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Abstract : In this paper, we prove an endpoint theorem for multi-valued Suzuki
mappings in uniformly convex hyperbolic spaces. As a consequence, we obtain
a common endpoint theorem for a pair of single-valued and multi-valued Suzuki
mappings without the commutative condition. Our results extend and improve the
results of Espinola et al. (2015), Saejung (2016), Kudtha and Panyanak (2018)
and many others.
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1 Introduction

Let (X,d, W) be a hyperbolic space. The distance from a point z in X to a
nonempty subset F of X is defined by

dist(z, E) := inf{d(z,y) : y € E}.
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We denote by IC(E) the family of nonempty compact subsets of E and by KC(E)
the family of nonempty compact convex subsets of E. The Pompeiu-Hausdorff
distance on K(FE) is defined by

H(A, B) := max {sup dist(a, B), sup dist(b,A)} for all A, B € K(E).
acA beB

A multi-valued mapping T : E — K(E) is said to be nonexpansive [1] if
H(T(x), T(y)) < d(z,y) (L.1)

for all z,y € E. If is valid for all z,y € E with %dist(a:,T(:c)) < d(z,y), then
T is called a Suzuki mapping [2]. Tt is known that every nonexpansive mapping
is a Suzuki mapping and, in general, the converse is not true. An element z in E
is called a fized point of T if € T'(x). Moreover, if {x} = T'(x), then x is called
an endpoint of T. We denote by Fix(T) the set of all fixed points of T" and by
End(T) the set of all endpoints of T It is clear that End(T) C Fiz(T) for every
multi-valued mapping T' and End(t) = Fiz(t) for every single-valued mapping ¢.

Endpoint theory for multi-valued mappings has many useful applications in ap-
plied sciences, for instance, in game theory and optimization theory. In particular,
in 1986, Corley [3] proved that a maximization with respect to a cone is equivalent
to the problem of finding an endpoint of a certain multi-valued mapping.

Let E be a nonempty subset of a metric space (X,d) and x € X. The radius
of E relative to x is defined by

ra(E) = sup{d(z, ) : y € E}.
The diameter of E is defined by
diam(FE) := sup{d(z,y) : x,y € E}.

A single-valued mapping ¢ : £ — E and a multi-valued mapping T : E — K(E)
are said to be commuting mappings [4] if for x,y € E such that € T'(y), one has
t(z) € T(t(y)). A sequence {z,} in E is called an approzimate endpoint sequence
for T [5] if lim ry, (T(zy)) =0.
n—oo

The existence of endpoints for nonexpansive mappings was first studied by
Panyanak [6] in 2015. He showed that a multi-valued nonexpansive mapping on
a bounded closed convex subset F of a uniformly convex Banach space X has
an endpoint if and only if it has an approximate endpoint sequence in F. It was
quickly noted by Espinola et al. [7] that Panyanak’s result can be extended to the
general setting of Banach spaces with the Dominguez-Lorenzo condition. Since
then the endpoint results for some generalized nonexpansive mappings have been
rapidly developed and many papers have appeared (see, e.g., [8-12]). Among other
things, Kudtha and Panyanak [IT] obtained the following result.

Theorem 1.1. Let X be a uniformly convex hyperbolic space with monotone mod-
ulus of uniform convezity and let E be a nonempty bounded closed convexr subset
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of X. Let t : E — E be a single-valued Suzuki mapping and T : E — KC(E) be a
multi-valued Suzuki mapping. Suppose that the following conditions hold:

(i) t and T are commuting mappings;

(ii) T has an approximate endpoint sequence in End(t).
Then t and T have a common endpoint in E.

In [T1], the authors also showed that the condition (ii) is necessary for Theorem
In general, two mappings need not be commute, thus the following question
should be of interest.

Question: Is Theorem [1.1] true if the condition (i) is eliminated?

In this paper, we show that the answer is “Yes”. To support our result, we also
show that there exists a non-commutative pair of single-valued and multi-valued
Suzuki mappings which have a common endpoint.

2 Preliminaries

Throughout this paper, N stands for the set of natural numbers and R stands
for the set of real numbers.

Definition 2.1. [13] A hyperbolic space is a triple (X,d, W) where (X,d) is a
metric space and W : X x X x[0,1] — X is a function such that for all 2, y, z,w € X
and «, 8 € [0, 1], we have

(Wl) d(z W(z y, a)) < (1 —a)d(z,z) + ad(z,y);

( 3) W(x yv ) = W(y,x, 1- OZ);

(W4) d(W(z, z,a), W(y, w, @) < (1 = a)d(z,y) + ad(z,w).

