Thai Journal of Mathematics : (2020) 15–26 Special Issue: The 14^{th} IMT-GT ICMSA 2018

http://thaijmath.in.cmu.ac.th Online ISSN 1686-0209

Edge-Odd Graceful Graphs Related to Cycles

Sirirat Singhun^{\dagger ,1}, Ratinan Boonklurb^{\ddagger}, Apinya Tirasuwanwasee^{\ddagger} and Pensiri Sompong[§]

[†]Department of Mathematics, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand e-mail : sin_sirirat@ru.ac.th [‡] Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand e-mail : ratinan.b@chula.ac.th and apinya.at4102277@gmail.com [§] Faculty of Science and Engineering, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand e-mail : pensiri.so@ku.th

Abstract : Let G be a graph consisting of the vertex set V(G) and the edge set E(G) such that |E(G)| = q. An *edge-odd graceful labeling* is a bijection function $f : E(G) \to \{1, 3, 5, \ldots, 2q - 1\}$ such that for each $v \in V(G)$, $f^*(v) = \sum_{uv \in E(G)} f(uv) \pmod{2q}$ are all distinct. In this article, edge-odd graceful labelings for graphs related to cycles, (n, 1)-kite and (n, 2)-kite where n is an integer such that $n \geq 3$, the graph $P_2 \cdot nK_1$ where n is a positive integer and the cartesian product $C_n \Box P_3$ and $C_3 \Box P_k$ where $n \geq 3$ and $k \geq 4$ are obtained. Moreover, we show that if a graph G is edge-odd graceful and each vertex has odd degree, then the union of even copies of G is edge-odd graceful.

Keywords : edge-odd graceful; the cartesian product of a graph; the union of graphs. **2010 Mathematics Subject Classification :** 05C78.

1 Introduction and Preliminaries

Thoughtout this paper, for a graph G, let V(G) and E(G) denote the vertex set and the edge set of G, respectively. A graph labeling which is an assignment of integers to the vertices or edges, or both, subject to certain condition was introduced by Rosa [1] in the late 1960s. Rosa called a function f a β -valuation (which well-known in the term graceful labeling) of a graph G with q edges if f is an injection from the vertex set to $\{0, 1, 2, \ldots, q\}$ such that each edge xy of G is assigned the label |f(x) - f(y)|, the resulting edge labels are distinct. A graph G is said to be graceful if G admits a graceful labeling. In 1991, Gnanajothi [2] defined a graph G with q edges to be odd-graceful if there is an injection f from the vertex set to $\{0, 1, 2, \ldots, 2q - 1\}$ such that, when each edge xy of G is assigned the label |f(x) - f(y)|, the

Copyright © 2020 by the Mathematical Association of Thailand. All rights reserved.

¹Corresponding author.

resulting edges labels are in $\{1, 3, 5, ..., 2q - 1\}$. Later, Solairaju and Chithra [3] introduced a new type of labeling which can be regarded as an inverse problem of labeling defined by Gnanajothi as follows.

An edge-odd graceful labeling of a graph G with q edges is a bijection function f from E(G) to $\{1, 3, 5, \ldots, 2q - 1\}$ so that the induced mapping f^* from V(G) to $\{0, 1, 2, \ldots, 2q - 1\}$ given by, for each $v \in V(G)$, $f^*(v) = \sum_{uv \in E(G)} f(uv) \pmod{2q}$. The edge labels and vertex labels are distinct. A graph which has an edge-odd graceful labeling is called edge-odd graceful.

Not all graphs are edge-odd graceful. For example, the star $K_{1,3}$, a graph with one vertex (called the center) joining to three vertices, is not edge-odd graceful. Without loss of generality, we label each edge by 1, 3 and 5. Then, the center is labeled by $(1 + 3 + 5) \pmod{6} = 3$, which is the same as one of the three vertices.

The edge-odd graceful labelings of some graphs related to paths are shown in [3]. Later, Singhun [4] began to show edge-odd graceful labelings of SF(n,m) where $n \ge 3$ is odd and m is even and n|m and a wheel graph W_n , where n is even. In 2015, the authors in [5] also showed edge-odd graceful labelings of some prisms and prism-like graphs, $Prism(S_n)$ when $n \ge 3$, $Prism_3(S_n)$ when $n \ge 3$ and $n \equiv 2 \pmod{6}$, $Prism(W_n)$ when $n \ge 3$ and 2|n. Recently, Daoud [6] constructed several edge-odd graceful labelings for friend ship graphs $F_{r_n}^{(3)}$, $F_{r_n}^{(4)}$ and $\overline{F}_{r_n}^{(3)}$, wheel graph W_n , helm graph H_n , web graph Wb_n , double web graph $W_{n,n}$, fan graph F_n , double fan graph $F_{2,n}$, gear graph G_n , half gear graph HG_n and polar grid graph $P_{m,n}$.

In this article, we continue to show edge-odd graceful labelings of graphs related to cycles, (n, k)-kites when $n \ge 3$ is an integer and k = 1, 2, the graph $P_2 \cdot nK_1$ for all integer $n \ge 2$. Next, edge-odd graceful labelings of the cartesian product of a cycle and a path, $C_n \Box P_3$ for all $n \ge 3$ and $C_3 \Box P_k$ for all $k \ge 4$ are shown. Moreover, we show that if an edge-odd graceful graph G has all odd degree vertices, then the union of even copies of G is edge-odd graceful.

2 An (n,k)-kite

Let $n \geq 3$. A graph (n, k)-kite is a graph obtained from a cycle $v_1 v_2 v_3 \cdots v_n v_1$ and a path $v_{n+1} v_{n+2} v_{n+3} \cdots v_{n+k}$ by joining v_1 and v_{n+1} . Then, V((n, k)-kite) = $\{v_1, v_2, v_3, \ldots, v_n, v_{n+1}, \ldots, v_{n+k}\}$ and E((n, k)-kite) = $\{v_i v_{i+1} \mid i \in \{1, 2, \ldots, n-1, n+1, \ldots, n+k-1\}\} \cup \{v_n v_1, v_1 v_{n+1}\}$. Edge-odd graceful labelings for (n, 1)-kite and (n, 2)-kite are shown in Algorithm 2.1 and 2.2.

Algorithm 2.1. Let G be the graph (n,1)-kite where $n \ge 3$. Define the edge labeling $f : E(G) \rightarrow \{1,3,5,\ldots,2n+1\}$ for G as follow.

If n is odd, let

- $f(v_i v_{i+1}) = n + i + 1$ for $i \in \{1, 3, 5, \dots, n-2\}$;
- $f(v_i v_{i+1}) = i + 1$ for $i \in \{2, 4, 6, \dots, n-1\}$;
- $f(v_1v_n) = 1; and$
- $f(v_1v_{n+1}) = 2n+1.$

If n is even, let

- $f(v_i v_{i+1}) = 2i + 1$ for $i \in \{1, 2, 3, \dots, n-1\}$;
- $f(v_n v_1) = 2n + 1$; and
- $f(v_1v_{n+1}) = 1.$

Theorem 2.1. Let n be an integer such that $n \ge 3$. The graph (n, 1)-kite is edge-odd graceful.

