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Abstract : It is well known that a legal knight’s move is the resulting of moving two squares horizontally
or vertically on the board and then turning and moving one square in the perpendicular direction. That
is, if we start at (i, j), then the knight can move to one of eight squares: (i± 2, j ± 1) or (i± 1, j ± 2) (if
exist). A closed knight’s tour is a legal knight’s move that visit every squares on a given board exactly
once and return to its starting position. A closed knight’s tour over a rectangular board or a three-
dimensional cube have been studied widely. Some researchers turn their attention to investigate a closed
knight’s tour over a ring board of width r, (m,n, r)-ringboard. For m,n > 2r, the (m,n, r)-ringboard
is defined to be an m × n chessboard with the middle part missing and the rim contains r rows and r
columns. In this paper, we give necessary and sufficient conditions for the (m,m, r)-ringboard to have a
closed knight’s tour.
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1 Introduction and Preliminaries

The knight’s tour problem on a chessboard is an interesting mathematical problem as you can see
some of them listed in [1]. Each square of the m×n chessboard is labeled by (i, j) in the matrix fashion.
A legal knight’s move is the resulting of moving two squares horizontally or vertically on the board and
then turning and moving one square in the perpendicular direction. That is, if we start at (i, j), then
the knight can move to one of eight squares: (i ± 2, j ± 1) or (i ± 1, j ± 2) (if exist). A closed knight’s
tour is a legal knight’s move that visit every squares on a given chessboard exactly once and return to
its starting position. A closed knight’s tour over a rectangular board or a three-dimensional cube have
been studied widely.

In 1991, Schwenk [2] obtained necessary and sufficient conditions for the existence of a closed knight’s
tour for the m× n chessboard as follows.
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Theorem 1.1. [2] An m× n chessboard with m ≤ n admits a closed knight’s tour unless one or more of
the following conditions holds:

(a) m and n are both odd;

(b) m = 1, 2 or 4; or

(c) m = 3 and n = 4, 6 or 8.

Sometime, instead of finding a closed knight’s tour, we can also find an open knight’s tour on a
chessboard. An open knight’s tour is a legal knight’s move that visit every squares on a given chessboard
exactly once and the starting and terminating positions are different. In 2005, Chia and Ong [3] obtained
necessary and sufficient conditions for the existence of an open knight’s tour for the m×n chessboard as
follows.

Theorem 1.2. [3] An m× n chessboard with m ≤ n admits an open knight’s tour unless one or more of
the following conditions holds:

(a) m = 1 or 2;

(b) m = 3 and n = 3, 5, 6; or

(c) m = 4 and n = 4.

Some researchers turn their attention to investigate a closed knight’s tour over a ring board of width
r or an (m,n, r)-ringboard. For m,n > 2r, the (m,n, r)-ringboard is defined to be an m× n chessboard
with the middle part missing and the rim contains r rows and r columns. In 1996, Wiitala [4] showed
that the (m,m, 2)-ringboard contains no closed knight’s tour.

The knight’s tour problem on the (m,n, r)-ringboard can be converted to a certain graph problem.
If we regard each square of the (m,n, r)-ringboard as a vertex, then a graph G represented the (m,n, r)-
ringboard is a graph with 2r(m + n − 2r) vertices and two vertices are joined by an edge whenever the
knight can be moved from one square to another. Then, a closed knight’s tour is a Hamiltonian cycle in
G.

In this paper, we extend the result of [4] by providing necessary and sufficient conditions for the
(m,m, r)-ringboard to have a closed knight’s tour where m ≥ 3 and m > 2r.

2 Construction of open knight’s tours

The open knight’s tour of Chia and Ong [3] cannot be used directly with our construction of a closed
knight’s tour over the (m,m, r)-ringboard. Thus, this section gives our own construction of the open
knight’s tours that we can apply further.

Lemma 2.1. (i) A 3 × 4t chessboard contains an open knight’s tour which begins with (3, 1) and ends
with (1, 4t) when t ∈ N.
(ii) A 3× n chessboard contains an open knight’s tour which begins with (2, 2) and ends with (1, n) when
n is odd and n ≥ 7.

