Edge-Odd Graceful Graphs Related to Cycles

Sirirat Singhun ${ }^{\dagger}$, Ratinan Boonklurb ${ }^{\ddagger}$, Apinya Tirasuwanwasee ${ }^{\ddagger}$ and Pensiri Sompong ${ }^{\S}$
${ }^{\dagger}$ Department of Mathematics, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand e-mail : sin_sirirat@ru.ac.th
\ddagger Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
e-mail : ratinan.b@chula.ac.th and apinya.at4102277@gmail.com
§ Faculty of Science and Engineering, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand e-mail : pensiri.so@ku.th

Abstract

Let G be a graph consisting of the vertex set $V(G)$ and the edge set $E(G)$ such that $|E(G)|=q$. An edge-odd graceful labeling is a bijection function $f: E(G) \rightarrow\{1,3,5, \ldots, 2 q-1\}$ such that for each $v \in V(G), f^{*}(v)=\sum_{u v \in E(G)} f(u v)(\bmod 2 q)$ are all distinct. In this article, edge-odd graceful labelings for graphs related to cycles, $(n, 1)$-kite and ($n, 2$)-kite where n is an integer such that $n \geq 3$, the graph $P_{2} \cdot n K_{1}$ where n is a positive integer and the cartesian product $C_{n} \square P_{3}$ and $C_{3} \square P_{k}$ where $n \geq 3$ and $k \geq 4$ are obtained. Moreover, we show that if a graph G is edge-odd graceful and each vertex has odd degree, then the union of even copies of G is edge-odd graceful.

Keywords : edge-odd graceful; the cartesian product of a graph; the union of graphs.
2010 Mathematics Subject Classification : 05C78.

1 Introduction and Preliminaries

Thoughtout this paper, for a graph G, let $V(G)$ and $E(G)$ denote the vertex set and the edge set of G, respectively. A graph labeling which is an assignment of integers to the vertices or edges, or both, subject to certain condition was introduced by Rosa [1 in the late 1960s. Rosa called a function f a β-valuation (which well-known in the term graceful labeling) of a graph G with q edges if f is an injection from the vertex set to $\{0,1,2, \ldots, q\}$ such that each edge $x y$ of G is assigned the label $|f(x)-f(y)|$, the resulting edge labels are distinct. A graph G is said to be graceful if G admits a graceful labeling. In 1991, Gnanajothi [2] defined a graph G with q edges to be odd-graceful if there is an injection f from the vertex set to $\{0,1,2, \ldots, 2 q-1\}$ such that, when each edge $x y$ of G is assigned the label $|f(x)-f(y)|$, the

[^0]resulting edges labels are in $\{1,3,5, \ldots, 2 q-1\}$. Later, Solairaju and Chithra [3] introduced a new type of labeling which can be regarded as an inverse problem of labeling defined by Gnanajothi as follows.

An edge-odd graceful labeling of a graph G with q edges is a bijection function f from $E(G)$ to $\{1,3,5, \ldots, 2 q-1\}$ so that the induced mapping f^{*} from $V(G)$ to $\{0,1,2, \ldots, 2 q-1\}$ given by, for each $v \in V(G), f^{*}(v)=\sum_{u v \in E(G)} f(u v)(\bmod 2 q)$. The edge labels and vertex labels are distinct. A graph which has an edge-odd graceful labeling is called edge-odd graceful.

Not all graphs are edge-odd graceful. For example, the star $K_{1,3}$, a graph with one vertex (called the center) joining to three vertices, is not edge-odd graceful. Without loss of generality, we label each edge by 1,3 and 5 . Then, the center is labeled by $(1+3+5)(\bmod 6)=3$, which is the same as one of the three vertices.

The edge-odd graceful labelings of some graphs related to paths are shown in [3. Later, Singhun [4] began to show edge-odd graceful labelings of $S F(n, m)$ where $n \geq 3$ is odd and m is even and $n \mid m$ and a wheel graph W_{n}, where n is even. In 2015, the authors in 5] also showed edge-odd graceful labelings of some prisms and prism-like graphs, $\operatorname{Prism}\left(S_{n}\right)$ when $n \geq 3, \operatorname{Prism}_{3}\left(S_{n}\right)$ when $n \geq 3$ and $n \equiv 2(\bmod$ 6), $\operatorname{Prism}\left(W_{n}\right)$ when $n \geq 3$ and $2 \mid n$. Recently, Daoud [6] constructed several edge-odd graceful labelings for friend ship graphs $F_{r_{n}}^{(3)}, F_{r_{n}}^{(4)}$ and $\bar{F}_{r_{n}}^{(3)}$, wheel graph W_{n}, helm graph H_{n}, web graph $W b_{n}$, double web graph $W_{n, n}$, fan graph F_{n}, double fan graph $F_{2, n}$, gear graph G_{n}, half gear graph $H G_{n}$ and polar grid graph $P_{m, n}$.

In this article, we continue to show edge-odd graceful labelings of graphs related to cycles, (n, k)-kites when $n \geq 3$ is an integer and $k=1,2$, the graph $P_{2} \cdot n K_{1}$ for all integer $n \geq 2$. Next, edge-odd graceful labelings of the cartesian product of a cycle and a path, $C_{n} \square P_{3}$ for all $n \geq 3$ and $C_{3} \square P_{k}$ for all $k \geq 4$ are shown. Moreover, we show that if an edge-odd graceful graph G has all odd degree vertices, then the union of even copies of G is edge-odd graceful.

2 An (n, k)-kite

Let $n \geq 3$. A graph (n, k)-kite is a graph obtained from a cycle $v_{1} v_{2} v_{3} \cdots v_{n} v_{1}$ and a path $v_{n+1} v_{n+2} v_{n+3} \cdots$ v_{n+k} by joining v_{1} and v_{n+1}. Then, $V((n, k)$-kite $)=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}, v_{n+1}, \ldots, v_{n+k}\right\}$ and $E((n, k)$-kite $)$ $=\left\{v_{i} v_{i+1} \mid i \in\{1,2, \ldots, n-1, n+1, \ldots, n+k-1\}\right\} \cup\left\{v_{n} v_{1}, v_{1} v_{n+1}\right\}$. Edge-odd graceful labelings for ($n, 1$)-kite and ($n, 2$)-kite are shown in Algorithm 2.1 and 2.2

Algorithm 2.1. Let G be the graph (n,1)-kite where $n \geq 3$. Define the edge labeling $f: E(G) \rightarrow$ $\{1,3,5, \ldots, 2 n+1\}$ for G as follow.

If n is odd, let

- $f\left(v_{i} v_{i+1}\right)=n+i+1$ for $i \in\{1,3,5, \ldots, n-2\}$;
- $f\left(v_{i} v_{i+1}\right)=i+1$ for $i \in\{2,4,6, \ldots, n-1\}$;
- $f\left(v_{1} v_{n}\right)=1$; and
- $f\left(v_{1} v_{n+1}\right)=2 n+1$.

If n is even, let

- $f\left(v_{i} v_{i+1}\right)=2 i+1$ for $i \in\{1,2,3, \ldots, n-1\}$;
- $f\left(v_{n} v_{1}\right)=2 n+1$; and
- $f\left(v_{1} v_{n+1}\right)=1$.

Theorem 2.1. Let n be an integer such that $n \geq 3$. The graph ($n, 1$)-kite is edge-odd graceful.
Proof. Let G be the graph $(n, 1)$-kite. By Algorithm 2.1, it is easy to see that f is a bijection from $E(G)$ to $\{1,3,5, \ldots, 2 n+1\}$. It suffices to show that the induced mapping f^{*} on vertices of G are distinct.

Case 1: n is odd. By Algorithm 2.1. (i) $f^{*}\left(v_{1}\right)=n+2$, (ii) $f^{*}\left(v_{i}\right)=(n+2 i+1)(\bmod 2 n+2)$ for $i \in\{2,3,4, \ldots, n-1\}$, (iii) $f^{*}\left(v_{n}\right)=n+1$ and (iv) $f^{*}\left(v_{n+1}\right)=2 n+1$.

