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Abstract : In this paper, we prove an endpoint theorem for multi-valued Suzuki
mappings in uniformly convex hyperbolic spaces. As a consequence, we obtain
a common endpoint theorem for a pair of single-valued and multi-valued Suzuki
mappings without the commutative condition. Our results extend and improve the
results of Espinola et al. (2015), Saejung (2016), Kudtha and Panyanak (2018)
and many others.
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1 Introduction

Let (X, d,W ) be a hyperbolic space. The distance from a point x in X to a
nonempty subset E of X is defined by

dist(x,E) := inf{d(x, y) : y ∈ E}.
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We denote by K(E) the family of nonempty compact subsets of E and by KC(E)
the family of nonempty compact convex subsets of E. The Pompeiu-Hausdorff
distance on K(E) is defined by

H(A,B) := max

{
sup
a∈A

dist(a,B), sup
b∈B

dist(b, A)

}
for all A,B ∈ K(E).

A multi-valued mapping T : E → K(E) is said to be nonexpansive [1] if

H(T (x), T (y)) ≤ d(x, y) (1.1)

for all x, y ∈ E. If (1.1) is valid for all x, y ∈ E with 1
2dist(x, T (x)) ≤ d(x, y), then

T is called a Suzuki mapping [2]. It is known that every nonexpansive mapping
is a Suzuki mapping and, in general, the converse is not true. An element x in E
is called a fixed point of T if x ∈ T (x). Moreover, if {x} = T (x), then x is called
an endpoint of T. We denote by Fix(T ) the set of all fixed points of T and by
End(T ) the set of all endpoints of T. It is clear that End(T ) ⊆ Fix(T ) for every
multi-valued mapping T and End(t) = Fix(t) for every single-valued mapping t.

Endpoint theory for multi-valued mappings has many useful applications in ap-
plied sciences, for instance, in game theory and optimization theory. In particular,
in 1986, Corley [3] proved that a maximization with respect to a cone is equivalent
to the problem of finding an endpoint of a certain multi-valued mapping.

Let E be a nonempty subset of a metric space (X, d) and x ∈ X. The radius
of E relative to x is defined by

rx(E) := sup{d(x, y) : y ∈ E}.

The diameter of E is defined by

diam(E) := sup{d(x, y) : x, y ∈ E}.

A single-valued mapping t : E → E and a multi-valued mapping T : E → K(E)
are said to be commuting mappings [4] if for x, y ∈ E such that x ∈ T (y), one has
t(x) ∈ T (t(y)). A sequence {xn} in E is called an approximate endpoint sequence
for T [5] if lim

n→∞
rxn(T (xn)) = 0.

The existence of endpoints for nonexpansive mappings was first studied by
Panyanak [6] in 2015. He showed that a multi-valued nonexpansive mapping on
a bounded closed convex subset E of a uniformly convex Banach space X has
an endpoint if and only if it has an approximate endpoint sequence in E. It was
quickly noted by Espinola et al. [7] that Panyanak’s result can be extended to the
general setting of Banach spaces with the Dominguez-Lorenzo condition. Since
then the endpoint results for some generalized nonexpansive mappings have been
rapidly developed and many papers have appeared (see, e.g., [8-12]). Among other
things, Kudtha and Panyanak [11] obtained the following result.

Theorem 1.1. Let X be a uniformly convex hyperbolic space with monotone mod-
ulus of uniform convexity and let E be a nonempty bounded closed convex subset
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of X. Let t : E → E be a single-valued Suzuki mapping and T : E → KC(E) be a
multi-valued Suzuki mapping. Suppose that the following conditions hold:

(i) t and T are commuting mappings;
(ii) T has an approximate endpoint sequence in End(t).

Then t and T have a common endpoint in E.

In [11], the authors also showed that the condition (ii) is necessary for Theorem
1.1. In general, two mappings need not be commute, thus the following question
should be of interest.

Question: Is Theorem 1.1 true if the condition (i) is eliminated?

In this paper, we show that the answer is “Yes”. To support our result, we also
show that there exists a non-commutative pair of single-valued and multi-valued
Suzuki mappings which have a common endpoint.

2 Preliminaries

Throughout this paper, N stands for the set of natural numbers and R stands
for the set of real numbers.

Definition 2.1. [13] A hyperbolic space is a triple (X, d,W ) where (X, d) is a
metric space andW : X×X×[0, 1]→ X is a function such that for all x, y, z, w ∈ X
and α, β ∈ [0, 1], we have

(W1) d(z,W (x, y, α)) ≤ (1− α)d(z, x) + αd(z, y);
(W2) d (W (x, y, α),W (x, y, β)) = |α− β|d(x, y);
(W3) W (x, y, α) = W (y, x, 1− α);
(W4) d(W (x, z, α),W (y, w, α)) ≤ (1− α)d(x, y) + αd(z, w).