Proof. The required open knight’s tours for 3× 7 and 3× 9 chessboards are shown in Figure 1.
Next, we construct an open knight’s tour on the 3× 4 chessboard which begins with (3, 1) and ends

with (1, 4) as shown in Figure 2.
For n = 4t where t ≥ 2, the 3× n chessboard is obtained from t copies of 3× 4 chessboard. We can

construct an open knight’s tour for 3×4t chessboard by joining (1, 4) of the ith 3×4 chessboard to (3, 1)
of the (i + 1)th 3 × 4 chessboard, i ∈ {1, 2, 3, ..., t − 1}, as shown in Figure 3. Note that the obtained
open knight’s tour for the 3× 4t chessboard starts at (3, 1) and ends at (1, 4t).

Finally, for n ≥ 11 and n ≡ 2k + 1 (mod 4) where k ∈ {1, 2}, we connect the 3 × (7 + 2(k − 1))
chessboard with the 3×4t chessboard, t ≥ 1, and join (1, 7+2(k−1)) of the 3× (7+2(k−1)) chessboard
to (3, 1) of the 3× 4t chessboard as shown in Figures 4 and 5.
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Figure 1: The required open knight’s tours for 3× 7 and 3× 9 chessboards

Figure 2: Our constructed open knight’s tour on the 3× 4 chessboard

Figure 3: The obtained open knight’s tour for 3× 4t chessboard

Figure 4: The required open knight’s tour for 3× n chessboard where n ≡ 3 (mod 4)

Figure 5: The required open knight’s tour for 3× n chessboard where n ≡ 1 (mod 4)

Lemma 2.2. A 4 × n chessboard contains an open knight’s tour which begins with (4, 2) and ends with
(1, n− 1) when n is odd and n ≥ 3.

Proof. The required open knight’s tours for 4× 3, 4× 5 and 4× 7 chessboards are shown in Figure 6.

Figure 6: The required open knight’s tours for 4× 3, 4× 5 and 4× 7 chessboards
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Next, we construct a path P (dash line) and a cycle C (solid line) on the 4× 6 chessboard as shown
in Figure 7.

Figure 7: A path P and a cycle C on the 4× 6 chessboard

Then, we construct a path P ′ and a cycle C ′ on the 4 × n chessboard where n ≡ 0 (mod 6) and
n ≥ 12 as follow.

For n = 6t, where t ≥ 2, 4 × n chessboard is obtained from t copies of 4 × 6 chessboard. We can
construct the path P ′ on the 4×n chessboard by joining (1, 5) of the ith 4× 6 chessboard to (2, 1) of the
(i + 1)th 4× 6 chessboard for all i ∈ {1, 2, 3, ..., t− 1}. Next, we can construct the cycle C ′ on the 4× n
chessboard by

(i) deleting the edge (1, 6)− (3, 5) of the ith 4× 6 chessboard and (2, 2)− (4, 1) of the (i + 1)th 4× 6
chessboard and

(ii) joining (1, 6) of the ith 4×6 chessboard to (2, 2) of the (i+ 1)th 4×6 chessboard and joining (3, 5)
of the ith 4× 6 chessboard to (4, 1) of the ith 4× 6 chessboard for all i ∈ {1, 2, 3, ..., t− 1}.

The path P ′ and cycle C ′ on the 4× 6t chessboard is shown in Figure 8.

Figure 8: The path P ′ and cycle C ′ on the 4× 6t chessboard

Finally, for n ≥ 9 and n ≡ 2k + 1 (mod 6) where k ∈ {1, 2, 3}, we connect the 4 × (3 + 2(k − 1))
chessboard with the 4× 6t chessboard, t ≥ 1, and delete the edge (1, 3 + 2(k − 1))− (3, 2 + 2(k − 1)) of
the 4 × (3 + 2(k − 1)) chessboard and (2, 2) − (4, 1) of the 4 × 6t chessboard and join (1, 2 + 2(k − 1)),
(1, 3 + 2(k − 1)), (3, 2 + 2(k − 1)) of the 4× (3 + 2(k − 1)) chessboard to (2, 1), (2, 2), (4, 1) of the 4× 6t
chessboard, respectively, as shown in Figures 9, 10 and 11.