Then, $f^{*}(v) \in\{1,2,3, \ldots, 2 n+1\}$ for each $v \in V(G)$. By (i) and (iv), $f^{*}\left(v_{1}\right)=n+2$ and $f^{*}\left(v_{n+1}\right)=$ $2 n+1$ are odd and distinct. By (ii) and (iii), $f^{*}\left(v_{i}\right)=(n+2 i+1)(\bmod 2 n+2)$ for $i \in\{2,3,4, \ldots, n-1\}$ and $f^{*}\left(v_{n}\right)=n+1$ are even. It suffices to show that for $i \in\{2,3,4, \ldots, n-1\},(n+2 i+1)(\bmod 2 n+2)$ are distinct and also different from $n+1$.

Suppose that $n+2 i+1 \equiv n+2 j+1(\bmod 2 n+2)$ for some $i, j \in\{2,3,4, \ldots, n-1\}$ and $i>j$. Then, $(n+1) \mid(i-j)$. However, $1 \leq i-j \leq n-3$, which is a contradiction.

Suppose that $n+2 i+1 \equiv n+1(\bmod 2 n+2)$ for some $i \in\{2,3,4, \ldots, n-1\}$. Then, $i \equiv 0(\bmod$ $n+1)$. Thus, $(n+1) \mid i$, which is a contradiction.

Case $2: n$ is even. By Algorithm 2.1. (i) $f^{*}\left(v_{1}\right)=3$, (ii) $f^{*}\left(v_{i}\right)=4 i(\bmod 2 n+2)$ for $i \in$ $\{2,3,4, \ldots, n\}$, and (iii) $f^{*}\left(v_{n+1}\right)=1$.

Then, $f^{*}(v) \in\{1,2,3, \ldots, 2 n+1\}$ for each $v \in V(G)$. By (i) and (iii), $f^{*}\left(v_{1}\right)=3$ and $f^{*}\left(v_{n+1}\right)=1$ are odd and distinct. By (ii), $f^{*}\left(v_{i}\right)=4 i(\bmod 2 n+2)$ for $i \in\{2,3,4, \ldots, n\}$ are all even. It suffices to show that for $i \in\{2,3,4, \ldots, n\}, f^{*}\left(v_{i}\right)=4 i(\bmod 2 n+2)$ are all distinct.

Suppose that $f^{*}\left(v_{i}\right) \equiv f^{*}\left(v_{j}\right)(\bmod 2 n+2)$ for some $i, j \in\{2,3,4, \ldots, n\}$ and $i>j$. Then, $2(i-j)=$ $(n+1) t$ for some positive integer t. Since $n+1$ is odd, $(n+1) \mid(i-j)$. However, $1 \leq i-j \leq n-2$, which is a contradiction.

Therefore, the edge labelings obtained from Algorithm 2.1 are edge-odd graceful labelings. Hence, G is edge-odd graceful.

Figure 1: (a) (5, 1)-kite, (b) (5,2)-kite, (c) (6, 1)-kite and (d) (6, 2)-kite

Algorithm 2.2. Let G be the graph ($n, 2$)-kite where $n \geq 3$. Define the edge labeling $f: E(G) \rightarrow$ $\{1,3,5, \ldots, 2 n+3\}$ for G as follow.

If n is odd, let

- $f\left(v_{i} v_{i+1}\right)=2 i-1$ for $i \in\{1,2,3, \ldots, n-1\}$;
- $f\left(v_{1} v_{n}\right)=2 n-1$;
- $f\left(v_{1} v_{n+1}\right)=2 n+1$; and
- $f\left(v_{n+1} v_{n+2}\right)=2 n+3$.

If n is even, let

- $f\left(v_{i} v_{i+1}\right)=i$ for $i \in\{1,3,5, \ldots, n-1\}$;
- $f\left(v_{i} v_{i+1}\right)=n+1+i$ for $i \in\{2,4,6, \ldots, n-2\}$;
- $f\left(v_{1} v_{n}\right)=2 n+1$;
- $f\left(v_{1} v_{n+1}\right)=n+1$; and
- $f\left(v_{n+1} v_{n+2}\right)=2 n+3$.

Theorem 2.2. Let n be an integer such that $n \geq 3$. The graph ($n, 2$)-kite is edge-odd graceful.

Proof. Let G be the graph ($n, 2$)-kite. By Algorithm 2.2 , it is easy to see that f is a bijection from $E(G)$ to $\{1,3,5, \ldots, 2 n+1\}$. It suffices to show that the induced mapping f^{*} on vertices of G are distinct.

Case 1:n is odd. We see from Algorithm 2.2 that (i) $f^{*}\left(v_{1}\right)=2 n-3$, (ii) $f^{*}\left(v_{i}\right)=(4 i-4)(\bmod 2 n+$ 4) for $i \in\{2,3,4, \ldots, n\}$, (iii) $f^{*}\left(v_{n+1}\right)=2 n$, and (iv) $f^{*}\left(v_{n+2}\right)=2 n+3$.

Then, $f^{*}(v) \in\{1,2,3, \ldots, 2 n+4\}$ for each $v \in V(G)$. By (i) and (iv), $f^{*}\left(v_{1}\right)=2 n-3$ and $f^{*}\left(v_{n+2}\right)=$ $2 n+3$ are odd and distinct. By (ii) and (iii), for $i \in\{2,3,4, \ldots, n\}, f^{*}\left(v_{i}\right)=(4 i-4)(\bmod 2 n+4)$ and $f^{*}\left(v_{n+1}\right)=2 n$ are even. It suffices to show that, for $i \in\{2,3,4, \ldots, n\},(4 i-4)(\bmod 2 n+4)$ are all distinct and also different from $2 n$.

Suppose that $4 i-4 \equiv 4 j-4(\bmod 2 n+4)$ for some $i, j \in\{2,3,4, \ldots, n\}$ and $i<j$. Then, $(n+2) \mid 2(j-i)$. Since n is odd, $n+2$ is odd and $(n+2) \mid(j-i)$. However, $1 \leq j-i \leq n-2$, which is a contradiction.

Suppose that $4 i-4 \equiv 2 n(\bmod 2 n+4)$ for some $i \in\{2,3,4, \ldots, n\}$. Then, $2 i \equiv 0(\bmod n+2)$. Thus, $(n+2) \mid 2 i$. Since n is odd, $n+2$ is odd and $(n+2) \mid i$. However $2 \leq i \leq n$, it is a contradiction.

Case $2: n$ is even. We see from Algorithm 2.2 that (i) $f^{*}\left(v_{1}\right)=n-1$, (ii) $f^{*}\left(v_{i}\right)=(n+2 i) \bmod$ $(2 n+4)$ for $i \in\{2,3,4, \ldots, n\}$, (iii) $f^{*}\left(v_{n+1}\right)=n$, and (iv) $f^{*}\left(v_{n+2}\right)=2 n+3$.

Then, $f^{*}(v) \in\{1,2,3, \ldots, 2 n+4\}$ for each $v \in V(G)$. By (i) and (iv), $f^{*}\left(v_{1}\right)=n-1$ and $f^{*}\left(v_{n+2}\right)=$ $2 n+3$ are odd and distinct. By (ii) and (iii), $f^{*}\left(v_{i}\right)=(n+2 i)(\bmod 2 n+4)$ for $i \in\{2,3,4, \ldots, n\}$ and $f^{*}\left(v_{n+1}\right)=n$ are even. It suffices to show that $(n+2 i)(\bmod 2 n+4)$ are all distinct for all $i \in\{2,3,4, \ldots, n\}$ and also different from n.

Suppose that $n+2 i \equiv n+2 j(\bmod 2 n+4)$ for some $i, j \in\{2,3,4, \ldots, n\}$ and $i>j$. Then, $(n+2) \mid(i-j)$. However, $1 \leq i-j \leq n-2$, it is a contradiction.

Suppose that $n+2 i \equiv n(\bmod 2 n+4)$ for some $i \in\{2,3,4, \ldots, n\}$. Then, $(n+2) \mid i$. However, $2 \leq i \leq n$, it is a contradiction.

Therefore, the edge labelings obtained from Algorithm 2.2 are edge-odd graceful labelings. Hence, G is edge-odd graceful.

