoid cop at the beginning, say (xj1 , yj2) where 1 ≤ j1 ≤ k
and 1 ≤ j2 ≤ l. Next, cop moves to one vertex which is in the same edge as (xi1 , yi2) and (xj1 , yj2),
say (x′, y′). By the previous observation, robber can move to one vertex which is in the same edge as
(xk, yl), but not in the same edge as the vertex (x′, y′), say (x′′, y′′). We know that there exists an edge
containing (x′, y′) and (x′′, y′′). Then, cop moves along such an edge and stays at some vertices, say
(x, y). However, robber can find the vertex which is in the same edge as (x′′, y′′), but not in the same
edge as the vertex (x, y) and then stay at this vertex. Continue this process, we conclude that robber
can escape from cop.



32 Thai J. Math. Special Issue (2020)/ P. Siriwong, R. Boonklurb and S. Singhun

3 The Strong Product of Cop-Win hypergraphs

Before showing the strong product of cop-win hypergraphs is a cop-win hypergraph, we prove the
following lemma.

Lemma 3.1. Let H1 and H2 be hypergraphs both having only one (hyper)edge, e1 and e2, respectively.
Then, H1 �∗ H2 is a cop-win hypergraph.

Proof. By [3], we know that a path is a cop-win hypergraph. Then, H1 and H2 are cop-win hypergraphs.
Let k and l be positive integers. Let e1 = {x1, x2, x3, . . . , xk} and e2 = {y1, y2, y3, . . . , yl}. We see that
cop can choose any vertex in each edge so that he can win the game. Without loss of generality, let
(x1, y1) be the stating vertex of cop. There are three possible cases of the starting vertex of robber.

Case 1. Robber occupies the vertex (xi, y1) where i 6= 1. Since each vertex in H1 is adjacent to each
other, there exists an edge in H1�H2 containing both x1 and xi. Then, cop moves along such a edge to
catch robber.

Case 2. Robber occupies the vertex (x1, yj) where j 6= 1. Since each vertex in H2 is adjacent to each
other, there exists an edge in H1�H2 containing both y1 and yj . Then, cop moves along such a edge to
catch robber.

Case 3. Robber occupies the vertex (xi, yj) where i, j 6= 1. Since each vertex in H1 is adjacent
to each other and each vertex in H2 is also adjacent to each other, there exists an edge in H1 ×∗ H2

containing both (x1, y1) and (xi, yj). Then, cop moves along such edges to catch robber.
From the previous three cases, H1 �∗ H2 is a cop-win hypergraph.

Theorem 3.2. If H1 and H2 are cop-win hypergraphs, then H1 �∗ H2 is also a cop-win hypergraph.

Proof. Let k and l be positive integers. Assume that H1 = (V1, E1) and H2 = (V2, E2) are cop-win
hypergraphs, where V1 = {x1, x2, x3, . . . , xk} and V2 = {y1, y2, y3, . . . , yl}.

To consider H1 �∗ H2, let i and j be positive integers and let Si = {xi} × E2 and Tj = E1 × {yj}.
We consider three possible cases of the present vertex of cop and the present vertex of robber.

Case 1. Cop chooses (xi, yj1) to stay and robber chooses (xi, yj2) to stay where j1 6= j2. To catch
robber, cop moves along some edges in Si. If yj1 and yj2 are in the same edge in H2, then cop can occupy
the same vertex as robber in H1�∗H2. Otherwise, there are two different edges of H2, one containing yj1
and the other containing yj2 , cop moves to the vertex (xi, yj3) where yj3 is the vertex which cop chooses
in the next turn in H2.

Case 2. Cop chooses (xi1 , yj) to stay and robber chooses (xi2 , yj) to stay where i1 6= i2. To catch
robber, cop moves along some edges in Tj . If xi1 and xi2 are in the same edge in H1, then cop can occupy
the same vertex as robber in H1�∗H2. Otherwise, there are two different edges of H1, one containing xi1

and the other containing xi2 , cop moves to the vertex (xi3 , yj) where xi3 is the vertex which cop chooses
in the next turn in H1.

Case 3. Cop chooses (xi1 , yj2) to stay and robber chooses (xi2 , yj2) to stay where i1 6= i2 and j1 6= j2.
To catch robber, cop moves along some edges in E(H1 ×∗ H2). If both xi1 and xi2 are in the same edge
in H1, and both yj1 and yj2 are in the same edge in H2, then cop can occupy the same vertex as robber
in H1 �∗H2. Otherwise, there are two different edges of H1, one containing xi1 and the other containing
xi2 , and there are two different edges of H2, one containing yj1 and the other containing yj2 , cop moves
to the vertex (xi3 , yj3) where xi3 is the vertex which cop chooses in the next turn in H1 and yj3 is the
vertex which cop chooses in the next turn in H2.

Following the three cases after finite moves, cop and robber stay at some vertices in the same H ′�∗H ′′

where H ′ and H ′′ are hypergraphs both having only one (hyper)edge e ∈ E1 and f ∈ E2, respectively.
Then, by Lemma 3.1, cop can catch robber.
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Corollary 3.3. Let m ≥ 2 be a positive integer. If H is a collection of m cop-win hypergraphs, then the
standard (normal) strong product of such m cop-win hypergraphs is a cop-win hypergraph.

Proof. We prove by the mathematical induction on m. For m = 2, the corollary done by Theorem 3.2.
Let m > 2. Assume that the standard (normal) strong product of m − 1 cop-win hypergraphs is a
cop-win hypergraph. By induction hypothesis and Theorem 3.2, we obtain that the standard (normal)
strong product of m cop-win hypergraphs is also a cop-win hypergraph.

4 Conclusion an Discussion

According to the cartesian product and the minimal (maximal) rank preserving direct product of cop-
win hypergraphs, we obtain that both products are not a cop-win hypergraph. However, their standard
(normal) strong product whose edge set is the union of the edge set of two previous products. Thus, we
observe that the edge set of the minimal (maximal) rank preserving direct product destroys a cycle of four
vertices in a certain of the cartesian product and the edge set of cartesian product converts non-adjacent
vertex to adjacent vertex in the minimal (maximal) rank preserving direct product, which causes the
standard (normal) strong product of cop-win hypergraphs to be a cop-win hypergraph.
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