Figure 9: The required open knight’s tour for 4× n chessboard where n ≡ 3 (mod 6)
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Figure 10: The required open knight’s tour for 4× n chessboard where n ≡ 5 (mod 6)

Figure 11: The required open knight’s tour for 4× n chessboard where n ≡ 1 (mod 6)

Lemma 2.3. An 4× n chessboard contains an open knight’s tour which begins with (4, 1) and ends with
(4, 2) when n is even and n ≥ 6.

Proof. The required open knight’s tours for 4× 6, 4× 8 and 4× 10 chessboards are shown in Figure 12.

Figure 12: The required open knight’s tours for 4× 6, 4× 8 and 4× 10 chessboards

Next, we construct two cycles C1 (dash line) and C2 (solid line) on the 4× 6 chessboard as shown in
Figure 13.

Figure 13: Two cycles C1 and C2 on the 4× 6 chessboard

Then, we construct two cycles C ′
1 and C ′

2 on the 4× n chessboard where n ≡ 0 (mod 6) and n ≥ 12
as follow.
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For n = 6t where t ≥ 2, the 4× n chessboard is obtained from t copies of the 4× 6 chessboard. We
construct two cycles C ′

1 and C ′
2 on the 4× 6t chessboard by the following algorithm and they are shown

in Figure 14.

(i) Delete the edges (1, 6) − (3, 5) and (2, 5) − (4, 6) of the ith 4 × 6 chessboard and delete the edges
(2, 2)− (4, 1) and (1, 1)− (3, 2) of the (i + 1)th 4× 6 chessboard, i ∈ {1, 2, 3, ..., t− 1}.

(ii) Join (1, 6), (3, 5), (2, 5), (4, 6) of the ith 4×6 chessboard to (2, 2), (4, 1), (1, 1), (3, 2) of the (i+1)th
4× 6 chessboard, respectively, for all i ∈ {1, 2, 3, ..., t− 1}.

Figure 14: Two cycles C ′
1 and C ′

2 on the 4× 6t chessboard

Finally, for n ≥ 12 and n ≡ 2k (mod 6) where k ∈ {0, 1, 2}, we connect 4× (6 + 2k) chessboard with
4 × 6t chessboard, t ≥ 1, and delete the edges (1, 6 + 2k) − (3, 5 + 2k) and (2, 5 + 2k) − (4, 6 + 2k) of
the 4 × (6 + 2k) and (2, 2) − (4, 1) and (1, 1) − (3, 2) of the 4 × 6t chessboard. Then, join (1, 6 + 2k),
(3, 5 + 2k), (2, 5 + 2k), (4, 6 + 2k) of the 4× (6 + 2k) chessboard to (2, 2), (4, 1), (1, 1), (3, 2) of the 4× 6t
chessboard, respectively, as shown in Figures 15, 16 and 17.

Figure 15: The required open knight’s tour for 4× n chessboard where n ≡ 0 (mod 6)

Figure 16: The required open knight’s tour for 4× n chessboard where n ≡ 2 (mod 6)

Figure 17: The required open knight’s tour for 4× n chessboard where n ≡ 4 (mod 6)

Lemma 2.4. [5] A 4 × n chessboard contains an open knight’s tour which begins with (1, 3) and ends
with (4, 1) when n is odd and n ≥ 3.
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Proof. For the proof, see [5] or visit gaebler.us/share/Knight tour.html.

Lemma 2.5. A 5 × n chessboard contains an open knight’s tour which begins with (5, 1) and ends with
(2, n− 1) when n is odd and n ≥ 5.

Proof. The required open knight’s tours for 5× 5 and 5× 7 chessboards are shown in Figure 18.

Figure 18: The required open knight’s tours for 5× 5 and 5× 7 chessboards

Next, we construct a path P (dash line) and a cycle C (solid line) on the 5× 4 chessboard as shown
in Figure 19.

Figure 19: A path P and a cycle C on the 5× 4 chessboard

Then, we construct a path P ′ and a cycle C ′ on 5× n chessboard where n ≡ 0 (mod 4) and n ≥ 8 as
follow.