If x, y ∈ X and α ∈ [0, 1], then we use the notation (1−α)x⊕αy for W (x, y, α).
It is easy to see that for any x, y ∈ X and α ∈ [0, 1], one has

d(x, (1− α)x⊕ αy) = αd(x, y) and d(y, (1− α)x⊕ αy) = (1− α)d(x, y).

Let [x, y] := {(1− α)x⊕ αy : α ∈ [0, 1]}. A nonempty subset E of X is said to be
convex if [x, y] ⊆ E for all x, y ∈ E.

Definition 2.2. [13] The hyperbolic space (X, d,W ) is called uniformly convex if
for any r > 0 and ε ∈ (0, 2] there exists δ ∈ (0, 1] such that for all a, x, y ∈ X with
d(x, a) ≤ r, d(y, a) ≤ r and d(x, y) ≥ rε, we have

d

(
1

2
x⊕ 1

2
y, a

)
≤ (1− δ)r.

A function η : (0,∞) × (0, 2] → (0, 1] providing such a δ := η(r, ε) for given
r > 0 and ε ∈ (0, 2] is called a modulus of uniform convexity. The mapping δ is
monotone if for every fixed ε it decreases with respect to r.
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Obviously, uniformly convex Banach spaces are uniformly convex hyperbolic
spaces. CAT(0) spaces are also uniformly convex hyperbolic spaces, see [13, Propo-
sition 8].

Definition 2.3. [14] Let E be a nonempty subset of a metric space (X, d). A
multivalued mapping T : E → CB(E) is said to satisfy condition (Eµ) if there
exists µ ≥ 1 such that for each x, y ∈ E, we have

dist(x, T (y)) ≤ µdist(x, T (x)) + d(x, y).

The mapping T is said to be quasi-nonexpansive if for each x ∈ E and y ∈ Fix(T ),
one has

H(T (x), T (y)) ≤ d(x, y).

Let E be a nonempty subset of a metric space (X, d) and {xn} be a bounded
sequence in X. The asymptotic radius of {xn} relative to E is defined by

r(E, {xn}) = inf
{

lim sup
n→∞

d(xn, x) : x ∈ E
}
.

The asymptotic center of {xn} relative to E is defined by

A(E, {xn}) =
{
x ∈ E : lim sup

n→∞
d(xn, x) = r(E, {xn})

}
.

The sequence {xn} is called regular relative to E if r(E, {xn}) = r(E, {xnk
})

for every subsequence {xnk
} of {xn}. It is known that every bounded sequence in

a metric space has a regular subsequence (see [15]; also [16, p. 3690]).

Before proving our main results we collect some basic facts about uniformly
convex hyperbolic spaces. From now on, X stands for a complete uniformly convex
hyperbolic space with monotone modulus of uniform convexity.

Lemma 2.4. The following statements hold:

(i) [2, Proposition 2] if E is a nonempty subset of X and t : E → E is a single-
valued Suzuki mapping with End(t) 6= ∅, then t is a quasi-nonexpansive mapping;

(ii) [17, Lemma 3.2] if E is a nonempty closed convex subset of X and T : E →
K(E) is a multi-valued Suzuki mapping, then T satisfies condition (E3);

(iii) [6, Proposition 2.4] Let E be a nonempty subset of X, {xn} be a sequence in
E, and T : E → K(E) be a multi-valued mapping. Then rxn

(T (xn)) → 0 if and
only if dist(xn, T (xn))→ 0 and diam(T (xn))→ 0.

(iv) [18, Proposition 3.3] if E is a nonempty closed convex subset of X and {xn}
be a bounded sequence in E, then A(E, {xn}) consists of exactly one point.
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3 Main Results

This section is begun by proving an endpoint theorem for multi-valued Suzuki
mappings. The proof closely follows the proof of Theorem 3.1 in [11], for for the
convenience of readers we include the details.

Theorem 3.1. Let E be a nonempty closed convex subset of X and T : E → K(E)
be a multi-valued Suzuki mapping. Let {xn} be a sequence in E which is regular
relative to E. Suppose that {xn} is an approximate endpoint sequence for T and
A(E, {xn}) = {x}. Then x is an endpoint of T.

Proof. Let r = r(E, {xn}). For n ∈ N, we let yn ∈ T (xn) be such that d(xn, yn) =
dist(xn, T (xn)). Since {xn} is an approximate endpoint sequence for T , by Lemma
2.4 (iii) we have

dist(xn, T (xn))→ 0 and diam(T (xn))→ 0. (3.1)

Case 1. For each n ∈ N there exists m ∈ N such that m ≥ n and 1
2d(xm, ym) >

d(xm, x). Then there is a subsequence {xnk
} of {xn} such that

1

2
d(xnk

, ynk
) > d(xnk

, x) for all k ∈ N. (3.2)

It follows from (3.1) and (3.2) that lim
k→∞

xnk
= x. By Lemma 2.4 (ii), we have

dist(x, T (x)) ≤ d(x, xnk
) + dist(xnk

, T (x))

≤ 2d(x, xnk
) + 3dist(xnk

, T (xnk
))→ 0 as k →∞.