If z,y € X and « € [0, 1], then we use the notation (1—a)x®ay for W(z,y, ).
It is easy to see that for any z,y € X and a € [0, 1], one has

d(z, (1 — @)z ® ay) = ad(z,y) and d(y, (1 — a)z @ ay) = (1 — a)d(z,y).

Let [z,y] .= {(1 — o)z @ ay : @ € [0,1]}. A nonempty subset E of X is said to be
convez if [x,y] C F for all x,y € E.

Definition 2.2. [I3] The hyperbolic space (X, d, W) is called uniformly convez if
for any 7 > 0 and ¢ € (0, 2] there exists § € (0, 1] such that for all a,z,y € X with
d(z,a) <r, d(y,a) <r and d(z,y) > re, we have

1 1
— — <(1-— .
d(2x€92y,a>_( S)r

A function 7 : (0,00) x (0,2] — (0, 1] providing such a ¢ := n(r, ) for given
r > 0 and e € (0,2] is called a modulus of uniform convezity. The mapping ¢ is
monotone if for every fixed € it decreases with respect to r.
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Obviously, uniformly convex Banach spaces are uniformly convex hyperbolic
spaces. CAT(0) spaces are also uniformly convex hyperbolic spaces, see [I3, Propo-
sition 8].

Definition 2.3. [I4] Let E be a nonempty subset of a metric space (X,d). A
multivalued mapping T : E — CB(FE) is said to satisfy condition (E,) if there
exists p > 1 such that for each z,y € E, we have

dist(z, T'(y)) < pdist(z, T(x)) + d(z,y).

The mapping T is said to be quasi-nonexpansive if for each x € F and y € Fiz(T),
one has

H(T(x),T(y)) < d(z,y).

Let E be a nonempty subset of a metric space (X,d) and {z,} be a bounded
sequence in X. The asymptotic radius of {x,} relative to E is defined by

r(E,{z,}) = inf { limsupd(z,,z) : € E}.
n— oo

The asymptotic center of {x,} relative to F is defined by

A(E {zn}) = {z € E :limsupd(z,,z) = r(E,{z,})}.

n— oo

The sequence {x,} is called regular relative to E if r(E,{z,}) = r(E,{xn,})
for every subsequence {z,,} of {x,}. It is known that every bounded sequence in
a metric space has a regular subsequence (see [I5]; also [I6] p. 3690]).

Before proving our main results we collect some basic facts about uniformly
convex hyperbolic spaces. From now on, X stands for a complete uniformly convex
hyperbolic space with monotone modulus of uniform convexity.

Lemma 2.4. The following statements hold:

(i) |2, Proposition 2] if E is a nonempty subset of X and t: E — E is a single-
valued Suzuki mapping with End(t) # 0, then t is a quasi-nonexpansive mapping;

(ii) [I7, Lemma 3.2] if E is a nonempty closed convex subset of X and T : E —
K(E) is a multi-valued Suzuki mapping, then T satisfies condition (E3);

(iii) [6, Proposition 2.4] Let E be a nonempty subset of X, {x,} be a sequence in
E, and T : E — K(E) be a multi-valued mapping. Then r;, (T(x,)) — 0 if and
only if dist(xy,, T (zy)) = 0 and diam(T(x,)) — 0.

(iv) [I8l Proposition 3.3] if E is a nonempty closed convex subset of X and {z,}
be a bounded sequence in E, then A(E,{x,}) consists of exactly one point.
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3 Main Results

This section is begun by proving an endpoint theorem for multi-valued Suzuki
mappings. The proof closely follows the proof of Theorem 3.1 in [IT], for for the
convenience of readers we include the details.

Theorem 3.1. Let E be a nonempty closed convex subset of X and T : E — K(FE)
be a multi-valued Suzuki mapping. Let {x,} be a sequence in E which is regular

relative to E. Suppose that {x,} is an approzimate endpoint sequence for T and
A(E,{zn}) = {z}. Then x is an endpoint of T.