For n = 4t where t ≥ 2, the 5 × n chessboard is obtained from t copies of 5 × 4 chessboard. We
construct a path P ′ on 5 × 4t chessboard by joining (2, 3) of the ith 5 × 4 chessboard to (1, 1) of the
(i + 1)th 5 × 4 chessboard for all i ∈ {1, 2, 3, ..., t − 1}. Next, we can construct a cycle C ′ on the 5 × 4t
chessboard by

(i) deleting the edge (3, 3)− (5, 4) of the ith 5× 4 chessboard and (2, 1)− (4, 2) of the (i + 1)th 5× 4
chessboard and

(ii) joining (3, 3) and (5, 4) of the ith 5×4 chessboard to (2, 1) and (4, 2) of the (i+1)th 5×4 chessboard,
respectively, for all i ∈ {1, 2, 3, ..., t− 1}.

The path P ′ and cycle C ′ on the 5× 4t chessboard are shown in Figure 20.
Finally, for n ≥ 9 and n ≡ 2k − 1 (mod 4) where k ∈ {1, 2}, we connect the 5 × (5 + 2(k − 1))

chessboard with the 5× 4t chessboard, t ≥ 1, and delete the edges (3, 4 + 2(k − 1))− (5, 5 + 2(k − 1)) of
the 5 × (5 + 2(k − 1)) chessboard and (2, 1) − (4, 2) of the 5 × 4t chessboard and join (2, 4 + 2(k − 1)),
(3, 4 + 2(k− 1)) and (5, 5 + 2(k− 1)) of the 5× (5 + 2(k− 1)) chessboard to (1, 1), (2, 1) and (4, 2) of the
5× 4t, respectively, as shown in Figures 21 and 22.
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Figure 20: The path P ′ and cycle C ′ on the 5× 4t chessboard

Figure 21: The required open knight’s tour for 5× n chessboard where n ≡ 1 (mod 4)

Figure 22: The required open knight’s tour for 5× n chessboard where n ≡ 3 (mod 4)

From open knight’s tours that we construct on Lemmas 2.1. 2.4 and 2.5, we can construct a larger
knight’s tour as follow.

Theorem 2.6. An m × n chessboard contains an open knight’s tour which begins with (m, 1) and ends
with (2, n− 1) provided that

(a) m = 3, n is odd and n ≥ 7, or

(b) m and n are odd and m,n ≥ 5.

Proof. Without loss of generality, let us assume that m ≤ n. For m = 3, n is odd and n ≥ 7, by flipping
and re-labeling a 3× n chessboard in Lemma 2.1, the 3× n chessboard has an open knight’s tour which
begins with (3, 1) and ends with (2, n− 1).

For m = 5 and n is odd, by Lemma 2.5, an 5× n chessboard has an open knight’s tour which begins
with (5, 1) and ends with (2, n− 1).

For m and n is odd and m ≥ 7, we consider 3 cases as follow.
case 1 m ≡ 3 (mod 6). Then, we can partition the m × n chessboard into l 3 × n sub-chessboards

where l is odd and l ≥ 3. For i ∈ {1, 3, 5, ..., l}, by flipping and re-labeling a 3× n chessboard in Lemma
2.1, the ith 3 × n sub-chessboard has an open knight’s tour which begins with (3, 1) and ends with
(2, n − 1). For i ∈ {2, 4, 6, ..., l − 1}, by Lemma 2.1, the ith 3 × n sub-chessboard has an open knight’s
tour which begins with (2, 2) and ends with (3, n). Next, to construct an open knight’s tour on the m×n
chessboard, we join (3, 1) of the ith 3× n sub-chessboard to (2, 2) of the (i + 1)th 3× n sub-chessboard,
i ∈ {1, 3, 5..., l − 2} and join (3, n) of the ith 3 × n sub-chessboard to (2, n − 1) of the (i + 1)th 3 × n
sub-chessboard where i ∈ {2, 4, 6, ..., l − 1} as shown in Figure 23

case 2 m ≡ 5 (mod 6). Then, we can partition the m× n chessboard into an 5× n sub-chessboard
and l 3× n sub-chessboards where l is even and l ≥ 2. By Lemma 2.1 and Case 1, we can construct an
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Figure 23: Joining of l 3× n sub-chessboards

open knight’s tour starting from (2, n− 1) of the first 3× n sub-chessboard and terminating at (3, n) of
the lth 3 × n sub-chessboard. Finally, we join (3, n) of the lth 3 × n sub-chessboard to (2, n − 1) of the
5× n sub-chessboard which contains an open knight’s tour by Lemma 2.4 as shown in Figure 24.