$3 \quad P_{2} \cdot n K_{1}$

Let n be a positive integer. The graph $P_{2} \cdot n K_{1}$ is a graph obtained from a path $P_{2}: v_{1} v_{2}$ and n independent vertices, $u_{1}, u_{2}, \ldots, u_{n}$, by joining each vertex u_{i} for $i \in\{1,2,3, \ldots, n\}$ with v_{j} for $j \in$ $\{1,2\}$. In the case that $n=1$, the graph is denoted by $P_{2} \cdot K_{1}$. Then, $V\left(P_{2} \cdot n K_{1}\right)=\left\{v_{1}, v_{2}, u_{1}, u_{2}, \ldots, u_{n}\right\}$ and $E\left(P_{2} \cdot n K_{1}\right)=\left\{v_{1} v_{2}\right\} \cup\left\{u_{i} v_{j} \mid i \in\{1,2,3, \ldots, n\}\right.$ and $\left.j \in\{1,2\}\right\}$. It can be seen that $P_{2} \cdot n K_{1}$ contains $n+2$ vertices and $2 n+1$ edges. For $n=1, P_{2} \cdot K_{1}$ is a cycle C_{3} or the fan F_{2} and it is obviously edge-odd graceful. Edge-odd graceful labelings for $P_{2} \cdot n K_{1}$ where $n \geq 2$ are shown.

Algorithm 3.1. Let n be an integer such that $n \geq 2$. Let G be the graph $P_{2} \cdot n K_{2}$. Define the edge labeling $f: E(G) \rightarrow\{1,3,5, \ldots, 4 n+1\}$ for G as follow.

If $n \equiv 0$ or $2(\bmod 4)$, let

- $f\left(v_{1} v_{2}\right)=4 n+1$;
- $f\left(u_{i} v_{1}\right)=4 i-3$ for $i \in\{1,2,3, \ldots, n\} ;$ and
- $f\left(u_{i} v_{2}\right)=4 i-1$ for $i \in\{1,2,3, \ldots, n\}$.

If $n \equiv 1(\bmod 4)$, let

- $f\left(u_{i} v_{1}\right)=4 i-1$ for $i \in\{1,2,3, \ldots, n-1\}$;
- $f\left(u_{n} v_{1}\right)=1$;
- $f\left(u_{i} v_{2}\right)=4 i+1$ for $i \in\{1,2,3, \ldots, n-1\}$;
- $f\left(u_{n} v_{2}\right)=4 n-1$; and
- $f\left(v_{1} v_{2}\right)=4 n+1$.

$$
\text { If } n \equiv 3(\bmod 4) \text {, let }
$$

- $f\left(u_{i} v_{1}\right)=4 i-1$ for $i \in\{1,2,3, \ldots, n\}$;
- $f\left(u_{i} v_{2}\right)=4 i+1$ for $i \in\{1,2,3, \ldots, n-1\}$;
- $f\left(u_{n} v_{2}\right)=1$; and
- $f\left(v_{1} v_{2}\right)=4 n+1$.

(a)

(b)

(c)

Figure 2: (a) $P_{2} \cdot 4 K_{1}$, (b) $P_{2} \cdot 7 K_{1}$ and (c) $P_{2} \cdot 9 K_{1}$

Theorem 3.1. Let n be an integer such that $n \geq 2$. The graph $P_{2} \cdot n K_{1}$ is edge-odd graceful.
Proof. Case 1: $n \equiv 0$ or $2(\bmod 4)$. We see from Algorithm 3.1 that $(\mathrm{i}) f^{*}\left(u_{i}\right)=(8 i-4)(\bmod 4 n+2)$ for $i \in\{1,2,3, \ldots, n\}$, (ii) $f^{*}\left(v_{1}\right)=\left(2 n^{2}+3 n+1\right) \quad(\bmod 4 n+2)$, and (iii) $f^{*}\left(v_{2}\right)=\left(2 n^{2}+5 n+1\right)$ $(\bmod 4 n+2)$. Then, $f^{*}(v) \in\{1,2,3, \ldots, 4 n+2\}$ for each $v \in V(G)$.

Next, we shall show that, for all $i \in\{1,2,3, \ldots, n\}, f^{*}\left(u_{i}\right)$ are all distinct, and also different from $f^{*}\left(v_{1}\right)$ and $f^{*}\left(v_{2}\right)$, and $f^{*}\left(v_{1}\right)$ is different from $f^{*}\left(v_{2}\right)$.

Suppose that $f^{*}\left(u_{i}\right) \equiv f^{*}\left(u_{j}\right)(\bmod 4 n+2)$ for some $i, j \in\{1,2,3, \ldots, n\}$ and $i>j$. Then, $(4 n+2) \mid(i-j)$. However, $1 \leq i-j \leq n-1$, which is a contradiction.

Suppose that $f^{*}\left(u_{i}\right) \equiv f^{*}\left(v_{1}\right)(\bmod 4 n+2)$ for some $i \in\{1,2,3, \ldots, n\}$. Thus, $2 n^{2}+3 n+5-8 i=$ $2(2 n+1) t$ for some integer t. Then, $2 \mid\left(2 n^{2}+3 n+5-8 i\right)$. Thus, $2 \mid(3 n+5)$. However, $3 n+5$ is odd, which is a contradiction.

Suppose that $f^{*}\left(u_{i}\right) \equiv f^{*}\left(v_{2}\right)(\bmod 4 n+2)$ for some $i \in\{1,2,3, \ldots, n\}$. Then, $2 n^{2}+5 n+5-8 i=$ $2(2 n+1) t$ for some integer t. Then, $2 \mid\left(2 n^{2}+5 n+5-8 i\right)$. Thus, $2 \mid(5 n+5)$. However, $5 n+5$ is odd, which is a contradictions.

Suppose that $f^{*}\left(v_{1}\right) \equiv f^{*}\left(v_{2}\right)(\bmod 4 n+2)$. Then, $n \equiv 0(\bmod 2 n+1)$. Thus, $(2 n+1) \mid n$, which is a contradiction.

Case $2: n \equiv 1(\bmod 4)$. Then, $n=4 t+1$ for some positive integer t. We see from Algorithm 3.1 that (i) $f^{*}\left(u_{i}\right)=8 i \quad(\bmod 16 t+6)$ for $i \in\{1,2,3, \ldots, 4 t\}$, (ii) $f^{*}\left(u_{4 t+1}\right)=16 t+4$, (iii) $f^{*}\left(v_{1}\right)=\left(32 t^{2}+20 t+\right.$ 6) $(\bmod 16 t+6)$, and (iv) $f^{*}\left(v_{2}\right)=\left(32 t^{2}+44 t+8\right)(\bmod 16 t+6)$. Then, $f^{*}(v) \in\{1,2,3, \ldots, 4 n+2\}$ for each $v \in V(G)$.

Next, we show that, for $i \in\{1,2,3, \ldots, 4 t+1\}, f^{*}\left(u_{i}\right)$ are all distinct, also different from $f^{*}\left(v_{1}\right)$ and $f^{*}\left(v_{2}\right)$, and $f^{*}\left(v_{1}\right)$ is different from $f^{*}\left(v_{2}\right)$.

Suppose that $f^{*}\left(u_{i}\right) \equiv f^{*}\left(u_{j}\right)(\bmod 16 t+6)$ for some $i, j \in\{1,2,3, \ldots, 4 t\}$ and $i>j$. Then, $4(i-j)=$ $(8 t+3) k$ for some positive integer k. Thus, $4 \mid(3 k)$ and $4 \mid k$. Then, $k=4 s$ for some positive integer s. That is, $(8 t+3) k \in\{32 t+12,64 t+24,96 t+36, \ldots\}$. However, $4 \leq 4(i-j)=(8 t+3) k \leq 16 t-4<32 t+12$, it is a contradiction.

Suppose that $f^{*}\left(u_{i}\right) \equiv f^{*}\left(u_{4 t+1}\right)(\bmod 16 t+6)$ for some $i \in\{1,2,3, \ldots, 4 t\}$. Then, $4 i+1=(8 t+3) k \in$ $\{8 t+3,16 t+6,24 t+9, \ldots\}$. However, $4 i+1 \in\{5,9,13, \ldots, 8 t+1,8 t+5, \ldots, 16 t+1\}$, it is a contradiction.

