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Abstract : Let X be a surface in R3. A subset E of X is said to be convex if, for
each p, q ∈ E, it contains each shortest geodesic joining p and q. A surface in R3 is
said to have the fixed point property if each continuous mapping T : E → E from
a compact convex subset E of X has a fixed point. In this paper, we give some
examples of surfaces in R3 that do not have the fixed point property. Moreover,
we show that the surface z = y2 and the upper hemisphere of the sphere of radius
r centered at (0, 0, 0) with north pole and equator removed have the fixed point
property.
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1 Introduction

In 1911, Brouwer [1] proved the well known theorem, Brouwer fixed point
theorem, that each continuous function from a closed ball of Rn into itself has a
fixed point. In 1930, Schuader [2] proved a generalization of the theorem, Schuader
fixed point theorem, that each continuous function from a compact convex subset
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of a Banach space into itself has a fixed point. In 1941, Kakutani [3] proved,
Kakutani fixed point theorem, that each multi-valued mapping T : E → 2X \ ∅
with a closed graph and such that Tx is convex, for each x ∈ E, has a fixed point.
In 2001, Cauty [4] proved that each continuous function from a compact convex
subset of a topological vector space into itself has a fixed point. In 2010, Butsan,
Dhompongsa, and Fupinwong [5] proved the following theorem. As a consequence,
each continuous function from a compact convex subset of a CAT(0) space into
itself has a fixed point.

Theorem 1.1. Let E be a compact convex subset of a convex metric space X. Then
E has the fixed point property for continuous mappings, that is, each continuous
function from E into itself has a fixed point.

Brouwer fixed point theorem has been generalized to lots of spaces by lots
of authors. See, e.g., Tychonoff [6], Fan [7], Day [8], Brower [9], Henderson and
Livesay [10], Himmellberg [11], Riech [12], [13], Park [14], Lau and Yao [15], Dhom-
pongsa and Nantadilok [16], Chuensupantharat et al. [17], Kumam and Dhom-
pongsa [18].

In this paper, a subset E of a surface in R3 is said to be convex if, for each p
and q in E, it contains each shortest geodesic joining p and q. A surface X in R3 is
said to have the fixed point property if each continuous function from a compact
convex subset of X into itself has a fixed point.

It is known that the distance of points in a surface is the length of a shortest
geodesic joining them. Some surfaces are CAT(0) spaces, so, by using Theorem
1.1, they have the fixed point property. Unfortunately, geodesics in lots of surfaces
are mystery. Finding their closed forms is always difficult. So it is not obvious to
conclude that the surfaces have the fixed point property.

We introduce a method for proving the fixed point property of surfaces in R3

in this paper. By using this method, we show that the cylinder z = y2 and the
upper hemisphere of the sphere of radius r centered at (0, 0, 0) with north pole and
equator removed have the fixed point property. Consequently, we extend Brouwer
fixed point theorem to some surfaces in R3. Moreover, some examples of surfaces
in R3 that do not have the fixed point property are given.

2 Preliminaries

A real-valued function f : I → R on an open interval I is called smooth if the
derivative and all the higher-order derivatives of f exist and are continuous. A
real-valued function f : G→ R on an open set G in Rn, n = 2, 3, is called smooth
if all partial derivatives of f, of all orders, exist and are continuous.

Let m,n ∈ {1, 2, 3}. A function F = (f1, f2, ..., fm) : Rn → Rm is smooth if
f1, f2, ..., fn are all smooth. A smooth function F = (f1, f2, ..., fm) : Rn → Rm is
said to be regular if the Jacobian matrix of F at p has rank n for each p ∈ Rn.
A smooth function ξ : U → R3 on an open subset U of R2 is called a coordinate
patch if it is one-to-one and regular.
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Define the natural coordinate functions x, y, z : R3 → R of R3 by

x(p) = p1, y(p) = p2, z(p) = p3,

for each p = (p1, p2, p3) ∈ R3. Obviously, x, y, and z are all smooth.
Let v, p ∈ R3. We denote by vp a tangent vector to R3 at p, where v is its

vector part and p is its point of application. We picture vp as the arrow from p
to p + v. For example, if v = (1, 2, 0) and p = (−1,−1,−1), then vp is the arrow
from (−1,−1,−1) to (0, 1,−1). The set Tp(R3) of all tangent vectors to R3 at p is
called the tangent space of R3 at p.