Proof. Let G be the graph (n, 1)-kite. By Algorithm 2.1, it is easy to see that f is a bijection from E(G) to $\{1, 3, 5, \ldots, 2n + 1\}$. It suffices to show that the induced mapping f^* on vertices of G are distinct.

Case 1 : n is odd. By Algorithm 2.1, (i) $f^*(v_1) = n + 2$, (ii) $f^*(v_i) = (n + 2i + 1) \pmod{2n + 2}$ for $i \in \{2, 3, 4, \dots, n-1\}$, (iii) $f^*(v_n) = n + 1$ and (iv) $f^*(v_{n+1}) = 2n + 1$.

Then, $f^*(v) \in \{1, 2, 3, ..., 2n+1\}$ for each $v \in V(G)$. By (i) and (iv), $f^*(v_1) = n+2$ and $f^*(v_{n+1}) = 2n+1$ are odd and distinct. By (ii) and (iii), $f^*(v_i) = (n+2i+1) \pmod{2n+2}$ for $i \in \{2, 3, 4, ..., n-1\}$ and $f^*(v_n) = n+1$ are even. It suffices to show that for $i \in \{2, 3, 4, ..., n-1\}$, $(n+2i+1) \pmod{2n+2}$ are distinct and also different from n+1.

Suppose that $n + 2i + 1 \equiv n + 2j + 1 \pmod{2n+2}$ for some $i, j \in \{2, 3, 4, \dots, n-1\}$ and i > j. Then, (n+1)|(i-j). However, $1 \leq i-j \leq n-3$, which is a contradiction.

Suppose that $n + 2i + 1 \equiv n + 1 \pmod{2n + 2}$ for some $i \in \{2, 3, 4, \dots, n - 1\}$. Then, $i \equiv 0 \pmod{n + 1}$. Thus, (n + 1)|i, which is a contradiction.

Case 2 : n is even. By Algorithm 2.1, (i) $f^*(v_1) = 3$, (ii) $f^*(v_i) = 4i \pmod{2n+2}$ for $i \in \{2, 3, 4, ..., n\}$, and (iii) $f^*(v_{n+1}) = 1$.

Then, $f^*(v) \in \{1, 2, 3, ..., 2n + 1\}$ for each $v \in V(G)$. By (i) and (iii), $f^*(v_1) = 3$ and $f^*(v_{n+1}) = 1$ are odd and distinct. By (ii), $f^*(v_i) = 4i \pmod{2n+2}$ for $i \in \{2, 3, 4, ..., n\}$ are all even. It suffices to show that for $i \in \{2, 3, 4, ..., n\}$, $f^*(v_i) = 4i \pmod{2n+2}$ are all distinct.

Suppose that $f^*(v_i) \equiv f^*(v_j) \pmod{2n+2}$ for some $i, j \in \{2, 3, 4, \dots, n\}$ and i > j. Then, 2(i-j) = (n+1)t for some positive integer t. Since n+1 is odd, (n+1)|(i-j). However, $1 \le i-j \le n-2$, which is a contradiction.

Therefore, the edge labelings obtained from Algorithm 2.1 are edge-odd graceful labelings. Hence, G is edge-odd graceful.

Figure 1: (a) (5,1)-kite, (b) (5,2)-kite, (c) (6,1)-kite and (d) (6,2)-kite

Algorithm 2.2. Let G be the graph (n,2)-kite where $n \ge 3$. Define the edge labeling $f : E(G) \rightarrow \{1,3,5,\ldots,2n+3\}$ for G as follow.

If n is odd, let

- $f(v_i v_{i+1}) = 2i 1$ for $i \in \{1, 2, 3, \dots, n-1\}$;
- $f(v_1v_n) = 2n 1;$
- $f(v_1v_{n+1}) = 2n + 1$; and
- $f(v_{n+1}v_{n+2}) = 2n+3.$

If n is even, let

- $f(v_i v_{i+1}) = i \text{ for } i \in \{1, 3, 5, \dots, n-1\};$
- $f(v_i v_{i+1}) = n + 1 + i$ for $i \in \{2, 4, 6, \dots, n-2\}$;
- $f(v_1v_n) = 2n + 1;$
- $f(v_1v_{n+1}) = n+1$; and
- $f(v_{n+1}v_{n+2}) = 2n+3.$

Theorem 2.2. Let n be an integer such that $n \ge 3$. The graph (n, 2)-kite is edge-odd graceful.

Proof. Let G be the graph (n, 2)-kite. By Algorithm 2.2, it is easy to see that f is a bijection from E(G) to $\{1, 3, 5, \ldots, 2n + 1\}$. It suffices to show that the induced mapping f^* on vertices of G are distinct.

Case 1 : n is odd. We see from Algorithm 2.2 that (i) $f^*(v_1) = 2n - 3$, (ii) $f^*(v_i) = (4i - 4) \pmod{2n + 4}$ for $i \in \{2, 3, 4, \dots, n\}$, (iii) $f^*(v_{n+1}) = 2n$, and (iv) $f^*(v_{n+2}) = 2n + 3$.

Then, $f^*(v) \in \{1, 2, 3, ..., 2n+4\}$ for each $v \in V(G)$. By (i) and (iv), $f^*(v_1) = 2n-3$ and $f^*(v_{n+2}) = 2n+3$ are odd and distinct. By (ii) and (iii), for $i \in \{2, 3, 4, ..., n\}$, $f^*(v_i) = (4i-4) \pmod{2n+4}$ and $f^*(v_{n+1}) = 2n$ are even. It suffices to show that, for $i \in \{2, 3, 4, ..., n\}$, $(4i-4) \pmod{2n+4}$ are all distinct and also different from 2n.

Suppose that $4i - 4 \equiv 4j - 4 \pmod{2n+4}$ for some $i, j \in \{2, 3, 4, \dots, n\}$ and i < j. Then, (n+2)|2(j-i). Since n is odd, n+2 is odd and (n+2)|(j-i). However, $1 \leq j-i \leq n-2$, which is a contradiction.

Suppose that $4i - 4 \equiv 2n \pmod{2n+4}$ for some $i \in \{2, 3, 4, \dots, n\}$. Then, $2i \equiv 0 \pmod{n+2}$. Thus, (n+2)|2i. Since n is odd, n+2 is odd and (n+2)|i. However $2 \leq i \leq n$, it is a contradiction.

Case 2 : n is even. We see from Algorithm 2.2 that (i) $f^*(v_1) = n - 1$, (ii) $f^*(v_i) = (n + 2i) \mod (2n + 4)$ for $i \in \{2, 3, 4, ..., n\}$, (iii) $f^*(v_{n+1}) = n$, and (iv) $f^*(v_{n+2}) = 2n + 3$.

Then, $f^*(v) \in \{1, 2, 3, \ldots, 2n+4\}$ for each $v \in V(G)$. By (i) and (iv), $f^*(v_1) = n-1$ and $f^*(v_{n+2}) = 2n+3$ are odd and distinct. By (ii) and (iii), $f^*(v_i) = (n+2i) \pmod{2n+4}$ for $i \in \{2, 3, 4, \ldots, n\}$ and $f^*(v_{n+1}) = n$ are even. It suffices to show that $(n+2i) \pmod{2n+4}$ are all distinct for all $i \in \{2, 3, 4, \ldots, n\}$ and also different from n.