Suppose that $f^{*}\left(u_{i}\right) \equiv f^{*}\left(v_{1}\right)(\bmod 16 t+6)$ for some $i \in\{1,2,3, \ldots, 4 t\}$. Then, $4 i \equiv 16 t^{2}+10 t+3$ $(\bmod 8 t+3)$. Since $16 t^{2}+10 t+3 \equiv 4 t+3(\bmod 8 t+3), 4 i=(4 t+3) k+(8 t+3) \in\{12 t+6,16 t+9,20 t+$ $12, \ldots\}$. However, $4 i \in\{4,8,12, \ldots, 12 t+4,12 t+8, \ldots, 16 t\}$, it is a contradiction.

Since $f^{*}\left(v_{1}\right)=\left(32 t^{2}+20 t+6\right)(\bmod 16 t+6)=8 t+6, f^{*}\left(v_{1}\right)$ and $f^{*}\left(u_{4 t+1}\right)$ are distinct.
Suppose that $f^{*}\left(u_{i}\right) \equiv f^{*}\left(v_{2}\right)(\bmod 16 t+6)$ for some $i \in\{1,2,3, \ldots, 4 t\}$. Then, $4 i \equiv 16 t^{2}+22 t+4$ $(\bmod 8 t+3)$. Since $16 t^{2}+22 t+4 \equiv 8 t+1(\bmod 8 t+3), 4 i=(8 t+3) k+(8 t+1) \in\{16 t+4,24 t+7,32 t+$ $10, \ldots\}$. However, $4 i \in\{4,8,12, \ldots, 16 t\}$, it is a contradiction.

Since $f^{*}\left(v_{2}\right)=\left(32 t^{2}+44 t+8\right) \quad(\bmod 16 t+6)=16 t+2, f^{*}\left(v_{2}\right)$ and $f^{*}\left(u_{4 t+1}\right)$ are distinct.
Since $f^{*}\left(v_{1}\right)=32 t^{2}+20 t+6 \quad(\bmod 16 t+6)=8 t+6$ and $f^{*}\left(v_{2}\right)=\left(32 t^{2}+44 t+8\right) \quad(\bmod 16 t+6)$ $=6 t+2, f^{*}\left(v_{1}\right)$ and $f^{*}\left(v_{2}\right)$ are distinct.

Case $3: n \equiv 3(\bmod 4)$. Then, $n=4 t+3$ for some positive integer t. We see from Algorithm 3.1 that (i) $f^{*}\left(u_{i}\right)=8 i(\bmod 16 t+14)$ for $i \in\{1,2,3, \ldots, 4 t+2\}$, (ii) $f^{*}\left(u_{4 t+3}\right)=16 t+12$, (iii) $f^{*}\left(v_{1}\right)=\left(32 t^{2}+68 t+34\right)(\bmod 16 t+14)$, and $(\mathrm{iv}) f^{*}\left(v_{2}\right)=\left(32 t^{2}+60 t+28\right)(\bmod 16 t+14)$. Then, $f^{*}(v) \in\{1,2,3, \ldots, 4 n+2\}$ for each $v \in V(G)$.

Next, we show that, for all $i \in\{1,2,3, \ldots, 4 t+3\}, f^{*}\left(u_{i}\right)$ are all distinct, and also different from $f^{*}\left(v_{1}\right)$ and $f^{*}\left(v_{2}\right)$, and $f^{*}\left(v_{1}\right)$ and $f^{*}\left(v_{2}\right)$ are distinct.

Suppose that $f^{*}\left(u_{i}\right) \equiv f^{*}\left(u_{j}\right)(\bmod 16 t+14)$ for some $i, j \in\{1,2,3, \ldots, 4 t+2\}$ and $i>j$. Then, $(8 t+7) \mid 4(i-j)$. Since $(8 t+7) \nmid 4,(8 t+7) \mid(i-j)$. However, $1 \leq i-j \leq 4 t+1$, which is a contradiction.

Suppose that $f^{*}\left(u_{i}\right) \equiv f^{*}\left(u_{4 t+3}\right)(\bmod 16 t+14)$ for some $i \in\{1,2,3, \ldots, 4 t+2\}$. Then, $4 i=$ $(8 t+7) k+(8 t+6) \in\{16 t+13,24 t+20,32 t+29, \ldots\}$. However, $4 i \in\{4,8,12, \ldots, 16 t+8\}$ which is a contradiction.

Suppose that $f^{*}\left(u_{i}\right) \equiv f^{*}\left(v_{1}\right)(\bmod 16 t+14)$ for some $i \in\{1,2,3, \ldots, 4 t+2\}$. Then, $4 i \equiv 16 t^{2}+$ $34 t+17 \equiv 4 t+3(\bmod 8 t+7)$. Then, $4 i=(8 t+7) k+(4 t+3) \in\{12 t+10,20 t+17,28 t+24, \ldots\}$. However, $4 i \in\{4,8,12, \ldots, 12 t+8,12 t+12, \ldots, 16 t+8\}$, which is a contradiction.

Since $f^{*}\left(v_{1}\right)=\left(32 t^{2}+68 t+34\right)(\bmod 16 t+14)=8 t+6$ and $f^{*}\left(u_{4 t+3}\right)=16 t+12, f^{*}\left(v_{1}\right)$ and $f^{*}\left(u_{4 t+3}\right)$ are distinct.

Suppose that $f^{*}\left(u_{i}\right) \equiv f^{*}\left(v_{2}\right)(\bmod 16 t+14)$ for some $i \in\{1,2,3, \ldots, 4 t+2\}$. Then, $4 i \equiv 16 t^{2}+30 t+14$ $(\bmod 8 t+7)$. Since $16 t^{2}+30 t+14 \equiv 0(\bmod 8 t+7), 4 i \equiv 0(\bmod 8 t+7)$. Then, $4 i=(8 t+7) k \in$ $\{8 t+7,16 t+14,24 t+21, \ldots\}$. However, $4 i \in\{4,8,12, \ldots, 8 t+4,8 t+8, \ldots, 16 t+8\}$, which is a contradiction.

Since $f^{*}\left(v_{2}\right)=\left(32 t^{2}+60 t+28\right)(\bmod 16 t+14)=0$ and $f^{*}\left(u_{4 t+3}\right)=16 t+12, f^{*}\left(v_{2}\right)$ and $f^{*}\left(u_{4 t+3}\right)$ are distinct.

Since $f^{*}\left(v_{1}\right)=\left(32 t^{2}+68 t+34\right) \quad(\bmod 16 t+14)=8 t+6$ and $f^{*}\left(v_{2}\right)=\left(32 t^{2}+60 t+28\right) \quad(\bmod$ $16 t+14)=0, f^{*}\left(v_{1}\right)$ and $f^{*}\left(v_{2}\right)$ are distinct.

Therefore, the edge labelings obtained from Algorithm 3.1 are edge-odd graceful labelings. Hence, G is edge-odd graceful.

4 The cartesian product of $C_{n} \square P_{3}$ and $C_{3} \square P_{k}$

The cartesian product of C_{n} and P_{k}, denoted by $C_{n} \square P_{k}$, is a graph obtained from k copies of C_{n} by joining the same vertex of the j-th copy to the $(j+1)$-th copy for $j \in\{1,2,3, \ldots, k-1\}$. We let $\left\{u_{i}^{j} \mid i \in\right.$ $\{1,2,3, \ldots, n\}\}$ be the set of vertices of the j-th copy of C_{n} where $j \in\{1,2,3, \ldots, k\}$ and the edge set is the set $\left\{u_{i}^{j} u_{i}^{j+1} \mid i \in\{1,2,3, \ldots, n\}\right.$ and $\left.j \in\{1,2,3, \ldots, k-1\}\right\} \cup\left\{u_{i}^{j} u_{i+1}^{j} \mid i \in\{1,2,3, \ldots, n-1\}\right.$ and $j \in$ $\{1,2,3, \ldots, k-1\}\} \cup\left\{u_{1}^{j} u_{n}^{j} \mid j \in\{1,2,3, \ldots, k-1\}\right\}$. Then, $\left|E\left(C_{n} \square P_{k}\right)\right|=k n+(k-1) n=(2 k-1) n$ Note that, we name the vertices of each cycle in the counterclockwise direction.