For each p ∈ R3, the dot product vp·wp of tangent vectors vp = (v1, v2, v3)p, wp =
(w1, w2, w3)p to R3 at p is defined by

vp · wp = v1w1 + v2w2 + v3w3.

Tangent vectors vp and wp are said to be normal if vp · wp = 0.
For each p ∈ R3, the norm ||vp|| of a tangent vector vp = (v1, v2, v3)p to R3 at

p is defined by

||vp|| =
√
v21 + v22 + v23 .

From now on, for convenience, , we shall omit the point of application p from
the notation of a tangent vector vp.

A vector field V on R3 is a function of R3 into
⋃
p∈R3 Tp(R3) satisfying V (p) ∈

Tp(R3) for each p ∈ R3.
Let V1, V2, V3 be vector fields on R3, and let f1, f2, f3 : R3 → R be all smooth.

Define the vector field f1V1 + f2V2 + f3V3 by

(f1V1 + f2V2 + f3V3)(p) = f1(p)V1(p) + f2(p)V2(p) + f3(p)V3(p),

for each p ∈ R3.
Define the vector fields U1, U2, U3 on R3 by

U1(p) = (1, 0, 0), U2(p) = (0, 1, 0), U3(p) = (0, 0, 1),

for each p ∈ R3. A vector field V on R3 is called smooth if there are smooth
functions f1, f2, f3 : R3 → R such that V = f1U1 + f2U2 + f3U3.

Let f be a smooth real-valued function on R3. Define the differential df :⋃
p∈R3 Tp(R3)→ R of f by

df(v) = v1
∂f

∂x
(p) + v2

∂f

∂y
(p) + v3

∂f

∂z
(p),

for each tangent vector v = (v1, v2, v3) to R3 at p. We denote by X : f(x, y, z) = c,
c ∈ R, the set X = {(p1, p2, p3) ∈ R3 : f(p1, p2, p3) = c} satisfying df 6= 0 on
Tp(X), for each p ∈ X. In this case, it is known that ∇f = ∂f

∂xU1 + ∂f
∂yU2 + ∂f

∂zU3

and −∇f are nonvanishing normal vector fields on X, that is, for some p0 ∈ X,
∇f(p0) 6= (0, 0, 0) but ∇f(p) · v = 0, for each tangent vector v to R3 at p (see,
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e.g., [19] and [20]). In particular, 2yU2 − U3 and −2yU2 + U3 are nonvanishing
normal vector fields on the cylinder X : y2 − z = 0.

Let I be an open interval and let α1, α2, α3 : I → R. The function α =
(α1, α2, α3) : I → R3 is called a curve in R3 if α1, α2, α3 are all smooth.

Let α = (α1, α2, α3) : I → R3 be a curve in R3. The velocity vector α′(t) of α
at t ∈ I is the tangent vector

α′(t) = (α′1(t), α′2(t), α′3(t))

to R3 at α(t). The acceleration vector α′′(t) of α at t ∈ I is the tangent vector

α′′(t) = (α′′1(t), α′′2(t), α′′3(t))

to R3 at α(t). A curve α : I → R3 is in a subset X of R3 if α(I) ⊂ X.
Let h : J → I be a smooth function from an open interval J into an open

interval I, and let α : I → R3 be a curve in R3. Then the curve α ◦ h : J → R3 is
said to be a reparametrization of α by h.

A curve α : I → R3 is regular if α′(t) 6= 0 for each t ∈ I. A curve α : I → R3

is unit-speed if α′(t) = 1 for each t ∈ I.
The following lemma shows the existence of a unit-speed reparametrization of

a regular curve in R3. The detail proof can be found in [19] and [20].

Lemma 2.1. Let α : I → R3 be a regular curve in R3. Define a smooth function
s : I → R by

s(t) =

∫ t

a

||α′(u)||du,

where a is a number in I. Then s is one-to-one and the inverse function t : J → I
of s is a smooth function from an open interval J into I. Moreover, the curve α◦t :
J → R3 is a unit-speed reparametrization of α.