Suppose that $n+2i \equiv n+2j \pmod{2n+4}$ for some $i, j \in \{2, 3, 4, \dots, n\}$ and i > j. Then, (n+2)|(i-j). However, $1 \leq i-j \leq n-2$, it is a contradiction.

Suppose that $n + 2i \equiv n \pmod{2n+4}$ for some $i \in \{2, 3, 4, \dots, n\}$. Then, (n+2)|i. However, $2 \leq i \leq n$, it is a contradiction.

Therefore, the edge labelings obtained from Algorithm 2.2 are edge-odd graceful labelings. Hence, G is edge-odd graceful.

3 $P_2 \cdot nK_1$

Let n be a positive integer. The graph $P_2 \cdot nK_1$ is a graph obtained from a path $P_2 : v_1v_2$ and n independent vertices, u_1, u_2, \ldots, u_n , by joining each vertex u_i for $i \in \{1, 2, 3, \ldots, n\}$ with v_j for $j \in \{1, 2\}$. In the case that n = 1, the graph is denoted by $P_2 \cdot K_1$. Then, $V(P_2 \cdot nK_1) = \{v_1, v_2, u_1, u_2, \ldots, u_n\}$ and $E(P_2 \cdot nK_1) = \{v_1v_2\} \cup \{u_iv_j \mid i \in \{1, 2, 3, \ldots, n\}$ and $j \in \{1, 2\}$. It can be seen that $P_2 \cdot nK_1$ contains n + 2 vertices and 2n + 1 edges. For $n = 1, P_2 \cdot K_1$ is a cycle C_3 or the fan F_2 and it is obviously edge-odd graceful. Edge-odd graceful labelings for $P_2 \cdot nK_1$ where $n \ge 2$ are shown.

Algorithm 3.1. Let n be an integer such that $n \ge 2$. Let G be the graph $P_2 \cdot nK_2$. Define the edge labeling $f : E(G) \to \{1, 3, 5, \dots, 4n + 1\}$ for G as follow.

If $n \equiv 0$ or 2 (mod 4), let

- $f(v_1v_2) = 4n + 1;$
- $f(u_iv_1) = 4i 3$ for $i \in \{1, 2, 3, \dots, n\}$; and
- $f(u_i v_2) = 4i 1$ for $i \in \{1, 2, 3, \dots, n\}$.

If $n \equiv 1 \pmod{4}$, let

- $f(u_iv_1) = 4i 1$ for $i \in \{1, 2, 3, \dots, n-1\}$;
- $f(u_n v_1) = 1;$
- $f(u_iv_2) = 4i + 1$ for $i \in \{1, 2, 3, \dots, n-1\}$;
- $f(u_n v_2) = 4n 1$; and
- $f(v_1v_2) = 4n + 1.$

If $n \equiv 3 \pmod{4}$, let

- $f(u_iv_1) = 4i 1$ for $i \in \{1, 2, 3, \dots, n\}$;
- $f(u_iv_2) = 4i + 1$ for $i \in \{1, 2, 3, \dots, n-1\}$;
- $f(u_n v_2) = 1$; and
- $f(v_1v_2) = 4n + 1.$

Figure 2: (a) $P_2 \cdot 4K_1$, (b) $P_2 \cdot 7K_1$ and (c) $P_2 \cdot 9K_1$

Theorem 3.1. Let n be an integer such that $n \ge 2$. The graph $P_2 \cdot nK_1$ is edge-odd graceful.

Proof. Case 1 : $n \equiv 0$ or 2 (mod 4). We see from Algorithm 3.1 that (i) $f^*(u_i) = (8i-4) \pmod{4n+2}$ for $i \in \{1, 2, 3, ..., n\}$, (ii) $f^*(v_1) = (2n^2 + 3n + 1) \pmod{4n+2}$, and (iii) $f^*(v_2) = (2n^2 + 5n + 1) \pmod{4n+2}$. Then, $f^*(v) \in \{1, 2, 3, ..., 4n+2\}$ for each $v \in V(G)$.

Next, we shall show that, for all $i \in \{1, 2, 3, ..., n\}$, $f^*(u_i)$ are all distinct, and also different from $f^*(v_1)$ and $f^*(v_2)$, and $f^*(v_1)$ is different from $f^*(v_2)$.

Suppose that $f^*(u_i) \equiv f^*(u_j) \pmod{4n+2}$ for some $i, j \in \{1, 2, 3, ..., n\}$ and i > j. Then, (4n+2)|(i-j). However, $1 \le i-j \le n-1$, which is a contradiction.

Suppose that $f^*(u_i) \equiv f^*(v_1) \pmod{4n+2}$ for some $i \in \{1, 2, 3, ..., n\}$. Thus, $2n^2 + 3n + 5 - 8i = 2(2n+1)t$ for some integer t. Then, $2|(2n^2 + 3n + 5 - 8i)$. Thus, 2|(3n+5). However, 3n + 5 is odd, which is a contradiction.

Suppose that $f^*(u_i) \equiv f^*(v_2) \pmod{4n+2}$ for some $i \in \{1, 2, 3, ..., n\}$. Then, $2n^2 + 5n + 5 - 8i = 2(2n+1)t$ for some integer t. Then, $2|(2n^2 + 5n + 5 - 8i)$. Thus, 2|(5n+5). However, 5n + 5 is odd, which is a contradictions.

Suppose that $f^*(v_1) \equiv f^*(v_2) \pmod{4n+2}$. Then, $n \equiv 0 \pmod{2n+1}$. Thus, (2n+1)|n, which is a contradiction.

Case 2 : $n \equiv 1 \pmod{4}$. Then, n = 4t + 1 for some positive integer t. We see from Algorithm 3.1 that (i) $f^*(u_i) = 8i \pmod{16t+6}$ for $i \in \{1, 2, 3, ..., 4t\}$, (ii) $f^*(u_{4t+1}) = 16t+4$, (iii) $f^*(v_1) = (32t^2+20t+6) \pmod{16t+6}$, and (iv) $f^*(v_2) = (32t^2+44t+8) \pmod{16t+6}$. Then, $f^*(v) \in \{1, 2, 3, ..., 4n+2\}$ for each $v \in V(G)$.

Next, we show that, for $i \in \{1, 2, 3, ..., 4t + 1\}$, $f^*(u_i)$ are all distinct, also different from $f^*(v_1)$ and $f^*(v_2)$, and $f^*(v_1)$ is different from $f^*(v_2)$.

Suppose that $f^*(u_i) \equiv f^*(u_j) \pmod{16t+6}$ for some $i, j \in \{1, 2, 3, ..., 4t\}$ and i > j. Then, 4(i-j) = (8t+3)k for some positive integer k. Thus, 4|(3k) and 4|k. Then, k = 4s for some positive integer s. That is, $(8t+3)k \in \{32t+12, 64t+24, 96t+36, ...\}$. However, $4 \le 4(i-j) = (8t+3)k \le 16t-4 < 32t+12$, it is a contradiction.