Algorithm 4.1. Let G be the graph $C_{n} \square P_{3}$ and $n \geq 3$. Define the edge labeling $f: E(G) \rightarrow\{1,3,5, \ldots$, $10 n-1\}$ for G by

- $f\left(u_{1}^{1} u_{1}^{2}\right)=1$;
- $f\left(u_{1}^{2} u_{1}^{3}\right)=3$;
- $f\left(u_{i}^{1} u_{i}^{2}\right)=4 n-4 i+5$, for $i \in\{2,3,4, \ldots, n\}$;
- $f\left(u_{i}^{2} u_{i}^{3}\right)=4 n-4 i+7$, for $i \in\{2,3,4, \ldots, n\}$;
- $f\left(u_{i}^{2} u_{i+1}^{2}\right)=4 n+2 i-1$, for $i \in\{1,2,3, \ldots, n-1\}$;
- $f\left(u_{1}^{2} u_{n}^{2}\right)=6 n-1$;
- $f\left(u_{i}^{3} u_{i+1}^{3}\right)=6 n+4 i-3$, for $i \in\{1,2,3, \ldots, n-1\}$;
- $f\left(u_{1}^{3} u_{n}^{3}\right)=10 n-3$;
- $f\left(u_{i}^{1} u_{i+1}^{1}\right)=6 n+4 i-1$, for $i \in\{1,2,3, \ldots, n-1\}$; and
- $f\left(u_{1}^{1} u_{n}^{1}\right)=10 n-1$.

Figure 3: Edge-label and induced vertex-labels for $C_{5} \square P_{3}$

Theorem 4.1. Let n be an integer such that $n \geq 3$. The graph $C_{n} \square P_{3}$ is edge-odd graceful.
Proof. Let G be the graph $C_{n} \square P_{3}$. By Algorithm 4.1, we see that (i) $f^{*}\left(u_{1}^{1}\right)=6 n+3$, (ii) $f^{*}\left(u_{n}^{1}\right)=10 n-1$, (iii) $f^{*}\left(u_{i}^{1}\right)=6 n+4 i-1$ for $i \in\{2,3,4, \ldots, n-1\}$, (iv) $f^{*}\left(u_{1}^{2}\right)=4$, (v) $f^{*}\left(u_{n}^{2}\right)=2 n+8$, (vi) $f^{*}\left(u_{i}^{2}\right)=6 n-4 i+8$ for $i \in\{2,3,4, \ldots, n-1\}$, (vii) $f^{*}\left(u_{1}^{3}\right)=6 n+1$, (viii) $f^{*}\left(u_{n}^{3}\right)=10 n-3$, and (ix) $f^{*}\left(u_{i}^{3}\right)=6 n+4 i-3$ for $i \in\{2,3,4, \ldots, n-1\}$.

Next, we show that $f^{*}(v) \in\{1,2,3, \ldots, 10 n\}$ for each $v \in V(G)$ and they are distinct.
Case 1:n=3. The assertion is true by direct calculation.
Case $2: n \geq 4$. Let $A_{1}=\left\{f^{*}\left(u_{1}^{1}\right), f^{*}\left(u_{n}^{1}\right), f^{*}\left(u_{1}^{2}\right), f^{*}\left(u_{n}^{2}\right), f^{*}\left(u_{1}^{3}\right), f^{*}\left(u_{n}^{3}\right)\right\}, A_{2}=\{6 n+4 i-1 \mid i \in$ $\{2,3,4, \ldots, n-1\}\}, A_{3}=\{6 n-4 i+8 \mid i \in\{2,3,4, \ldots, n-1\}\}$ and $A_{4}=\{6 n+4 i-3 \mid i \in\{2,3,4, \ldots, n-1\}\}$. We can see that $f^{*}\left(u_{1}^{1}\right), f^{*}\left(u_{n}^{1}\right), f^{*}\left(u_{1}^{2}\right), f^{*}\left(u_{n}^{2}\right), f^{*}\left(u_{1}^{3}\right)$ and $f^{*}\left(u_{n}^{3}\right)$ are all distinct.

Since $4<2 n+8<2 n+12\left(=\min A_{3}\right)<6 n\left(=\max A_{3}\right)<6 n+1<6 n+3<6 n+5\left(=\min A_{4}\right)<$ $6 n+7\left(=\min A_{2}\right)<10 n-7\left(=\max A_{4}\right)<10 n-5\left(=\max A_{2}\right)<10 n-3<10 n-1, A_{1} \cap A_{j}=\varnothing$ for $j \in\{2,3,4\}$.

Next, we notice that all elements in A_{3} are even, while all elements in A_{2} and A_{4} are odd. Thus, $A_{2} \cap A_{3}$ and $A_{3} \cap A_{4}$ are empty. Finally, let $a \in A_{2}$ and $b \in A_{4}$, i.e., $a=6 n+4 i-1$ and $b=6 n+4 l-3$ for some i and $l \in\{2,3,4, \ldots, n-1\}$. Assume that $a=b$. We have $4(l-i)=2$, which leads to a contradiction. That is, $A_{2} \cap A_{4}=\varnothing$.

Therefore, f defined by Algorithm 4.1 is an edge-odd graceful labeling for $C_{n} \square P_{3}$.
Algorithm 4.2. Let G denote the graph $C_{3} \square P_{k}$ where $k \geq 4$. Define the edge labeling $f: E\left(C_{3} \square P_{k}\right) \rightarrow$ $\{1,3,5, \ldots, 12 k-7\}$ for G as follow.

If $k \equiv 0(\bmod 4)$, let

- $f\left(u_{1}^{i} u_{1}^{i+1}\right)=2 i-1$, for $i \in\{1,2,3, \ldots, k-1\}$;
- $f\left(u_{2}^{i} u_{2}^{i+1}\right)=2 k+2 i-3$, for $i \in\{1,2,3, \ldots, k-1\}$;
- $f\left(u_{3}^{i} u_{3}^{i+1}\right)=4 k+2 i-5$, for $i \in\{1,2,3, \ldots, k-1\}$;
- $f\left(u_{1}^{i} u_{2}^{i}\right)=6 k+2 i-7$, for $i \in\{1,2,3, \ldots, k\}$;
- $f\left(u_{2}^{i} u_{3}^{i}\right)=8 k+2 i-7$, for $i \in\{1,2,3, \ldots, k\}$; and
- $f\left(u_{1}^{i} u_{3}^{i}\right)=10 k+2 i-7$, for $i \in\{1,2,3, \ldots, k\}$.

If $k \equiv 1(\bmod 4)$, let

- $f\left(u_{1}^{i} u_{1}^{i+1}\right)=6 i-5$, for $i \in\{1,2,3, \ldots, k-1\}$;
- $f\left(u_{2}^{i} u_{2}^{i+1}\right)=6 i-3$, for $i \in\{1,2,3, \ldots, k-1\}$;
- $f\left(u_{3}^{i} u_{3}^{i+1}\right)=6 i-1$, for $i \in\{1,2,3, \ldots, k-1\}$;
- $f\left(u_{1}^{i} u_{2}^{i}\right)=8 k-2 i-5$, for $i \in\{1,2,3, \ldots, k\}$;
- $f\left(u_{2}^{i} u_{3}^{i}\right)=12 k-2 i-5$, for $i \in\{1,2,3, \ldots, k\}$; and
- $f\left(u_{1}^{i} u_{3}^{i}\right)=10 k-2 i-5$, for $i \in\{1,2,3, \ldots, k\}$.

If $k \equiv 2(\bmod 4)$, let

- $f\left(u_{1}^{i} u_{1}^{i+1}\right)=6 k+2 i-1$, for $i \in\{1,2,3, \ldots, k-1\}$;
- $f\left(u_{2}^{i} u_{2}^{i+1}\right)=8 k+2 i-3$, for $i \in\{1,2,3, \ldots, k-1\}$;
- $f\left(u_{3}^{i} u_{3}^{i+1}\right)=10 k+2 i-5$, for $i \in\{1,2,3, \ldots, k-1\}$;
- $f\left(u_{1}^{i} u_{2}^{i}\right)=6 i-5$, for $i \in\{1,2,3, \ldots, k\}$;
- $f\left(u_{2}^{i} u_{3}^{i}\right)=6 i-1$, for $i \in\{1,2,3, \ldots, k\}$; and
- $f\left(u_{1}^{i} u_{3}^{i}\right)=6 i-3$, for $i \in\{1,2,3, \ldots, k\}$.