Let X be a subset of R3. X is a surface in R3 if for each p ∈ X there exists a
coordinate patch ξ : U → X on an open set U in R2 with p ∈ ξ(U). In particular,
if ξ(u, v) = (u, v, v2) for each (u, v) ∈ R2 then ξ is a coordinate patch with X :
y2 − z = 0 ⊂ ξ(U). So X : y2 − z = 0 is a surface in R3.

A tangent vector v ∈ Tp(R3) is tangent to a surface X at p ∈ X if v is a
velocity of a curve in X. The set Tp(X) of all tangent vectors to X at p is called
the tangent plane of X at p. It is known that Tp(X) is a 2-dimensional vector
subspace of R3 (see, e.g., [19] and [20]).

A curve α : I → R3 in a surface X is a geodesic of X if its acceleration α′′ is
normal to M, that is, for each t ∈ I,

α′′(t) · v = 0

for each v ∈ Tα(t)(X).
The following lemma is well-known (see, e.g., [19] and [20]).

Lemma 2.2. Let α be a unit-speed curve in a surface X in R3. If α lies in a plane
which is orthogonal to X along α then α is a geodesic of X.
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Let ξ(u, v) = (u, v, v2) for each (u, v) ∈ R2. And let α : R→ R3 be a unit-speed
reparametrization of the curve t 7→ ξ(0, t). Since α lies in the yz-plane which is
orthogonal to the cylinder X : y2 − z = 0, so it follows from Lemma 2.2 that α is
a geodesic of y2 − z = 0. Similarly, the unit-speed reparametrizations of the curve
t 7→ ξ(u, t) and t 7→ ξ(t, v) are also geodesics of y2 − z = 0, for each (u, v) ∈ R2.

3 Main Results

First, we prove the following proposition.

Proposition 3.1. Let X be a surface in R3, and let α : [a, b] → X be a closed
geodesic with α(a) = α(b). If α is one-to-one on (a, b) and α([a, b]) is convex, then
X does not have the fixed point property.

Proof. Define T : α([a, b])→ α([a, b]) by

T (α(t)) =

{
α(t+ b−a

2 ), if t ≤ a+b
2 ,

α(t− b−a
2 ), if t > a+b

2 .

It can be seen that T is continuous but does not have any fixed points.

From the above proposition, the following surfaces do not have the fixed point
property.

1) The cylinder
X : x2 + y2 = r2

does not have the fixed point property since it contains the closed geodesic α(t) =
(r cos t, r sin t, 0).

2) The usual parametrization of a torus is

ξ = ((R+ r cosx) cos y, (R+ r cosx) sin y, rsinx).

The torus ξ(R2) does not have the fixed point property since it contains the closed
geodesic α(t) = ((R+ r) cos t, (R+ r) sin t, 0).

Let X = {p ∈ R3 : ‖p‖ = 1}\(0, 0, 1). It can be seen that the curve α(t) =
(cos t, sin t, 0) is in X. However, we are not able to conclude that X does not have
the fixed point property by using Proposition 3.1. Indeed, the image of α in this
case is not convex.

Consider the surface z = y2. It is not obvious to see that it has the fixed point
property, although it is homeomorphic to R2. In face, from Hadamard theorem, it
is a CAT(0) space since it is simply connected and the Gaussian curvature at each
its point is zero. It follows from Theorem 1.1 that it has the fixed point property.

We can show that z = y2 has the fixed point property by using another method.
Geodesics in z = y2 have an interesting property that is very useful for showing the
fixed point property. The interesting property is proved in the following lemma.
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Lemma 3.2. Let X : z − y2 = 0 and ξ =
(
x, y, y2

)
. And let α = (α1, α2, α3) be a

shortest geodesic in X joining ξ(u1, v1) and ξ(u2, v2) with u1 < u2. Assume that
α(t1) = ξ(u1, v1) and α(t2) = ξ(u2, v2). Then:

1) If t1 < t2, then α′1(t1) > 0.
2) If t1 > t2, then α′1(t2) < 0.