Hence x ∈ T (x). Notice also that 1
2dist(x, T (x)) = 0 ≤ d(xnk

, x) for all k ∈ N.
Since T is a Suzuki mapping, we have

H(T (xnk
), T (x)) ≤ d(xnk

, x)→ 0 as k →∞. (3.3)

Let v ∈ T (x) and choose unk
∈ T (xnk

) so that d(v, unk
) = dist(v, T (xnk

)). From
(3.1) and (3.3) we have

d(x, v) ≤ d(x, xnk
) + d(xnk

, ynk
) + d(ynk

, unk
) + d(unk

, v)

≤ d(x, xnk
) + dist(xnk

, T (xnk
)) + diam(T (xnk

)) +H(T (xnk
), T (x))

→ 0 as k →∞.

Hence v = x for all v ∈ T (x). Therefore x ∈ End(T ).
Case 2. There exists n0 ∈ N such that 1

2d(xn, yn) ≤ d(xn, x) for all n ≥ n0.
This implies that 1

2dist(xn, T (xn)) ≤ d(xn, x) and so H(T (xn), T (x)) ≤ d(xn, x).
For n ∈ N, select zn ∈ T (x) so that d(yn, zn) = dist(yn, T (x)). Since T (x) is
compact, there exists a subsequence {znj

} of {zn} such that znj
→ w ∈ T (x). For

j sufficiently large, we have

d(xnj , w) ≤ d(xnj , ynj ) + d(ynj , znj ) + d(znj , w)

≤ d(xnj , ynj ) +H(T (xnj ), T (x)) + d(znj , w)

≤ dist(xnj , T (xnj )) + d(xnj , x) + d(znj , w).
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This implies by the regularity of {xn} that lim sup
j→∞

d(xnj , w) ≤ lim sup
j→∞

d(xnj , x) =

r. Hence w ∈ A(E, {xnj}) = {x}. Therefore x = w ∈ T (x). Let v ∈ T (x) and
choose unj ∈ T (xnj ) so that d(v, unj ) = dist(v, T (xnj )). Thus

d(xnj , v) ≤ d(xnj , ynj ) + d(ynj , unj ) + d(unj , v)

≤ d(xnj , ynj ) + diam(T (xnj )) +H(T (x), T (xnj ))

≤ dist(xnj , T (xnj )) + diam(T (xnj )) + d(xnj , x).

It follows from (3.1) that lim sup
j→∞

d(xnj , v) ≤ lim sup
j→∞

d(xnj , x) = r. Hence v ∈

A(E, {xnj
}) = {x}, and so v = x for all v ∈ T (x). Therefore x ∈ End(T ).

Now, we are ready to prove our main theorem. In contrast to Theorem 1.1, it
does not need the convexity of T (x).

Theorem 3.2. Let E be a nonempty bounded closed convex subset of X, t : E →
E be a single-valued mapping and T : E → K(E) be a multi-valued mapping.
Suppose that t and T are Suzuki mappings such that T has an approximate endpoint
sequence in End(t). Then t and T have a common endpoint in E.

Proof. Let {xn} be an approximate endpoint sequence for T in End(t). By pass-
ing to a subsequence, we may assume that {xn} is regular relative to E. Let
A(E, {xn}) = {x}. By Theorem 3.1, x ∈ End(T ). It follows from Lemma 2.4 (i)
that

lim sup
n→∞

d(xn, t(x)) ≤ lim sup
n→∞

d(xn, x).

This implies t(x) ∈ A(E, {xn}) = {x}, and hence x ∈ End(t). Therefore x is a
common endpoint of t and T.

The following example shows that there exists a non-commutative pair of
single-valued and multi-valued Suzuki mappings which have a common endpoint.

Example 3.3. Let X = R, E = [0, 3] and t : E → E be defined by

t(x) =

{
0 if x 6= 3,

1 if x = 3.

Then t is a single-valued Suzuki mapping (see [2]). Let T : E → K(E) be defined
by

T (x) =
[x

2
, x
]

for all x ∈ E.

Then H(T (x), T (y)) = |x − y| for all x, y ∈ E. Therefore T is nonexpansive and
hence it is a Suzuki mapping. If x = 3/2 and y = 3, then x ∈ T (y) but t(x) = 0 /∈[
1
2 , 1
]

= T (t(y)). Therefore t and T are not commuting, hence we cannot apply
Theorem 1.1. However, by Theorem 3.2, we can conclude that t and T have a
common endpoint in E.
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