Suppose that $f^*(u_i) \equiv f^*(u_{4t+1}) \pmod{16t+6}$ for some $i \in \{1, 2, 3, \dots, 4t\}$. Then, $4i+1 = (8t+3)k \in \{8t+3, 16t+6, 24t+9, \dots\}$. However, $4i+1 \in \{5, 9, 13, \dots, 8t+1, 8t+5, \dots, 16t+1\}$, it is a contradiction.

Suppose that $f^*(u_i) \equiv f^*(v_1) \pmod{16t+6}$ for some $i \in \{1, 2, 3, \dots, 4t\}$. Then, $4i \equiv 16t^2 + 10t + 3 \pmod{8t+3}$. (mod 8t+3). Since $16t^2 + 10t + 3 \equiv 4t+3 \pmod{8t+3}$, $4i = (4t+3)k + (8t+3) \in \{12t+6, 16t+9, 20t+12, \dots\}$. However, $4i \in \{4, 8, 12, \dots, 12t+4, 12t+8, \dots, 16t\}$, it is a contradiction.

Since $f^*(v_1) = (32t^2 + 20t + 6) \pmod{16t + 6} = 8t + 6$, $f^*(v_1)$ and $f^*(u_{4t+1})$ are distinct.

Suppose that $f^*(u_i) \equiv f^*(v_2) \pmod{16t+6}$ for some $i \in \{1, 2, 3, \dots, 4t\}$. Then, $4i \equiv 16t^2 + 22t + 4 \pmod{8t+3}$. Since $16t^2 + 22t + 4 \equiv 8t + 1 \pmod{8t+3}$, $4i = (8t+3)k + (8t+1) \in \{16t+4, 24t+7, 32t+10, \dots\}$. However, $4i \in \{4, 8, 12, \dots, 16t\}$, it is a contradiction.

Since $f^*(v_2) = (32t^2 + 44t + 8) \pmod{16t + 6} = 16t + 2$, $f^*(v_2)$ and $f^*(u_{4t+1})$ are distinct.

Since $f^*(v_1) = 32t^2 + 20t + 6 \pmod{16t + 6} = 8t + 6$ and $f^*(v_2) = (32t^2 + 44t + 8) \pmod{16t + 6} = 6t + 2$, $f^*(v_1)$ and $f^*(v_2)$ are distinct.

Case 3 : $n \equiv 3 \pmod{4}$. Then, n = 4t + 3 for some positive integer t. We see from Algorithm 3.1 that (i) $f^*(u_i) = 8i \pmod{16t + 14}$ for $i \in \{1, 2, 3, \dots, 4t + 2\}$, (ii) $f^*(u_{4t+3}) = 16t + 12$, (iii) $f^*(v_1) = (32t^2 + 68t + 34) \pmod{16t + 14}$, and (iv) $f^*(v_2) = (32t^2 + 60t + 28) \pmod{16t + 14}$. Then, $f^*(v) \in \{1, 2, 3, \dots, 4n + 2\}$ for each $v \in V(G)$.

Next, we show that, for all $i \in \{1, 2, 3, ..., 4t + 3\}$, $f^*(u_i)$ are all distinct, and also different from $f^*(v_1)$ and $f^*(v_2)$, and $f^*(v_1)$ and $f^*(v_2)$ are distinct.

Suppose that $f^*(u_i) \equiv f^*(u_j) \pmod{16t + 14}$ for some $i, j \in \{1, 2, 3, ..., 4t + 2\}$ and i > j. Then, (8t + 7)|4(i - j). Since $(8t + 7) \nmid 4$, (8t + 7)|(i - j). However, $1 \le i - j \le 4t + 1$, which is a contradiction.

Suppose that $f^*(u_i) \equiv f^*(u_{4t+3}) \pmod{16t+14}$ for some $i \in \{1, 2, 3, \dots, 4t+2\}$. Then, $4i = (8t+7)k + (8t+6) \in \{16t+13, 24t+20, 32t+29, \dots\}$. However, $4i \in \{4, 8, 12, \dots, 16t+8\}$ which is a contradiction.

Suppose that $f^*(u_i) \equiv f^*(v_1) \pmod{16t + 14}$ for some $i \in \{1, 2, 3, \dots, 4t + 2\}$. Then, $4i \equiv 16t^2 + 34t + 17 \equiv 4t + 3 \pmod{8t + 7}$. Then, $4i = (8t + 7)k + (4t + 3) \in \{12t + 10, 20t + 17, 28t + 24, \dots\}$. However, $4i \in \{4, 8, 12, \dots, 12t + 8, 12t + 12, \dots, 16t + 8\}$, which is a contradiction.

Since $f^*(v_1) = (32t^2 + 68t + 34) \pmod{16t + 14} = 8t + 6$ and $f^*(u_{4t+3}) = 16t + 12$, $f^*(v_1)$ and $f^*(u_{4t+3})$ are distinct.

Suppose that $f^*(u_i) \equiv f^*(v_2) \pmod{16t+14}$ for some $i \in \{1, 2, 3, \dots, 4t+2\}$. Then, $4i \equiv 16t^2+30t+14 \pmod{8t+7}$. (mod 8t+7). Since $16t^2+30t+14 \equiv 0 \pmod{8t+7}$, $4i \equiv 0 \pmod{8t+7}$. Then, $4i = (8t+7)k \in \{8t+7, 16t+14, 24t+21, \dots\}$. However, $4i \in \{4, 8, 12, \dots, 8t+4, 8t+8, \dots, 16t+8\}$, which is a contradiction.

Since $f^*(v_2) = (32t^2 + 60t + 28) \pmod{16t + 14} = 0$ and $f^*(u_{4t+3}) = 16t + 12$, $f^*(v_2)$ and $f^*(u_{4t+3})$ are distinct.

Since $f^*(v_1) = (32t^2 + 68t + 34) \pmod{16t + 14} = 8t + 6$ and $f^*(v_2) = (32t^2 + 60t + 28) \pmod{16t + 14} = 0$, $f^*(v_1)$ and $f^*(v_2)$ are distinct.

Therefore, the edge labelings obtained from Algorithm 3.1 are edge-odd graceful labelings. Hence, G is edge-odd graceful. $\hfill \Box$

4 The cartesian product of $C_n \Box P_3$ and $C_3 \Box P_k$

The cartesian product of C_n and P_k , denoted by $C_n \Box P_k$, is a graph obtained from k copies of C_n by joining the same vertex of the j-th copy to the (j + 1)-th copy for $j \in \{1, 2, 3, \ldots, k-1\}$. We let $\{u_i^j | i \in \{1, 2, 3, \ldots, n\}$ be the set of vertices of the j-th copy of C_n where $j \in \{1, 2, 3, \ldots, k\}$ and the edge set is the set $\{u_i^j u_i^{j+1} | i \in \{1, 2, 3, \ldots, n\}$ and $j \in \{1, 2, 3, \ldots, k-1\} \} \cup \{u_i^j u_i^{j+1} | i \in \{1, 2, 3, \ldots, n-1\}$ and $j \in \{1, 2, 3, \ldots, k-1\} \} \cup \{u_i^j u_i^j | j \in \{1, 2, 3, \ldots, k-1\}\}$. Then, $|E(C_n \Box P_k)| = kn + (k-1)n = (2k-1)n$ Note that, we name the vertices of each cycle in the counterclockwise direction.