Proof. Note that V = −2yU2 + U3 is the normal vector field on X. Since α =
(α1, α2, α3) is a geodesic in X, so α′′ is normal to X. Thus there exists a smooth
function f : R→ R such that α′′ = f(V ◦ α). Then

(α′′1 , α
′′
2 , α

′′
3) = α′′ = f(V ◦ α) = (0,−2fα2, f).

Therefore, α′′1 = 0.
1) Let t1 < t2. Assume to the contrary that α′1(t1) ≤ 0. It follows from α′′1 = 0

and α′1(t1) ≤ 0 that α1 is decreasing. Then

α1(t1) ≥ α1(t2).

From
(u1, v1, v

2
1) = ξ(u1, v1) = α(t1) = (α1(t1), α2(t1), α3(t1))

and
(u2, v2, v

2
2) = ξ(u2, v2) = α(t2) = (α1(t2), α2(t2), α3(t2)),

Then u1 ≥ u2. This leads to the contradiction. So we conclude that α′1(t1) > 0.
2) Let t1 > t2. Assume to the contrary that α′1(t2) ≥ 0. It follows from α′′1 = 0

and α′1(t2) ≥ 0 that α1 is increasing. Then

α1(t2) ≤ α1(t1).

From u1 = α1(t1) and u2 = α1(t2), then u2 ≤ u1. This leads to the contradiction.
So we conclude that α′1(t2) is less than zero.

Define, for each p1, p2 ∈ R2,

[p1, p2] = {(1− α)p1 + αp2 : α ∈ [0, 1]}.

The following theorem shows that the cylinder z = y2 has the fixed point
property by using the property proved in Lemma 3.2.

Theorem 3.3. Let X : z − y2 = 0, and let ξ =
(
x, y, y2

)
. If E is a compact

convex subset of X. Then there is a retraction r from a 2-dimensional interval I2

into ξ−1(E). Consequently, X has the fixed point property.

Proof. If E is a curve segment, obviously, E has the fixed point property. So we
assume that E is not a curve segment. Let

a = inf{α ∈ R : (α, β) ∈ ξ−1(E),∃β ∈ R}
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and
b = sup{α ∈ R : (α, β) ∈ ξ−1(E),∃β ∈ R}.

Note that (a, β1), (b, β2) ∈ ξ−1(E), for some β1, β2 ∈ R, since ξ−1(E) is compact.
For each u ∈ [a, b], let

u∗ = inf{β ∈ R : (u, β) ∈ ξ−1(E)}

and
u∗∗ = sup{β ∈ R : (u, β) ∈ ξ−1(E)}.

Since E is compact convex,

ξ−1(E) =
⋃

u∈[a,b]

[u∗, u∗∗].

Let
c = inf

u∈[a,b]
u∗, d = sup

u∈[a,b]
u∗∗,

and
I2 = [a, b]× [c, d].

Define r : I2 → ξ−1(E) by

r(u, v) =


(u, v), if (u, v) ∈ ξ−1(E),

(u, u∗∗), if v > u∗∗,

(u, u∗), if v < u∗.

To show that r is continuous. Let {pn} be a sequence in I2 with

lim
n→∞

pn = p.

Write p = (u, v), pn = (un, vn), r(p) = (u, r(v)), and r(pn) = (un, r(vn)), for each
n ∈ N. It follows that lim

n→∞
un = u and lim

n→∞
vn = v. If p is in the interior of

ξ−1(E), it can be seen that

lim
n→∞

r(pn) = lim
n→∞

pn = p = r(p).

Assume that p is not in the interior. It follows from the convexity of E that
v > u∗∗ or v < u∗. We may assume by passing to a subsequence that {un} is
strictly increasing and lim

n→∞
r(vn) = w, for some w ∈ [c, d]. Then

lim
n→∞

r(pn) = lim
n→∞

(un, r(vn)) = (u,w).