If $k \equiv 3(\bmod 4)$, let

- $f\left(u_{1}^{i} u_{1}^{i+1}\right)=2 i-1$, for $i \in\{1,2,3, \ldots, k-1\}$;
- $f\left(u_{2}^{i} u_{2}^{i+1}\right)=2 k+2 i-3$, for $i \in\{1,2,3, \ldots, k-1\}$;
- $f\left(u_{3}^{i} u_{3}^{i+1}\right)=4 k+2 i-5$, for $i \in\{1,2,3, \ldots, k-1\}$;
- $f\left(u_{1}^{i} u_{2}^{i}\right)=12 k-6 i-5$, for $i \in\{1,2,3, \ldots, k\}$;
- $f\left(u_{2}^{i} u_{3}^{i}\right)=12 k-6 i-1$, for $i \in\{1,2,3, \ldots, k\}$; and
- $f\left(u_{1}^{i} u_{3}^{i}\right)=12 k-6 i-3$, for $i \in\{1,2,3, \ldots, k\}$.

Theorem 4.2. Let k be an integer such that $k \geq 4$. The graph $C_{3} \square P_{k}$ is edge-odd graceful.
Proof. Let G denote the graph $C_{3} \square P_{k}$.
Case 1: $k \equiv 0(\bmod 4)$. By Algorithm 4.2, we have (i) $f^{*}\left(u_{1}^{1}\right)=4 k-3$; (ii) $f^{*}\left(u_{2}^{1}\right)=4 k-5$; (iii) $f^{*}\left(u_{3}^{1}\right)=10 k-7$; (iv) $f^{*}\left(u_{1}^{k}\right)=10 k-11$; (v) $f^{*}\left(u_{2}^{k}\right)=10 k-13$; (vi) $f^{*}\left(u_{3}^{k}\right)=4 k-9$; (vii) $f^{*}\left(u_{1}^{i}\right)=4 k+8 i-12$ for $i \in\{2,3,4, \ldots, k-1\}$; (viii) $f^{*}\left(u_{2}^{i}\right)=6 k+8 i-16(\bmod 12 k-6)$ for $i \in\{2,3,4, \ldots, k-1\}$; and (ix) $f^{*}\left(u_{3}^{i}\right)=2 k+8 i-14$ for $i \in\{2,3,4, \ldots, k-1\}$.

Next, we show that $f^{*}(v) \in\{1,2,3, \ldots, 12 k-6\}$ for each $v \in V(G)$ and they are distinct.
Let $B_{1}=\left\{f^{*}\left(u_{1}^{1}\right), f^{*}\left(u_{2}^{1}\right), f^{*}\left(u_{3}^{1}\right), f^{*}\left(u_{1}^{k}\right), f^{*}\left(u_{2}^{k}\right), f^{*}\left(u_{3}^{k}\right)\right\}, B_{2}=\{4 k+8 i-12 \mid i \in\{2,3,4, \ldots, k-1\}\}$, $B_{3}=\{(6 k+8 i-16)(\bmod 12 k-6) \mid i \in\{2,3,4, \ldots, k-1\}\}$ and $B_{4}=\{2 k+8 i-14 \mid i \in\{2,3,4, \ldots, k-1\}\}$. We can see that $f^{*}\left(u_{1}^{1}\right), f^{*}\left(u_{2}^{1}\right), f^{*}\left(u_{3}^{1}\right), f^{*}\left(u_{1}^{k}\right), f^{*}\left(u_{2}^{k}\right)$ and $f^{*}\left(u_{3}^{k}\right)$ are all distinct.

We notice that all elements in B_{1} are odd, while all elements in B_{2}, B_{3} and B_{4} are even, we conclude that $B_{1} \cap B_{j}=\varnothing$ for $j \in\{2,3,4\}$. Since $k \equiv 0(\bmod 4), k=4 m$ for some $m \in \mathbb{N}$. Then, $B_{2}=$ $\{8(2 m+i-2)+4 \mid i \in\{2,3,4, \ldots, 4 m-1\}\}$ and $B_{4}=\{8(m+i-2)+2 \mid i \in\{2,3,4, \ldots, 4 m-1\}\}$. Consider $B_{3}=\{(24 m+8 i-16)(\bmod 48 m-6) \mid i \in\{2,3,4, \ldots, 4 m-1\}\}=\{8(3 m+i-2) \mid i \in\{2,3,4, \ldots, 3 m+$ $1\}\} \cup\{(24 m+8 i-16)(\bmod 48 m-6) \mid i \in\{3 m+2,3 m+3,3 m+4, \ldots, 4 m-1\}\}=B_{31} \cup\{6,8(1)+6,8(2)+$ $6, \ldots, 8(m-5)+6,8(m-4)+6,8(m-3)+6\}=B_{31} \cup B_{32}$.

Figure 4: Edge-label and induced vertex-labels for $C_{3} \square P_{8}$

Notice that elements in B_{2}, B_{31}, B_{32} and B_{4} are arithmetic progression with common difference 8 , we also can see that each element in B_{2}, B_{31}, B_{32} and B_{4} is congruent to $4,0,6$ and 2 modulo 8 , respectively. Thus, B_{2}, B_{3} and B_{4} are distinct.

Case $2: k \equiv 1(\bmod 4)$. By Algorithm 4.2, $f^{*}\left(u_{1}^{1}\right)=6 k-7 ; f^{*}\left(u_{2}^{1}\right)=8 k-5 ; f^{*}\left(u_{3}^{1}\right)=10 k-3$; $f^{*}\left(u_{1}^{k}\right)=8 k-15 ; f^{*}\left(u_{2}^{k}\right)=10 k-13 ; f^{*}\left(u_{3}^{k}\right)=12 k-11 ; f^{*}\left(u_{1}^{i}\right)=(6 k+8 i-20)(\bmod 12 k-6)$; $f^{*}\left(u_{2}^{i}\right)=(8 k+8 i-16)(\bmod 12 k-6)$; and $f^{*}\left(u_{3}^{i}\right)=(10 k+8 i-12)(\bmod 12 k-6)$ for $i \in\{2,3,4, \ldots, k-1\}$.

Figure 5: Edge-label and induced vertex-labels for $C_{3} \square P_{9}$
Next, we show that $f^{*}(v) \in\{1,2,3, \ldots, 12 k-6\}$ for each $v \in V(G)$ and they are distinct. Let $B_{1}=$ $\left\{f^{*}\left(u_{1}^{1}\right), f^{*}\left(u_{2}^{1}\right), f^{*}\left(u_{3}^{1}\right), f^{*}\left(u_{1}^{k}\right), f^{*}\left(u_{2}^{k}\right), f^{*}\left(u_{3}^{k}\right)\right\}, B_{2}=\{(6 k+8 i-20)(\bmod 12 k-6) \mid i \in\{2,3,4, \ldots, k-1\}\}$, $B_{3}=\{(8 k+8 i-16)(\bmod 12 k-6) \mid i \in\{2,3,4, \ldots, k-1\}\}$ and $B_{4}=\{(10 k+8 i-12)(\bmod 12 k-6) \mid i \in$ $\{2,3,4, \ldots, k-1\}\}$. We can see that $f^{*}\left(u_{1}^{1}\right), f^{*}\left(u_{2}^{1}\right), f^{*}\left(u_{3}^{1}\right), f^{*}\left(u_{1}^{k}\right), f^{*}\left(u_{2}^{k}\right)$ and $f^{*}\left(u_{3}^{k}\right)$ are all distinct.

We notice that all elements in B_{1} are odd, while all elements in B_{2}, B_{3} and B_{4} are even, we conclude that $B_{1} \cap B_{j}=\varnothing$ for $j \in\{2,3,4\}$. Since $k \equiv 1(\bmod 4), k=4 m+1$ for some $m \in \mathbb{N}$.

If $m=1$, then $B_{2}=\{26,34,42\}, B_{3}=\{40,48,2\}$ and $B_{4}=\{0,8,16\}$.
If $m=2$, then $B_{2}=\{50,58,66,74,82,90,98\}, B_{3}=\{72,80,88,96,2,10,18\}$ and $B_{4}=\{94,0,8,16,24$, $32,40\}$.