Algorithm 4.1. Let G be the graph $C_n \Box P_3$ and $n \ge 3$. Define the edge labeling $f : E(G) \to \{1, 3, 5, \ldots, 10n - 1\}$ for G by

- $f(u_1^1 u_1^2) = 1;$
- $f(u_1^2u_1^3) = 3;$

- $f(u_i^1 u_i^2) = 4n 4i + 5$, for $i \in \{2, 3, 4, \dots, n\}$;
- $f(u_i^2 u_i^3) = 4n 4i + 7$, for $i \in \{2, 3, 4, \dots, n\}$;
- $f(u_i^2 u_{i+1}^2) = 4n + 2i 1$, for $i \in \{1, 2, 3, \dots, n-1\}$;
- $f(u_1^2 u_n^2) = 6n 1;$
- $f(u_i^3 u_{i+1}^3) = 6n + 4i 3$, for $i \in \{1, 2, 3, \dots, n-1\}$;
- $f(u_1^3 u_n^3) = 10n 3;$
- $f(u_i^1 u_{i+1}^1) = 6n + 4i 1$, for $i \in \{1, 2, 3, \dots, n-1\}$; and
- $f(u_1^1 u_n^1) = 10n 1.$

Figure 3: Edge-label and induced vertex-labels for $C_5 \Box P_3$

Theorem 4.1. Let n be an integer such that $n \geq 3$. The graph $C_n \Box P_3$ is edge-odd graceful.

Proof. Let G be the graph $C_n \Box P_3$. By Algorithm 4.1, we see that (i) $f^*(u_1^1) = 6n+3$, (ii) $f^*(u_n^1) = 10n-1$, (iii) $f^*(u_i^1) = 6n + 4i - 1$ for $i \in \{2, 3, 4, \dots, n-1\}$, (iv) $f^*(u_1^2) = 4$, (v) $f^*(u_n^2) = 2n + 8$, (vi) $f^*(u_i^2) = 6n - 4i + 8$ for $i \in \{2, 3, 4, \dots, n-1\}$, (vii) $f^*(u_1^3) = 6n + 1$, (viii) $f^*(u_n^3) = 10n - 3$, and (ix) $f^*(u_i^3) = 6n + 4i - 3$ for $i \in \{2, 3, 4, \dots, n-1\}$.

Next, we show that $f^*(v) \in \{1, 2, 3, ..., 10n\}$ for each $v \in V(G)$ and they are distinct.

Case 1 : n = 3. The assertion is true by direct calculation.

Case 2 : $n \ge 4$. Let $A_1 = \{f^*(u_1^1), f^*(u_n^1), f^*(u_1^2), f^*(u_n^2), f^*(u_n^3), f^*(u_n^3)\}, A_2 = \{6n + 4i - 1 | i \in \{2, 3, 4, ..., n - 1\}\}$, $A_3 = \{6n - 4i + 8 | i \in \{2, 3, 4, ..., n - 1\}\}$ and $A_4 = \{6n + 4i - 3 | i \in \{2, 3, 4, ..., n - 1\}\}$. We can see that $f^*(u_1^1), f^*(u_n^1), f^*(u_1^2), f^*(u_n^2), f^*(u_1^3)$ and $f^*(u_n^3)$ are all distinct.

Since $4 < 2n + 8 < 2n + 12 (= \min A_3) < 6n (= \max A_3) < 6n + 1 < 6n + 3 < 6n + 5 (= \min A_4) < 6n + 7 (= \min A_2) < 10n - 7 (= \max A_4) < 10n - 5 (= \max A_2) < 10n - 3 < 10n - 1, A_1 \cap A_j = \emptyset$ for $j \in \{2, 3, 4\}$.

Next, we notice that all elements in A_3 are even, while all elements in A_2 and A_4 are odd. Thus, $A_2 \cap A_3$ and $A_3 \cap A_4$ are empty. Finally, let $a \in A_2$ and $b \in A_4$, i.e., a = 6n + 4i - 1 and b = 6n + 4l - 3 for some i and $l \in \{2, 3, 4, ..., n-1\}$. Assume that a = b. We have 4(l-i) = 2, which leads to a contradiction. That is, $A_2 \cap A_4 = \emptyset$.

Therefore, f defined by Algorithm 4.1 is an edge-odd graceful labeling for $C_n \Box P_3$.

Algorithm 4.2. Let G denote the graph $C_3 \Box P_k$ where $k \ge 4$. Define the edge labeling $f : E(C_3 \Box P_k) \rightarrow \{1, 3, 5, \dots, 12k - 7\}$ for G as follow.

If $k \equiv 0 \pmod{4}$, let

- $f(u_1^i u_1^{i+1}) = 2i 1$, for $i \in \{1, 2, 3, \dots, k-1\}$;
- $f(u_2^i u_2^{i+1}) = 2k + 2i 3$, for $i \in \{1, 2, 3, \dots, k-1\}$;
- $f(u_3^i u_3^{i+1}) = 4k + 2i 5$, for $i \in \{1, 2, 3, \dots, k-1\}$;

•
$$f(u_1^i u_2^i) = 6k + 2i - 7$$
, for $i \in \{1, 2, 3, \dots, k\}$;

- $f(u_2^i u_3^i) = 8k + 2i 7$, for $i \in \{1, 2, 3, \dots, k\}$; and
- $f(u_1^i u_3^i) = 10k + 2i 7$, for $i \in \{1, 2, 3, \dots, k\}$.

If $k \equiv 1 \pmod{4}$, let

- $f(u_1^i u_1^{i+1}) = 6i 5$, for $i \in \{1, 2, 3, \dots, k-1\}$;
- $f(u_2^i u_2^{i+1}) = 6i 3$, for $i \in \{1, 2, 3, \dots, k-1\}$;
- $f(u_3^i u_3^{i+1}) = 6i 1$, for $i \in \{1, 2, 3, \dots, k-1\}$;
- $f(u_1^i u_2^i) = 8k 2i 5$, for $i \in \{1, 2, 3, \dots, k\}$;
- $f(u_2^i u_3^i) = 12k 2i 5$, for $i \in \{1, 2, 3, \dots, k\}$; and
- $f(u_1^i u_3^i) = 10k 2i 5$, for $i \in \{1, 2, 3, \dots, k\}$.

If $k \equiv 2 \pmod{4}$, let

- $f(u_1^i u_1^{i+1}) = 6k + 2i 1$, for $i \in \{1, 2, 3, \dots, k-1\}$;
- $f(u_2^i u_2^{i+1}) = 8k + 2i 3$, for $i \in \{1, 2, 3, \dots, k-1\}$;
- $f(u_3^i u_3^{i+1}) = 10k + 2i 5$, for $i \in \{1, 2, 3, \dots, k-1\}$;
- $f(u_1^i u_2^i) = 6i 5$, for $i \in \{1, 2, 3, \dots, k\}$;
- $f(u_2^i u_3^i) = 6i 1$, for $i \in \{1, 2, 3, \dots, k\}$; and
- $f(u_1^i u_3^i) = 6i 3$, for $i \in \{1, 2, 3, \dots, k\}$.