We have (u,w) ∈ ξ−1(E) since ξ−1(E) is compact. Note that the proof is similar
to the following one if {un} is strictly decreasing. There are two cases to be
considered:
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1) If v > u∗∗, then r(v) = u∗∗. From v > u∗∗ and lim vn = v, we may
assume without loss of generality that there exists n0 ∈ N such that r(vn) =
u∗∗n , for each n ≥ n0. Let α be a geodesic joining ξ(u, u∗∗) and ξ(un0

, u∗∗n0
) with

α(t1) = ξ(un0
, u∗∗n0

), α(t2) = ξ(u, u∗∗), and t1 > t2. Note that α(t) is in E, for each
t ∈ [t2, t1] since E is convex. It follows from Lemma 3.2 that α′1(t2) < 0. Then
there exists δ > 0 such that α1 is strictly decreasing on (t2, t2+δ). For each n ≥ n0
with un ≥ α1(t2 + δ/2), from the continuity of α1, there exists sn in (t2, t2 + δ)
with

α1(sn) = un.

Since α(sn) is in E, for each n ≥ n0 with un ≥ α1(t2 + δ/2), so

α2(sn) ≤ u∗∗n .

Note that lim
n→∞

sn = t2 since {α1(sn)} = {un} is a strictly increasing sequence

with
lim
n→∞

α1(sn) = lim
n→∞

un = u = α1(t2)

and α1 is strictly decreasing on (t2, t2 + δ). Then

w = lim
n→∞

r(vn) = lim
n→∞

u∗∗n ≥ lim
n→∞

α2(sn) = α2(t2) = u∗∗.

From
w ≤ sup{β ∈ R : (u, β) ∈ ξ−1(E)} = u∗∗,

so
w = u∗∗.

Therefore,

lim
n→∞

r(pn) = lim
n→∞

(un, u
∗∗
n ) = (u,w) = (u, u∗∗) = (u, r(v)) = r(p).

2) If v < u∗, then r(v) = u∗. We may assume that there exists n0 ∈ N such
that r(vn) = u∗n, for each n ≥ n0. If α is a geodesic joining ξ(u, u∗) and ξ(un0

, u∗n0
)

with α(t1) = ξ(un0
, u∗n0

), α(t2) = ξ(u, u∗), and t1 > t2, it follows from Lemma 3.2
that α′1(t2) < 0. So α1 is strictly decreasing on (t2, t2 + δ), for some δ > 0. For
each n ≥ n0 with un ≥ α1(t2 + δ/2), there exists sn in (t2, t2 + δ) with

α1(sn) = un.

Since α(sn) is in E, for each n ≥ n0 with un ≥ α1(t2 + δ/2), so

α2(sn) ≥ u∗n.

Note that lim
n→∞

sn = t2. Therefore,

w = lim
n→∞

r(vn) = lim
n→∞

u∗n ≤ lim
n→∞

α2(sn) = α2(t2) = u∗.
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From

w ≥ inf{β ∈ R : (u, β) ∈ ξ−1(E)} = u∗,

thus

w = u∗.

Then

lim
n→∞

r(pn) = lim
n→∞

(un, u
∗
n) = (u,w) = (u, u∗) = (u, r(v)) = r(p).

Therefore, r : I2 → ξ−1(E) is continuous.
If T : E → E is a continuous function, then ξ−1Tξ : ξ−1(E) → ξ−1(E) is

continuous. It follows that ξ−1Tξr : I2 → ξ−1(E) is continuous. From Schuader
fixed point theorem, ξ−1Tξr has a fixed point, say q. Then

q = (ξ−1Tξr)q.

Note that q = (ξ−1Tξr)q is in ξ−1(E) since the image of ξ−1Tξ is ξ−1(E). Then
rq = q. Therefore,

ξq = (Tξr)q = (Tξ)rq = (Tξ)q = T (ξq).

Thus T has a fixed point.

From the last paragraph of the proof of the above theorem, we have the fol-
lowing lemma.

Lemma 3.4. Let E be a topological space, ξ : B → E be a homeomorphism from
a Banach space B into E, and T : E → E be a continuous function. If there exists
a retraction r : C → ξ−1(E) of a compact convex subset C of B into ξ−1(E), then
T has a fixed point.

Let ξ : R2 → R3 be the geographical parametrization

ξ = (r cosx cos y, r sinx cos y, r sin y).