If $m \geq 3$, then $B_{2}=\{8(3 m+i-2)+2 \mid i \in\{2,3,4, \ldots, 3 m+2\}\} \cup\{(24 m+8 i-14)(\bmod 48 m+6) \mid i \in$ $\{3 m+3,3 m+4,3 m+5, \ldots, 4 m\}\}=B_{21} \cup\{4,8(1)+4,8(2)+4, \ldots, 8(m-5)+4,8(m-4)+4,8(m-3)+4\}=$ $B_{21} \cup B_{22} . B_{3}=\{8(4 m+i-1) \mid i \in\{2,3,4, \ldots, 2 m+1\}\} \cup\{(32 m+8 i-8)(\bmod 48 m+6) \mid i \in\{2 m+2,2 m+$ $3,2 m+4, \ldots, 4 m\}\}=B_{31} \cup\{2,8(1)+2,8(2)+2, \ldots, 8(2 m-4)+2,8(2 m-3)+2,8(2 m-2)+2\}=B_{31} \cup B_{32}$. $B_{4}=\{8(5 m+i-1)+6 \mid i \in\{2,3,4, \ldots, m\}\} \cup\{(40 m+8 i-2)(\bmod 48 m+6) \mid i \in\{m+1, m+2, m+$ $3, \ldots, 4 m\}\}=B_{41} \cup\{0,8(1), 8(2), \ldots, 8(3 m-3), 8(3 m-2), 8(3 m-1)\}=B_{41} \cup B_{42}$.

Notice that each element in B_{21} and B_{32} is congruent to 2 modulo 8 . However, $\min B_{21}=24 m+2>$ $16 m-14=\max B_{32}$. Similarly, each element in B_{31} and B_{42} is congruent to 0 modulo 8. However, $\min B_{31}=32 m+8>24 m-8=\max B_{42}$. Finally, each element in B_{22} and B_{41} is congruent to 4 and 6 modulo 8 , respectively.

Thus, for all $m \geq 1, B_{2}, B_{3}$ and B_{4} are all distinct.
Case 3: $k \equiv 2(\bmod 4)$. By Algorithm 4.2 $f^{*}\left(u_{1}^{1}\right)=6 k+5 ; f^{*}\left(u_{2}^{1}\right)=8 k+5 ; f^{*}\left(u_{3}^{1}\right)=10 k+5$; $f^{*}\left(u_{1}^{k}\right)=8 k-5 ; f^{*}\left(u_{2}^{k}\right)=10 k-5 ; f^{*}\left(u_{3}^{k}\right)=1 ; f^{*}\left(u_{1}^{i}\right)=(16 i-6)(\bmod 12 k-6) ; f^{*}\left(u_{2}^{i}\right)=(4 k+16 i-8)$ $(\bmod 12 k-6) ; f^{*}\left(u_{3}^{i}\right)=(8 k+16 i-10)(\bmod 12 k-6)$ for $i \in\{2,3,4, \ldots, k-1\}$.

Figure 6: Edge-label and induced vertex-labels for $C_{3} \square P_{6}$
Next, we show that $f^{*}(v) \in\{1,2,3, \ldots, 12 k-6\}$ for each $v \in V(G)$ and they are distinct. Let $B_{1}=$ $\left\{f^{*}\left(u_{1}^{1}\right), f^{*}\left(u_{2}^{1}\right), f^{*}\left(u_{3}^{1}\right), f^{*}\left(u_{1}^{k}\right), f^{*}\left(u_{2}^{k}\right), f^{*}\left(u_{3}^{k}\right)\right\}, B_{2}=\{(16 i-6)(\bmod 12 k-6) \mid i \in\{2,3,4, \ldots, k-1\}\}$, $B_{3}=\{(4 k+16 i-8)(\bmod 12 k-6) \mid i \in\{2,3,4, \ldots, k-1\}\}$ and $B_{4}=\{(8 k+16 i-10)(\bmod 12 k-6) \mid i \in$ $\{2,3,4, \ldots, k-1\}\}$. Then, $f^{*}\left(u_{1}^{1}\right), f^{*}\left(u_{2}^{1}\right), f^{*}\left(u_{3}^{1}\right), f^{*}\left(u_{1}^{k}\right), f^{*}\left(u_{2}^{k}\right)$ and $f^{*}\left(u_{3}^{k}\right)$ are all distinct.

We notice that all elements in B_{1} are odd, while all elements in B_{2}, B_{3} and B_{4} are even, we conclude that $B_{1} \cap B_{j}=\varnothing$ for $j \in\{2,3,4\}$. Since $k \equiv 2(\bmod 4), k=4 m+2$ for some $m \in \mathbb{N}$.

If $m=1$, then $B_{2}=\{26,42,58,8\}, B_{3}=\{48,64,14,30\}$ and $B_{4}=\{4,20,36,52\}$.
If $m \geq 2$, then $B_{2}=\{(16 i-6)(\bmod 48 m+18) \mid i \in\{2,3,4, \ldots, 4 m+1\}\}=\{8(2 i-1)+2 \mid i \in$ $\{2,3,4, \ldots, 3 m+1\}\} \cup\{(16 i-6)(\bmod 48 m+18) \mid i \in\{3 m+2,3 m+3,3 m+4, \ldots, 4 m+1\}\}=B_{21} \cup$ $\{8(1), 8(3), 8(5), \ldots, 8(2 m-5), 8(2 m-3), 8(2 m-1)\}=B_{21} \cup B_{22} . B_{3}=\{(16 m+16 i)(\bmod 48 m+$ 18) $\mid i \in\{2,3,4, \ldots, 4 m+1\}\}=\{8(2 m+2 i) \mid i \in\{2,3,4, \ldots, 2 m+1\}\} \cup\{(16 m+16 i)(\bmod 48 m+18) \mid i \in$ $\{2 m+2,2 m+3,2 m+4, \ldots, 4 m+1\}\}=B_{31} \cup\{8(1)+6,8(3)+6,8(5)+6, \ldots, 8(4 m-5)+6,8(4 m-$ $3)+6,8(4 m-1)+6\}=B_{31} \cup B_{32} . B_{4}=\{(32 m+16 i+6)(\bmod 48 m+18) \mid i \in\{2,3,4, \ldots, 4 m+1\}\}=$ $\{8(4 m+2 i)+6 \mid i \in\{2,3,4, \ldots, m\}\} \cup\{(32 m+16 i+6)(\bmod 48 m+18) \mid i \in\{m+1, m+2, m+3, \ldots, 4 m+1\}\}=$ $B_{41} \cup\{4,8(2)+4,8(4)+4, \ldots, 8(6 m-4)+4,8(6 m-2)+4,8(6 m)+4\}=B_{41} \cup B_{42}$.

Notice that each element in B_{22} and B_{31} is congruent to 0 modulo 8 . However, $\max B_{22}=16 \mathrm{~m}-8<$ $16 m+32=\min B_{31}$. Similarly, each element in B_{32} and B_{41} is congruent to 6 modulo 8. However, $\max B_{32}=32 m-2<32 m+38=\min B_{41}$. Finally, each element in B_{21} and B_{42} is congruent to 2 and 4 modulo 8 , respectively.

Thus, for all $m \geq 1, B_{2}, B_{3}$ and B_{4} are distinct.

Case $4: k \equiv 3(\bmod 4)$. By Algorithm 4.2, $f^{*}\left(u_{1}^{1}\right)=12 k-13 ; f^{*}\left(u_{2}^{1}\right)=2 k-7 ; f^{*}\left(u_{3}^{1}\right)=4 k-7$; $f^{*}\left(u_{1}^{k}\right)=2 k-5 ; f^{*}\left(u_{2}^{k}\right)=4 k-5 ; f^{*}\left(u_{3}^{k}\right)=6 k-5 ; f^{*}\left(u_{1}^{i}\right)=12 k-8 i-6 ; f^{*}\left(u_{2}^{i}\right)=(16 k-8 i-8)(\bmod$ $12 k-6) ; f^{*}\left(u_{3}^{i}\right)=8 k-8 i-4$ for $i \in\{2,3,4, \ldots, k-1\}$.