Figure 24: Joining of l 3× n sub-chessboards and 5× n sub-chessboard

case 3 m ≡ 1 (mod 6). Then, we can partition the m× n chessboard into an 4× n sub-chessboard
and l 3 × n sub-chessboards where l is odd and l ≥ 1. By Lemma 2.1 and case 1, we can construct an
open knight’s tour starting from (2, n− 1) of the first 3× n sub-chessboard and terminating at (3, 1) of
the lth 3 × n sub-chessboard. Finally, we join (3, 1) of the l 3 × n sub-chessboard to (1, 3) of the 4 × n
sub-chessboard which contains an open knight’s tour by Lemma 2.4 as shown in Figure 25.

Figure 25: Joining of l 3× n sub-chessboards and 4× n sub-chessboard

This completes the proof of the theorem.
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3 Closed knight’s tour on (m,m, r)-ringboards

Theorem 3.1. An (m,m, r)-ringboard with m ≥ 3 and m > 2r has a closed knight’s tour if and only if

(a) m = 3 and r = 1, or

(b) m ≥ 7 and r 6= 1, 2.

Proof. First, for m ≥ 4, (m,m, 1)-ringboard has four corner positions that the knight cannot move to
any other places on that chessboard. For m ≥ 4, by [4], (m,m, 2)-ringboard has no closed knight’s tours.

Conversely, for m = 3 and r = 1, (3, 3, 1)-ringboard has a closed knight’s tour as shown in Figure 26.

Figure 26: The closed knight’s tour on (3, 3, 1)-ringboard

Next, we assume that m ≥ 7, r ≥ 3 and m > 2r. We separate the proof into two cases.
Case 1 m = 2k + 1 is odd where k ≥ 3.

Case 1.1 Closed knight’s tours for (7, 7, 3), (9, 9, 3) and (11, 11, 3)-ringboards are shown in Figures 27,
28 and 29.

Figure 27: A closed knight’s tour for (7, 7, 3)-ringboard

Figure 28: A closed knight’s tour for (9, 9, 3)-ringboard

Case 1.2 For m ≥ 13 and r ∈ {3, 5, 6, ..., k}, we partition (m,m, r)-ringboard into four r × (m− r) sub-
chessboards, see Figure 30(a) for (13, 13, 5)-ringboard. Since r or m− r is even, by [2], each r × (m− r)
chessboard contains a closed knight’s tour having edges (1,m− r− 1)− (3,m− r) and (r− 1, 4)− (r, 2).
Thus, if we use the position on the (m,m, r)-ringboard, there are 4 Hamiltonian cycles having 6 edges,
namely (1,m − r − 1) − (3,m − r), (2,m − r + 1) − (4,m − r + 2), (m − r − 1,m) − (m − r,m − 2),
(m− r + 1,m− 1)− (m− r + 2,m− 3), (m, r + 2)− (m− 2, r + 1), and (m− 1, r)− (m− 3, r − 1).
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Figure 29: A closed knight’s tour for (11, 11, 3)-ringboard

Next, to construct a closed knight’s tour on the (m,m, r) ringboard, we delete six edges: (1,m− r−
1)−(3,m−r), (2,m−r+1)−(4,m−r+2), (m−r−1,m)−(m−r,m−2), (m−r+1,m−1)−(m−r+2,m−3),
(m, r + 2)− (m− 2, r + 1), (m− 1, r)− (m− 3, r− 1) and join six edges: (1,m− r− 1)− (2,m− r + 1),
(3,m − r) − (4,m − r + 2), (m − r − 1,m) − (m − r + 1,m − 1), (m − r,m − 2) − (m − r + 2,m − 3),
(m, r + 2)− (m− 1, r), (m− 2, r + 1)− (m− 3, r− 1) as shown in Figure 30(b) for (13, 13, 5)-ringboard.

(a) Four partitions of (13, 13, 5)-
ringboard

(b) Joining four 5 × 8
sub-chessboards to obtain
(13, 13, 5)-ringboard

Figure 30: (13, 13, 5)-ringboard

Note that the above construction still work if we let m = 11 and r = 5.