And let α = (α1, α2, α3) be a geodesic in the surface ξ((π/4, 3π/4) × (0, π/2))
joining ξ(u1, v1) and ξ(u2, v2) with u1 < u2. Assume that α(t1) = ξ(u1, v1) and
α(t2) = ξ(u2, v2). It follows that the image of α is a part of a great circle in the
sphere of radius r centered at (0, 0, 0). Then ξ(u1, v1) and ξ(u2, v2) divide the
image into two parts, the short one and the long one. It can be seen that the short
one is in ξ((π/4, 3π/4)× (0, π/2)) but the long one is not. Let S = α([a, b]) denote
the short part of the great circle. Then t1, t2 ∈ [a, b]. If u1 = π/2 and t1 < t2,
since u1 < u2, then (ξ−1 ◦α)′1(t1) > 0. Indeed, S will be the long part of the image
if (ξ−1 ◦ α)′1(t1) < 0, which leads to the contradiction. Similarly, if u2 = π/2 and
t1 > t2, then (ξ−1 ◦ α)′1(t2) < 0.

From the above face, we obtain the following lemma.
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Lemma 3.5. Let ξ be the geographical parametrization

ξ = (r cosx cos y, r sinx cos y, r sin y).

And let α = (α1, α2, α3) be a shortest geodesic in the surface ξ((π/4, 3π/4) ×
(0, π/2)) joining ξ(u1, v1) and ξ(u2, v2) with u1 < u2. Assume that α(t1) = ξ(u1, v1)
and α(t2) = ξ(u2, v2). Then:

1) If u1 = π/2 and t1 < t2, then (ξ−1 ◦ α)′1(t1) > 0.
2) If u2 = π/2 and t1 > t2, then (ξ−1 ◦ α)′1(t2) < 0.

The following theorem shows that the upper hemisphere of the sphere of ra-
dius r centered at (0, 0, 0) with north pole and equator removed has the fixed
point property. Note that its Gaussian curvature is 1/r2, greater than zero. More-
over, (0, r/

√
2, r/
√

2) and (0,−r/
√

2, r/
√

2) are in it but can not be joined by any
geodesics of it. This implies that it is not a convex metric space. So Theorem 1.1
is useless in this case.

Theorem 3.6. Let ξ be the geographical parametrization

ξ = (r cosx cos y, r sinx cos y, r sin y).

If E is a compact convex subset of the surface

X = ξ([0, 2π]× (0, π/2)),

then there is a retraction r from a 2-dimensional interval I2 onto ξ−1(E). Conse-
quently, X has the fixed point property.

Proof. Let E be a compact convex subset of X. We may assume that E is not
a curve segment. Observe that x(ξ−1(E)) must be a proper subset of [0, 2π]
since X does not contain (0, 0, r). From the symmetry of X, we may assume
that x(ξ−1(E)) ⊂ (0, 2π). Note that ξ is one-to-one on (0, 2π) × (0, π/2), so ξ :
(0, 2π)× (0, π/2)→ X is a patch.

Let
a = inf{α ∈ R : (α, β) ∈ ξ−1(E),∃β ∈ R}

and
b = sup{α ∈ R : (α, β) ∈ ξ−1(E),∃β ∈ R}.

For each u ∈ [a, b], let

u∗ = inf{β ∈ R : (u, β) ∈ ξ−1(E)}

and
u∗∗ = sup{β ∈ R : (u, β) ∈ ξ−1(E)}.

Since E is compact convex, we have

ξ−1(E) =
⋃

u∈[a,b]

[u∗, u∗∗].
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Let
c = inf

u∈[a,b]
u∗, d = sup

u∈[a,b]
u∗∗,

and
I2 = [a, b]× [c, d].

Note that
ξ−1(E) ⊂ I2 ⊂ (0, 2π)× (0, π/2).

Define r : I2 → ξ−1(E) by

r(u, v) =


(u, v), if (u, v) ∈ ξ−1(E),

(u, u∗∗), if v > u∗∗,

(u, u∗), if v < u∗.

To show that r is continuous. Let {pn} be a sequence in I2 with

lim
n→∞

pn = p.

If p is in the interior of ξ−1(E), then

lim
n→∞

r(pn) = lim
n→∞

pn = p = r(p).