If $k \equiv 3 \pmod{4}$, let

- $f(u_1^i u_1^{i+1}) = 2i 1$, for $i \in \{1, 2, 3, \dots, k-1\}$;
- $f(u_2^i u_2^{i+1}) = 2k + 2i 3$, for $i \in \{1, 2, 3, \dots, k-1\}$;
- $f(u_3^i u_3^{i+1}) = 4k + 2i 5$, for $i \in \{1, 2, 3, \dots, k-1\}$;
- $f(u_1^i u_2^i) = 12k 6i 5$, for $i \in \{1, 2, 3, \dots, k\}$;
- $f(u_2^i u_3^i) = 12k 6i 1$, for $i \in \{1, 2, 3, \dots, k\}$; and
- $f(u_1^i u_3^i) = 12k 6i 3$, for $i \in \{1, 2, 3, \dots, k\}$.

Theorem 4.2. Let k be an integer such that $k \ge 4$. The graph $C_3 \Box P_k$ is edge-odd graceful.

Proof. Let G denote the graph $C_3 \Box P_k$.

Case 1 : $k \equiv 0 \pmod{4}$. By Algorithm 4.2, we have (i) $f^*(u_1^1) = 4k - 3$; (ii) $f^*(u_2^1) = 4k - 5$; (iii) $f^*(u_3^1) = 10k - 7$; (iv) $f^*(u_1^k) = 10k - 11$; (v) $f^*(u_2^k) = 10k - 13$; (vi) $f^*(u_3^k) = 4k - 9$; (vii) $f^*(u_1^i) = 4k + 8i - 12$ for $i \in \{2, 3, 4, \dots, k - 1\}$; (viii) $f^*(u_2^i) = 6k + 8i - 16 \pmod{12k - 6}$ for $i \in \{2, 3, 4, \dots, k - 1\}$; and (ix) $f^*(u_3^i) = 2k + 8i - 14$ for $i \in \{2, 3, 4, \dots, k - 1\}$.

Next, we show that $f^*(v) \in \{1, 2, 3, ..., 12k - 6\}$ for each $v \in V(G)$ and they are distinct. Let $B_1 = \{f^*(u_1^1), f^*(u_2^1), f^*(u_3^1), f^*(u_1^k), f^*(u_2^k), f^*(u_3^k)\}, B_2 = \{4k + 8i - 12|i \in \{2, 3, 4, ..., k - 1\}\}, B_3 = \{(6k + 8i - 16) \pmod{12k - 6} | i \in \{2, 3, 4, ..., k - 1\}\}$ and $B_4 = \{2k + 8i - 14|i \in \{2, 3, 4, ..., k - 1\}\}$. We can see that $f^*(u_1^1), f^*(u_2^1), f^*(u_3^1), f^*(u_1^k), f^*(u_2^k)$ and $f^*(u_3^k)$ are all distinct.

We notice that all elements in B_1 are odd, while all elements in B_2 , B_3 and B_4 are even, we conclude that $B_1 \cap B_j = \emptyset$ for $j \in \{2, 3, 4\}$. Since $k \equiv 0 \pmod{4}$, k = 4m for some $m \in \mathbb{N}$. Then, $B_2 = \{8(2m+i-2)+4|i \in \{2,3,4,\ldots,4m-1\}\}$ and $B_4 = \{8(m+i-2)+2|i \in \{2,3,4,\ldots,4m-1\}\}$. Consider $B_3 = \{(24m+8i-16)(\mod{48m-6})|i \in \{2,3,4,\ldots,4m-1\}\} = \{8(3m+i-2)|i \in \{2,3,4,\ldots,3m+1\}\} \cup \{(24m+8i-16)(\mod{48m-6})|i \in \{3m+2,3m+3,3m+4,\ldots,4m-1\}\} = B_{31} \cup \{6,8(1)+6,8(2)+6,\ldots,8(m-5)+6,8(m-4)+6,8(m-3)+6\} = B_{31} \cup B_{32}.$

Figure 4: Edge-label and induced vertex-labels for $C_3 \Box P_8$

Notice that elements in B_2 , B_{31} , B_{32} and B_4 are arithmetic progression with common difference 8, we also can see that each element in B_2 , B_{31} , B_{32} and B_4 is congruent to 4, 0, 6 and 2 modulo 8, respectively. Thus, B_2 , B_3 and B_4 are distinct.

Case 2 : $k \equiv 1 \pmod{4}$. By Algorithm 4.2, $f^*(u_1^1) = 6k - 7$; $f^*(u_2^1) = 8k - 5$; $f^*(u_3^1) = 10k - 3$; $f^*(u_1^k) = 8k - 15$; $f^*(u_2^k) = 10k - 13$; $f^*(u_3^k) = 12k - 11$; $f^*(u_1^i) = (6k + 8i - 20) \pmod{12k - 6}$; $f^*(u_2^i) = (8k + 8i - 16) \pmod{12k - 6}$; and $f^*(u_3^i) = (10k + 8i - 12) \pmod{12k - 6}$ for $i \in \{2, 3, 4, ..., k - 1\}$.

Figure 5: Edge-label and induced vertex-labels for $C_3 \Box P_9$

Next, we show that $f^*(v) \in \{1, 2, 3, ..., 12k - 6\}$ for each $v \in V(G)$ and they are distinct. Let $B_1 = \{f^*(u_1^1), f^*(u_2^1), f^*(u_3^1), f^*(u_2^k), f^*(u_3^k)\}, B_2 = \{(6k+8i-20) \pmod{12k-6} | i \in \{2, 3, 4, ..., k-1\}\}, B_3 = \{(8k+8i-16) \pmod{12k-6} | i \in \{2, 3, 4, ..., k-1\}\}$ and $B_4 = \{(10k+8i-12) \pmod{12k-6} | i \in \{2, 3, 4, ..., k-1\}\}$. We can see that $f^*(u_1^1), f^*(u_2^1), f^*(u_3^1), f^*(u_1^1), f^*(u_2^k)$ and $f^*(u_3^k)$ are all distinct. We notice that all elements in B_4 are odd, while all elements in B_5 . Be and B_4 are even, we conclude

We notice that all elements in B_1 are odd, while all elements in B_2 , B_3 and B_4 are even, we conclude that $B_1 \cap B_j = \emptyset$ for $j \in \{2, 3, 4\}$. Since $k \equiv 1 \pmod{4}$, k = 4m + 1 for some $m \in \mathbb{N}$.

If m = 1, then $B_2 = \{26, 34, 42\}, B_3 = \{40, 48, 2\}$ and $B_4 = \{0, 8, 16\}$.