Proof. Let r = r(E,{z,}). For n € N, we let y,, € T(x,) be such that d(x,,y,) =
dist(xy, T'(zy)). Since {z, } is an approximate endpoint sequence for T', by Lemma
[2-4] (iii) we have
dist(xy, T (zy)) — 0 and diam(7T(zy)) — 0. (3.1)
Case 1. For each n € N there exists m € N such that m > n and %d(mm, Ym) >
d(Zm,x). Then there is a subsequence {x,, } of {z,} such that
1

éd(xnk,ynk) > d(xp,,z) for all k€ N. (3.2)

It follows from l) and 1) that klirgo Zn, = ¢. By Lemma [2.4] (i), we have

dist(z, T'(x)) < d(x, xy,, ) + dist(zy, , T(z))
< 2d(x,xy, ) + 3dist(zy, , T(zn,)) — 0 as k — oco.

Hence x € T(x). Notice also that jdist(z,T(z)) = 0 < d(zy,, ) for all k € N.
Since T is a Suzuki mapping, we have

H(T(xy,), T(z)) <d(zn,,z) =0 as k — oo. (3.3)
Let v € T'(z) and choose uy, € T(zy,) so that d(v,uy,) = dist(v, T(x,, )). From

and we have
d(z,v) < d(@, p,) + d(Tnys Yny,) + A(Yny s Uny) + d(ny, )
< d(z,xn,) + dist(zy,, T(xy,,)) + dam(T(z,, ) + H(T(xy,, ), T(z))
— 0 as k — oo.
Hence v = z for all v € T'(z). Therefore x € End(T).

Case 2. There exists ng € N such that %d(mmyn) < d(zp,x) for all n > ng.
This implies that dist(zy, T (z,)) < d(z,,z) and so H(T(z,),T(z)) < d(zy, ).
For n € N, select z, € T(z) so that d(yn,z,) = dist(yn,T(x)). Since T'(z) is
compact, there exists a subsequence {z,; } of {z,} such that z,, — w € T'(x). For
j sufficiently large, we have

d(wnij) S d(xnj7ynj) + d(ynj7znj) + d(znjaw)
d(@n;; Yn;) + H(T(20,), T(x)) + d(2n;, 0)

<
< dist(@n,, T(2n,)) + d(@n;, ) + d(zn,, w).
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This implies by the regularity of {x,} that limsup d(z,,, w) < limsupd(z,,,z) =
Jj—00 j—o0

r. Hence w € A(E,{xy,;}) = {x}. Therefore v+ = w € T(z). Let v € T(x) and

choose u,; € T(xy,) so that d(v,u,,) = dist(v, T'(z,,)). Thus

d(xnj v) < d(xnj ) ynj) + d(ynj ) unj) + d(unJ )
< d(xnj ) ynj) + diam(T(mnj)) + H(T(l‘), T(mnj ))
<

dist(zy,, T'(2n,)) + diam(T(zy,)) + d(xp;, x).

j—o0 j—o0

A(E,{zy,}) = {x}, and so v = x for all v € T'(z). Therefore x € End(T). O

It follows from (i that limsupd(z,,,v) < limsupd(z,,,r) = r. Hence v €

Now, we are ready to prove our main theorem. In contrast to Theorem it
does not need the convexity of T'(x).

Theorem 3.2. Let E be a nonempty bounded closed convexr subset of X, t: E —
E be a single-valued mapping and T : E — K(F) be a multi-valued mapping.
Suppose thatt and T are Suzuki mappings such thatT has an approximate endpoint
sequence in End(t). Then t and T have a common endpoint in E.

Proof. Let {z,} be an approximate endpoint sequence for 7' in End(¢). By pass-
ing to a subsequence, we may assume that {z,} is regular relative to E. Let
A(E,{z,}) = {z}. By Theorem x € End(T). Tt follows from Lemma (i)
that

limsup d(x,, t(z)) < limsup d(x,, x).

n—oo n—oo
This implies t(x) € A(F,{z,}) = {z}, and hence = € End(¢t). Therefore z is a
common endpoint of ¢ and 7. O

The following example shows that there exists a non-commutative pair of
single-valued and multi-valued Suzuki mappings which have a common endpoint.

Example 3.3. Let X =R, E=10,3] and t : E — E be defined by

t(x){o ?f T # 3,
1 if z=3.

Then ¢ is a single-valued Suzuki mapping (see [2]). Let T': E — IC(E) be defined
by
x
T(x) = [5735} for all z € E.

Then H(T(x),T(y)) = |z — y| for all x,y € E. Therefore T is nonexpansive and
hence it is a Suzuki mapping. If = 3/2 and y = 3, then x € T'(y) but t(z) =0 ¢
[%, 1] = T(t(y)). Therefore t and T are not commuting, hence we cannot apply
Theorem However, by Theorem we can conclude that ¢t and T have a
common endpoint in F.
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