Assume that p is not in the interior. From the convexity of E, we have v > u∗∗ or
v < u∗. Write p = (u, v), pn = (un, vn), r(p) = (u, r(v)), and r(pn) = (un, r(vn)),
for each n ∈ N. Then lim

n→∞
un = u and lim

n→∞
vn = v. Without loss of generality, we

assume that {un} is strictly increasing and lim
n→∞

r(vn) = w, for some w ∈ [c, d].

Therefore,
lim
n→∞

r(pn) = lim
n→∞

(un, r(vn)) = (u,w).

Note that (u,w) ∈ ξ−1(E). From the symmetry of X, we may assume that u = π/2.
There are two cases to be considered:

case 1. If v > u∗∗, then r(v) = u∗∗. From v > u∗∗ and lim
n→∞

(un, vn) = (u, v),

we may assume that there exists n0 ∈ N such that r(vn) = u∗∗n , and |un−u| < π/4,
for each n ≥ n0. Let α be a geodesic joining ξ(u, u∗∗) and ξ(un0

, u∗∗n0
) with α(t1) =

ξ(un0
, u∗∗n0

), α(t2) = ξ(u, u∗∗), and t1 > t2. From Lemma 3.5, (ξ−1 ◦ α)′1(t2) < 0.
Then there exists δ > 0 such that (ξ−1 ◦ α)1 is strictly decreasing on (t2, t2 + δ).
For each n ≥ n0 with un ≥ (ξ−1 ◦α)1(t2 + δ/2), from the continuity of (ξ−1 ◦α)1,
there exists sn in (t2, t2 + δ) with

(ξ−1 ◦ α)1(sn) = un.

Since (ξ−1 ◦ α)(sn) is in E, for each n ≥ n0 with un ≥ (ξ−1 ◦ α)1(t2 + δ/2), so

(ξ−1 ◦ α)2(sn) ≤ u∗∗n .
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Note that lim
n→∞

sn = t2. Then

w = lim
n→∞

r(vn) = lim
n→∞

u∗∗n ≥ lim
n→∞

(ξ−1 ◦ α)2(sn) = (ξ−1 ◦ α)2(t2) = u∗∗.

Since

w ≤ sup{β ∈ R : (u, β) ∈ ξ−1(E)} = u∗∗,

so

w = u∗∗.

Then

lim
n→∞

r(pn) = lim
n→∞

(un, u
∗∗
n ) = (u,w) = (u, u∗∗) = (u, r(v)) = r(p).

case 2. If v < u∗, then r(v) = u∗. We may assume that there exists n0 ∈ N
such that r(vn) = u∗n and |un−u| < π/4, for each n ≥ n0. If α is a geodesic joining
ξ(u, u∗) and ξ(un0

, u∗n0
) with α(t1) = ξ(un0

, u∗n0
), α(t2) = ξ(u, u∗), and t1 > t2,

from Lemma 3.5, then (ξ−1 ◦α)′1(t2) < 0. Thus (ξ−1 ◦α)1 is strictly decreasing on
(t2, t2 + δ), for some δ > 0. For each n ≥ n0 with un ≥ (ξ−1 ◦ α)1(t2 + δ/2), there
exists sn in (t2, t2 + δ) with (ξ−1 ◦ α)1(sn) = un. Since (ξ−1 ◦ α)(sn) is in E, for
each n ≥ n0 with un ≥ (ξ−1 ◦ α)1(t2 + δ/2), so

(ξ−1 ◦ α)2(sn) ≥ u∗n.

Therefore,

w = lim
n→∞

r(vn) = lim
n→∞

u∗n ≤ lim
n→∞

(ξ−1 ◦ α)2(sn) = (ξ−1 ◦ α)2(t2) = u∗.

It follows from

w ≥ inf{β ∈ R : (u, β) ∈ ξ−1(E)} = u∗

that

w = u∗.

Then

lim
n→∞

r(pn) = lim
n→∞

(un, u
∗
n) = (u,w) = (u, u∗) = (u, r(v)) = r(p).

Therefore, r : I2 → ξ−1(E) is a retraction. It follows from Lemma 3.4 that X has
the fixed point property.
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