If m = 2, then $B_2 = \{50, 58, 66, 74, 82, 90, 98\}$, $B_3 = \{72, 80, 88, 96, 2, 10, 18\}$ and $B_4 = \{94, 0, 8, 16, 24, 32, 40\}$.

$$\begin{split} &\text{If } m \geq 3, \, \text{then } B_2 = \{8(3m+i-2)+2|i\in\{2,3,4,\ldots,3m+2\}\} \cup \{(24m+8i-14) \, (\text{mod } 48m+6)|i\in\{3m+3,3m+4,3m+5,\ldots,4m\}\} = B_{21} \cup \{4,8(1)+4,8(2)+4,\ldots,8(m-5)+4,8(m-4)+4,8(m-3)+4\} = B_{21} \cup B_{22}. \ B_3 = \{8(4m+i-1)|i\in\{2,3,4,\ldots,2m+1\}\} \cup \{(32m+8i-8) \, (\text{mod } 48m+6)|i\in\{2m+2,2m+3,2m+4,\ldots,4m\}\} = B_{31} \cup \{2,8(1)+2,8(2)+2,\ldots,8(2m-4)+2,8(2m-3)+2,8(2m-2)+2\} = B_{31} \cup B_{32}. \\ &B_4 = \{8(5m+i-1)+6|i\in\{2,3,4,\ldots,m\}\} \cup \{(40m+8i-2) \, (\text{mod } 48m+6)|i\in\{m+1,m+2,m+3,\ldots,4m\}\} = B_{41} \cup \{0,8(1),8(2),\ldots,8(3m-3),8(3m-2),8(3m-1)\} = B_{41} \cup B_{42}. \end{split}$$

Notice that each element in B_{21} and B_{32} is congruent to 2 modulo 8. However, min $B_{21} = 24m + 2 > 16m - 14 = \max B_{32}$. Similarly, each element in B_{31} and B_{42} is congruent to 0 modulo 8. However, min $B_{31} = 32m + 8 > 24m - 8 = \max B_{42}$. Finally, each element in B_{22} and B_{41} is congruent to 4 and 6 modulo 8, respectively.

Thus, for all $m \ge 1$, B_2 , B_3 and B_4 are all distinct.

Case 3 : $k \equiv 2 \pmod{4}$. By Algorithm 4.2, $f^*(u_1^1) = 6k + 5$; $f^*(u_2^1) = 8k + 5$; $f^*(u_3^1) = 10k + 5$; $f^*(u_1^k) = 8k - 5$; $f^*(u_2^k) = 10k - 5$; $f^*(u_3^k) = 1$; $f^*(u_1^i) = (16i - 6) \pmod{12k - 6}$; $f^*(u_2^i) = (4k + 16i - 8) \pmod{12k - 6}$; $f^*(u_3^i) = (8k + 16i - 10) \pmod{12k - 6}$ for $i \in \{2, 3, 4, \dots, k - 1\}$.

Figure 6: Edge-label and induced vertex-labels for $C_3 \Box P_6$

Next, we show that $f^*(v) \in \{1, 2, 3, ..., 12k - 6\}$ for each $v \in V(G)$ and they are distinct. Let $B_1 = \{f^*(u_1^1), f^*(u_2^1), f^*(u_1^3), f^*(u_1^k), f^*(u_2^k), f^*(u_3^k)\}, B_2 = \{(16i - 6)(\text{mod } 12k - 6)|i \in \{2, 3, 4, ..., k - 1\}\}, B_3 = \{(4k + 16i - 8)(\text{mod } 12k - 6)|i \in \{2, 3, 4, ..., k - 1\}\} \text{ and } B_4 = \{(8k + 16i - 10)(\text{mod } 12k - 6)|i \in \{2, 3, 4, ..., k - 1\}\}$. Then, $f^*(u_1^1), f^*(u_2^1), f^*(u_3^1), f^*(u_1^k), f^*(u_2^k)$ and $f^*(u_3^k)$ are all distinct.

We notice that all elements in B_1 are odd, while all elements in B_2 , B_3 and B_4 are even, we conclude that $B_1 \cap B_j = \emptyset$ for $j \in \{2, 3, 4\}$. Since $k \equiv 2 \pmod{4}$, k = 4m + 2 for some $m \in \mathbb{N}$.

If m = 1, then $B_2 = \{26, 42, 58, 8\}, B_3 = \{48, 64, 14, 30\}$ and $B_4 = \{4, 20, 36, 52\}.$

If $m \ge 2$, then $B_2 = \{(16i - 6)(\mod 48m + 18) | i \in \{2, 3, 4, \dots, 4m + 1\}\} = \{8(2i - 1) + 2 | i \in \{2, 3, 4, \dots, 3m + 1\}\} \cup \{(16i - 6)(\mod 48m + 18) | i \in \{3m + 2, 3m + 3, 3m + 4, \dots, 4m + 1\}\} = B_{21} \cup \{8(1), 8(3), 8(5), \dots, 8(2m - 5), 8(2m - 3), 8(2m - 1)\} = B_{21} \cup B_{22}.$ $B_3 = \{(16m + 16i)(\mod 48m + 18) | i \in \{2, 3, 4, \dots, 4m + 1\}\} = \{8(2m + 2i) | i \in \{2, 3, 4, \dots, 2m + 1\}\} \cup \{(16m + 16i)(\mod 48m + 18) | i \in \{2m + 2, 2m + 3, 2m + 4, \dots, 4m + 1\}\} = B_{31} \cup \{8(1) + 6, 8(3) + 6, 8(5) + 6, \dots, 8(4m - 5) + 6, 8(4m - 3) + 6, 8(4m - 1) + 6\} = B_{31} \cup B_{32}.$ $B_4 = \{(32m + 16i + 6)(\mod 48m + 18) | i \in \{2, 3, 4, \dots, 4m + 1\}\} = \{8(4m + 2i) + 6 | i \in \{2, 3, 4, \dots, m\}\} \cup \{(32m + 16i + 6)(\mod 48m + 18) | i \in \{m + 1, m + 2, m + 3, \dots, 4m + 1\}\} = B_{41} \cup \{4, 8(2) + 4, 8(4) + 4, \dots, 8(6m - 4) + 4, 8(6m - 2) + 4, 8(6m) + 4\} = B_{41} \cup B_{42}.$

Notice that each element in B_{22} and B_{31} is congruent to 0 modulo 8. However, max $B_{22} = 16m - 8 < 16m + 32 = \min B_{31}$. Similarly, each element in B_{32} and B_{41} is congruent to 6 modulo 8. However, max $B_{32} = 32m - 2 < 32m + 38 = \min B_{41}$. Finally, each element in B_{21} and B_{42} is congruent to 2 and 4 modulo 8, respectively.

Thus, for all $m \ge 1, B_2, B_3$ and B_4 are distinct.

Case 4 : $k \equiv 3 \pmod{4}$. By Algorithm 4.2, $f^*(u_1^1) = 12k - 13$; $f^*(u_2^1) = 2k - 7$; $f^*(u_3^1) = 4k - 7$; $f^*(u_1^k) = 2k - 5$; $f^*(u_2^k) = 4k - 5$; $f^*(u_3^k) = 6k - 5$; $f^*(u_1^i) = 12k - 8i - 6$; $f^*(u_2^i) = (16k - 8i - 8) \pmod{12k - 6}$; $f^*(u_3^i) = 8k - 8i - 4$ for $i \in \{2, 3, 4, \dots, k - 1\}$.