Case 1.3 for m ≥ 9 and r = 4, we partition the (m,m, 4)-ringboard by divided into four 4 × (m − 4)
sub-chessboards. Since m−4 is odd, by Lemma 2.2, each 4×(m−4) chessboard contains an open knight’s
tour which begins with (4, 2) and ends with (1,m−5). Thus, if we use the position on (m,m, 4)-ringboard,
there are 4 Hamiltonian paths having 8 end vertices, namely (4, 2), (1,m − 5), (2,m − 3), (m − 5,m),
(m− 3,m− 1), (m, 6), (m− 1, 4) and (6, 1).

Next, to construct a closed knight’s tour on the (m,m, 4)-ringboard, we join four edges: (1,m− 5)−
(2,m− 3), (m− 5,m)− (m− 3,m− 1), (m, 6)− (m− 1, 4), (6, 1)− (4, 2) as shown in Figure 31 for the
(11, 11, 4)-ringboard.

Case 2 m = 2k + 2 where k ≥ 3.

Case 2.1 Closed knight’s tour for (8, 8, 3)-ringboard is shown in Figures 32.

Case 2.2 For m ≥ 10, r is odd and r ≥ 3, partition the (m,m, r)-ringboard into four r × (m − r)
sub-chessboards. Since m− r is odd, by Theorem 2.6, each r× (m− r) sub-chessboard contains an open
knight’s tour which begins with (r, 1) and ends with (2,m − r − 1). Thus, if we use the position on
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Figure 31: Joining four 4× 7 sub-chessboards to obtain the (11, 11, 4)-ringboard

Figure 32: A closed knight’s tour for the (8, 8, 3)-ringboard

(m,m, r)-ringboard, there are 4 Hamiltonian paths having 8 end vertices, namely (r, 1), (2,m − r − 1),
(1,m− r + 1), (m− r − 1,m− 1), (m− r + 1,m), (m− 1, r + 2), (m, r) and (r + 2, 2).

Next, to construct a closed knight’s tour on the (m,m, r)-ringboard, we join four edges: (2,m− r −
1)− (1,m− r + 1), (m− r − 1,m− 1)− (m− r + 1,m), (m− 1, r + 2)− (m, r) and (r + 2, 2)− (r, 1) as
shown in Figure 33 for the (16, 16, 7)-ringboard.

Figure 33: Joining four 7× 9 sub-chessboards to obtain the (16, 16, 7)-ringboard

Case 2.3 for m ≥ 14, r is even and r ≥ 6, we partition the (m,m, r)-ringboard four r × (m − r)
sub-chessboards. Since r and m − r are even, by [2] and the construction described in Case 1.2, the
(m,m, r)-ringboard has a closed knight’s tour.
Case 2.4 For m ≥ 10 and r = 4, we partition the (m,m, 4)-ringboard four 4× (m− 4) sub-chessboards.
Since m− 4 is even and by Lemma 2.3, each 4× (m− 4) sub-chessboard contains an open knight’s tour
which begins with (4, 1) and ends with (4, 2). Thus, if we use the position on the (m,m, 4)-ringboard,
there are 4 Hamiltonian paths having end 8 vertices, namely (4, 1), (4, 2), (1,m−3), (2,m−3), (m−3,m),
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(m− 3,m− 1), (m, 4) and (m− 1, 4).
Next, to construct a closed knight’s tour on the (m,m, 4)-ringboard, we delete six edges: (1,m−4)−

(3,m−5), (2,m−5)−(4,m−4), (2,m−2)−(4,m−3), (m−5,m−1)−(m−4,m−3), (m−3, 5)−(m−1, 6),
(5, 4)− (6, 2) and join ten edges: (2,m− 5)− (1,m− 3), (4,m− 4)− (2,m− 3), (1,m− 4)− (2,m− 2),
(3,m−5)− (4,m−3), (m−5,m−1)− (m−3,m), (m−4,m−3)− (m−3,m−1), (m−3, 5)− (m−1, 4),
(m− 1, 6)− (m, 4), (4, 1)− (6, 2) and (4, 2)− (5, 4) as shown in Figure 34 for the (12, 12, 4)-ringboard.

Figure 34: Joining four 4× 8 sub-chessboards to obtain the (12, 12, 4)-ringboard
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