Figure 7: Edge-label and induced vertex-labels for $C_{3} \square P_{7}$
Next, we show that $f^{*}(v) \in\{1,2,3, \ldots, 12 k-6\}$ for each $v \in V(G)$ and they are distinct. Let $B_{1}=\left\{f^{*}\left(u_{1}^{1}\right), f^{*}\left(u_{2}^{1}\right), f^{*}\left(u_{3}^{1}\right), f^{*}\left(u_{1}^{k}\right), f^{*}\left(u_{2}^{k}\right), f^{*}\left(u_{3}^{k}\right)\right\}, B_{2}=\{12 k-8 i-6 \mid i \in\{2,3,4, \ldots, k-1\}\}, B_{3}=$ $\{(16 k-8 i-8)(\bmod 12 k-6) \mid i \in\{2,3,4, \ldots, k-1\}\}$ and $B_{4}=\{8 k-8 i-4 \mid i \in\{2,3,4, \ldots, k-1\}\}$. We can see that $f^{*}\left(u_{1}^{1}\right), f^{*}\left(u_{2}^{1}\right), f^{*}\left(u_{3}^{1}\right), f^{*}\left(u_{1}^{k}\right), f^{*}\left(u_{2}^{k}\right)$ and $f^{*}\left(u_{3}^{k}\right)$ are all distinct.

We notice that all elements in B_{1} are odd, while all elements in B_{2}, B_{3} and B_{4} are even, we conclude that $B_{1} \cap B_{j}=\varnothing$ for $j \in\{2,3,4\}$. Since $k \equiv 3(\bmod 4), k=4 m+3$ for some $m \in \mathbb{N}$. Then, $B_{2}=\{8(6 m-i+3)+6 \mid i \in\{2,3,4, \ldots, 4 m+2\}\}$ and $B_{4}=\{8(4 m-i+2)+4 \mid i \in\{2,3,4, \ldots, 4 m+2\}\}$. Consider $B_{3}=\{(64 m-8 i+40)(\bmod 48 m+30) \mid i \in\{2,3,4, \ldots, 4 m+2\}\}=\{(64 m-8 i+40)(\bmod 48 m+$ 30) $\mid i \in\{2,3,4, \ldots, 2 m+1\}\} \cup\{8(8 m-i+5) \mid i \in\{2 m+2,2 m+3,2 m+4, \ldots, 4 m+2\}\}=\{8(2 m-1)+$ $2,8(2 m-2)+2,8(2 m-3)+2, \ldots, 8(2)+2,8(1)+2,2\} \cup B_{32}=B_{31} \cup B_{32}$.

Notice that elements in B_{2}, B_{31}, B_{32} and B_{4} are arithmetic progression with common difference 8 . We also can see that each element in B_{2}, B_{31}, B_{32} and B_{4} is congruent to $6,2,0$ and 4 modulo 8 , respectively. Thus, B_{2}, B_{3} and B_{4} are distinct.

Therefore, f defined by Algorithm 4.2 are edge-odd graceful labelings for $C_{3} \square P_{k}$ for any integer k such that $k \geq 4$.

5 Union of even copies of edge-odd graceful graphs

In this section, we recall that the graph $n G$ is a graph consisting of n copies of G.
Theorem 5.1. Let $k \geq 1$ and G be an edge-odd graceful graph such that deg v is odd for all $v \in V(G)$. Then, the graph $2 k G$ is edge-odd graceful.

Proof. Let us denote a graph G of q edges by G_{1} and $G_{2}, G_{3}, G_{4}, \ldots, G_{2 k}$ be its copy.
Suppose that G_{1} is edge-odd graceful with edge-odd graceful labeling f together with its induced mapping f^{*}. Define $g: E(2 k G) \rightarrow\{1,3,5, \ldots, 4 k q-1\}$ by
$g(e)=f(e)+(2 i-2) q$ for $e \in E\left(G_{i}\right)$ and $i \in\{1,2,3, \ldots, 2 k\}$.
Since f is an injection and $f\left(E\left(G_{1}\right)\right)=\{1,3,5, \ldots, 2 q-1\}, g$ is an injection and $g(E(2 k G))=$ $\{1,3,5, \ldots, 4 k q-1\}$. Thus, g is a bijection. Next, consider the induced mapping g^{*} of g which is $g^{*}(v)=f^{*}(v)+(2 i-2) q \operatorname{deg} v(\bmod 4 k q)$ for $v \in V\left(G_{i}\right)$ and $i \in\{1,2,3, \ldots, 2 k\}$.
Let v_{1} and v_{2} be two vertices of $2 k G$.

Case 1: v_{1} and v_{2} are in the same copy. Assume that they are in G_{i} for some $i \in\{1,2,3, \ldots, 2 k\}$ and $g^{*}\left(v_{1}\right)=g^{*}\left(v_{2}\right)$. Then, $f^{*}\left(v_{1}\right)+(2 i-2) q \operatorname{deg} v_{1} \equiv f^{*}\left(v_{2}\right)+(2 i-2) q \operatorname{deg} v_{2}(\bmod 4 k q)$. Since $2 q \mid 4 k q$, we have $2 q \mid\left(f^{*}\left(v_{1}\right)-f^{*}\left(v_{2}\right)+(2 i-2) q\left(\operatorname{deg} v_{1}-\operatorname{deg} v_{2}\right)\right)$. Since $2 q \mid(2 i-2) q$ for $1 \leq i \leq 2 k, f^{*}\left(v_{1}\right) \equiv f^{*}\left(v_{2}\right)$ $(\bmod 2 q)$ which contradicts with the property of f^{*}.

Case 2: v_{1} and v_{2} are in the different copy. Assume that $g^{*}\left(v_{1}\right)=g^{*}\left(v_{2}\right)$. Then, without loss of generality, let $v_{1} \in V\left(G_{i}\right)$ and $v_{2} \in V\left(G_{j}\right)$ for some $1 \leq i<j \leq 2 k$.

If v_{2} is the copy of v_{1}, then $f^{*}\left(v_{1}\right)+(2 i-2) q \operatorname{deg} v_{1} \equiv f^{*}\left(v_{1}\right)+(2 j-2) q \operatorname{deg} v_{1}(\bmod 4 k q)$. Hence, $4 k q \mid 2(j-i) q \operatorname{deg} v_{1}$. Since $j-i<2 k, 2 \mid \operatorname{deg} v_{1}$, which is a contradiction.

If v_{2} is not the copy of v_{1}, then $f^{*}\left(v_{1}\right)+(2 i-2) q \operatorname{deg} v_{1} \equiv f^{*}\left(v_{2}\right)+(2 j-2) q \operatorname{deg} v_{2}(\bmod 4 k q)$. Hence, there is an integer t such that $f^{*}\left(v_{1}\right)-f^{*}\left(v_{2}\right)=2 q\left(2 k t+(j-i)\left(\operatorname{deg} v_{2}-\operatorname{deg} v_{1}\right)\right.$. That is, $f^{*}\left(v_{1}\right) \equiv f^{*}\left(v_{2}\right)(\bmod 2 q)$, which is a contradiction.

Therefore, from all the cases, we can conclude that for each $v \in V(2 k G)$, the induced mapping g^{*} of g are all distinct. Hence, $2 k G$ is edge-odd graceful.

Acknowledgements : The first author would like to thank Ramkhamhaeng University for their support on this research work.

References

[1] J. A. Gallian, The Eletronic Journal of Combinatorics, vol.5(2005) No.DS6.
[2] R. B. Gnanajothi, Topics in Graph Theory, Ph.D. Thesis (1991), Madurai Kamaraj University.
[3] A. Solairaju and K. Chithra, Edge-Odd Graceful Graphs, Electronic Notes in Discrete Math. 33(2009), 15-20.
[4] S. Singhun, Graphs with Edge-Odd Graceful Labelings, International Mathematical Forum, Vol. 8, No. 12(2013), 577-582.
[5] R. Boonklurb, S. Singhun and A. Wongpradit, Edge-Odd Graceful Labelings of some Prisms and Prism-Like Graphs, East-West J. of Mathematics: Vol. 17, No 1 (2015),33-47.
[6] S. N. Daoud, Edge-odd graceful labeling of some path and cycle related graphs, AKCE Inter. J. of graphs and combin., vol. 14 (2017), 178-203.
(Received 21 November 2018)
(Accepted 10 June 2019)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

[^0]: ${ }^{1}$ Corresponding author.