Figure 7: Edge-label and induced vertex-labels for $C_3 \Box P_7$

Next, we show that $f^*(v) \in \{1, 2, 3, ..., 12k - 6\}$ for each $v \in V(G)$ and they are distinct. Let $B_1 = \{f^*(u_1^1), f^*(u_2^1), f^*(u_3^1), f^*(u_1^k), f^*(u_2^k), f^*(u_3^k)\}, B_2 = \{12k - 8i - 6|i \in \{2, 3, 4, ..., k - 1\}\}, B_3 = \{(16k - 8i - 8)(\text{mod } 12k - 6)|i \in \{2, 3, 4, ..., k - 1\}\}$ and $B_4 = \{8k - 8i - 4|i \in \{2, 3, 4, ..., k - 1\}\}$. We can see that $f^*(u_1^1), f^*(u_2^1), f^*(u_3^1), f^*(u_1^k), f^*(u_2^k)$ and $f^*(u_3^k)$ are all distinct.

We notice that all elements in B_1 are odd, while all elements in B_2, B_3 and B_4 are even, we conclude that $B_1 \cap B_j = \emptyset$ for $j \in \{2, 3, 4\}$. Since $k \equiv 3 \pmod{4}$, k = 4m + 3 for some $m \in \mathbb{N}$. Then, $B_2 = \{8(6m - i + 3) + 6|i \in \{2, 3, 4, \dots, 4m + 2\}\}$ and $B_4 = \{8(4m - i + 2) + 4|i \in \{2, 3, 4, \dots, 4m + 2\}\}$. Consider $B_3 = \{(64m - 8i + 40) \pmod{48m + 30} | i \in \{2, 3, 4, \dots, 4m + 2\}\} = \{(64m - 8i + 40) \pmod{48m + 30} | i \in \{2, 3, 4, \dots, 2m + 1\}\} \cup \{8(8m - i + 5) | i \in \{2m + 2, 2m + 3, 2m + 4, \dots, 4m + 2\}\} = \{8(2m - 1) + 2, 8(2m - 2) + 2, 8(2m - 3) + 2, \dots, 8(2) + 2, 8(1) + 2, 2\} \cup B_{32} = B_{31} \cup B_{32}$.

Notice that elements in B_2 , B_{31} , B_{32} and B_4 are arithmetic progression with common difference 8. We also can see that each element in B_2 , B_{31} , B_{32} and B_4 is congruent to 6, 2, 0 and 4 modulo 8, respectively. Thus, B_2 , B_3 and B_4 are distinct.

Therefore, f defined by Algorithm 4.2 are edge-odd graceful labelings for $C_3 \Box P_k$ for any integer k such that $k \ge 4$.

5 Union of even copies of edge-odd graceful graphs

In this section, we recall that the graph nG is a graph consisting of n copies of G.

Theorem 5.1. Let $k \ge 1$ and G be an edge-odd graceful graph such that deg v is odd for all $v \in V(G)$. Then, the graph 2kG is edge-odd graceful.

Proof. Let us denote a graph G of q edges by G_1 and $G_2, G_3, G_4, \ldots, G_{2k}$ be its copy.

Suppose that G_1 is edge-odd graceful with edge-odd graceful labeling f together with its induced mapping f^* . Define $g: E(2kG) \to \{1, 3, 5, \dots, 4kq - 1\}$ by

g(e) = f(e) + (2i - 2)q for $e \in E(G_i)$ and $i \in \{1, 2, 3, \dots, 2k\}$.

Since f is an injection and $f(E(G_1)) = \{1, 3, 5, \dots, 2q - 1\}$, g is an injection and $g(E(2kG)) = \{1, 3, 5, \dots, 4kq - 1\}$. Thus, g is a bijection. Next, consider the induced mapping g^* of g which is

 $g^*(v) = f^*(v) + (2i-2)q \deg v \pmod{4kq} \text{ for } v \in V(G_i) \text{ and } i \in \{1, 2, 3, \dots, 2k\}.$

Case 1: v_1 and v_2 are in the same copy. Assume that they are in G_i for some $i \in \{1, 2, 3, ..., 2k\}$ and $g^*(v_1) = g^*(v_2)$. Then, $f^*(v_1) + (2i-2)q \deg v_1 \equiv f^*(v_2) + (2i-2)q \deg v_2 \pmod{4kq}$. Since 2q|4kq, we have $2q|(f^*(v_1) - f^*(v_2) + (2i-2)q(\deg v_1 - \deg v_2))$. Since 2q|(2i-2)q for $1 \le i \le 2k$, $f^*(v_1) \equiv f^*(v_2) \pmod{2q}$ (mod 2q) which contradicts with the property of f^* .

Case 2 : v_1 and v_2 are in the different copy. Assume that $g^*(v_1) = g^*(v_2)$. Then, without loss of generality, let $v_1 \in V(G_i)$ and $v_2 \in V(G_j)$ for some $1 \le i < j \le 2k$.

If v_2 is the copy of v_1 , then $f^*(v_1) + (2i-2)q \deg v_1 \equiv f^*(v_1) + (2j-2)q \deg v_1 \pmod{4kq}$. Hence, $4kq|2(j-i)q \deg v_1$. Since j-i < 2k, $2|\deg v_1$, which is a contradiction.

If v_2 is not the copy of v_1 , then $f^*(v_1) + (2i-2)q \deg v_1 \equiv f^*(v_2) + (2j-2)q \deg v_2 \pmod{4kq}$. Hence, there is an integer t such that $f^*(v_1) - f^*(v_2) = 2q(2kt + (j-i)(\deg v_2 - \deg v_1))$. That is, $f^*(v_1) \equiv f^*(v_2) \pmod{2q}$, which is a contradiction.

Therefore, from all the cases, we can conclude that for each $v \in V(2kG)$, the induced mapping g^* of g are all distinct. Hence, 2kG is edge-odd graceful.

Acknowledgements : The first author would like to thank Ramkhamhaeng University for their support on this research work.

References

- [1] J. A. Gallian, The Eletronic Journal of Combinatorics, vol.5(2005) No.DS6.
- [2] R. B. Gnanajothi, Topics in Graph Theory, Ph.D. Thesis (1991), Madurai Kamaraj University.
- [3] A. Solairaju and K. Chithra, *Edge-Odd Graceful Graphs*, Electronic Notes in Discrete Math. 33(2009), 15-20.
- [4] S. Singhun, Graphs with Edge-Odd Graceful Labelings, International Mathematical Forum, Vol. 8, No. 12(2013), 577 - 582.
- [5] R. Boonklurb, S. Singhun and A. Wongpradit, Edge-Odd Graceful Labelings of some Prisms and Prism-Like Graphs, East-West J. of Mathematics: Vol. 17, No 1 (2015),33-47.
- [6] S. N. Daoud, Edge-odd graceful labeling of some path and cycle related graphs, AKCE Inter. J. of graphs and combin., vol. 14 (2017), 178-203.

(Received 21 November 2018) (Accepted 10 June 2019)

THAI J. MATH. Online @ http://thaijmath.in.cmu.ac.th