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1 Introduction

Let C be a nonempty subset of a Banach space X. Let F (T ) be the set of all
fixed points of a mapping T. A mapping T : C → C is said to be asymptotically
nonexpansive if there exists a sequence {kn}, {kn} ≥ 1 with lim

n→∞
kn = 1 such that

‖Tnx− Tny‖ ≤ kn‖x− y‖,
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whenever x, y ∈ C and all n ≥ 1. The set of common fixed points of three mappings
T1, T2 and T3 denoted by F = ∩ni=1F (Ti).

Some mathematicians have studied the convergence theorem of common fixed
points for asymptotically nonexpansive mappings in Banach spaces. The details
of the research of such mathematician is shown in the references [1] to [4].

In 2008, the mathematician namely Jachymski [5] has generalized Banach’s
contraction principle to mappings on a metric space endowed with a graph by
using the combination concepts between the fixed point theory and the graph
theory. After the successful research of Jachymski, there are next generation of
mathematicians widely brought the concept of graph theory as a tool to study
on the convergence theorem of common fixed point in Hilbert spaces and Banach
spaces. Here are a couple of examples of such mathematicians.

In 2015, Tiammee et al. [6] prove the theory of the strong convergence of the
Halpern iteration for a G-nonexpansive mapping in Hilbert spaces with a directed
graph. In 2018, Suparatulatorn et al. [7] prove the weak and strong convergence
theorems of the modified S-iteration for finding a common fixed point of two G-
nonexpansive mappings in Banach spaces with directed graphs.

In this paper, we study the following iteration zn = (1− γn)xn + γnT
n
3 xn,

yn = (1− βn)zn + βnT
n
2 zn,

xn+1 = (1− αn)yn + αnT
n
1 yn,

(1.1)

for all n ≥ 1, where x1 ∈ C, {αn}, {βn} and {γn} are sequences in [0, 1] and is
called the modified SP-iteration. We establish some strong and weak convergence
theorems for three G-asymptotically nonexpansive mappings in a uniformly convex
Banach space endowed with a directed graph. Last but not least, we also present
the numerical example for the modified SP-iteration scheme to compare with the
modified Noor iteration which has been shown in the reference [8].

2 Preliminaries

In this section, we provide and recall some definitions and lemmas which will
be used in the next sections.

Let C be a nonempty subset of a real Banach space X. Let 4 denote the
diagonal of the cartesian product C × C, i.e., 4 = {(x, x) : x ∈ C}. Consider a
directed graph G such that the set V (G) of its vertices coincides with C, and the
set E(G) of its edges contains all loops, i.e., E(G) ⊇ 4. We assume G has no
parallel edges. Thus we can identify the graph G with the pair (V (G), E(G)). A
mapping T : C → C is said to be G-asymptotically nonexpansive if T satisfies the
following conditions:

(i) T preserves edges of G (or T is edge-preserving), i.e.,

(x, y) ∈ E(G) =⇒ (Tx, Ty) ∈ E(G).
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(ii) if there exists a sequence {kn}, kn ≥ 1 with lim
n→∞

kn = 1 such that

||Tnx− Tny|| ≤ kn||x− y||,

whenever (x, y) ∈ E(G) and each n ≥ 1.

Definition 2.1. The conversion of a graph G is the graph obtained from G by
reversing the direction of edges denoted by G−1 and

E(G−1) = {(x, y) ∈ X ×X : (y, x) ∈ E(G)}.

Definition 2.2. Let x and y be vertices of a graph G. A path in G from x to y of
length N(N ∈ N ∪ {0}) is a sequence {xi}Ni=0 of N + 1 vertices for which x0 = x,
xN = y, and (xi, xi+1) ∈ E(G) for i = 0, 1, . . . , N − 1.

Definition 2.3. A graph G is said to be connected if there is a path between any
two vertices of the graph G.

Definition 2.4. Let x0 ∈ V (G) and A ⊆ V (G). We say that

(i) A is dominated by x0 if (x0, x) ∈ E(G) for all x ∈ A.

(ii) A dominates x0 if for each x ∈ A, (x, x0) ∈ E(G).

Definition 2.5. A directed graph G = (V (G), E(G)) is said to be transitive if,
for any x, y, z ∈ V (G) such that (x, y) and (y, z) are in E(G), then (x, z) ∈ E(G).

Definition 2.6. ([5])A mapping T : X → X is called G-continuous if given u ∈ X
and a sequence {un} for n ∈ N, un → u and (un, un+1) ∈ E(G) imply Tun → Tu.

Definition 2.7. A mapping T : C → C is called G-semicompact if for a sequence
{xn} in C with (xn, xn+1) ∈ E(G) and lim

n→∞
||Txn − xn|| = 0, there exists a

subsequence {xnj
} of {xn} such that xnj

→ p ∈ C as j →∞.

Definition 2.8. Let C be a nonempty subset of a Banach space X and let T :
C → X be a mapping. Then, T is said to be G-demiclosed at y ∈ X if, for any
sequence {xn} in C such that {xn} converges weakly to x ∈ C, {Txn} converges
strongly to y and (xn, xn+1) ∈ E(G) imply Tx = y.

Definition 2.9. ([9])A Banach space X is said to satisfy Opial’s condition if for
any sequence {xn} in X, xn ⇀ x implies that

lim sup
n→∞

||xn − x|| < lim sup
n→∞

||xn − y||

for all y ∈ X with x 6= y.

Property G [6] Let C be a nonempty subset of a normed space X and let G =
(V (G), E(G)) be a directed graph with V (G) = C. We said that C has the Property
G if for each sequence {xn} in C converging weakly to x ∈ C with (xn, xn+1) ∈
E(G), there is a subsequence {xnk

} of {xn} such that (xnk
, x) ∈ E(G) for all

k ∈ N.
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Lemma 2.10 ([10]). Suppose X is a Banach space satisfying Opial’s condition
and C is a nonempty weakly compact convex subset of X and T : C → C is
an asymptotically nonexpansive mapping. Also, suppose {xn} is a sequence in C
converging weakly to x and for which the sequence {xn − Txn} converges strongly
to 0. Then {Tnx} converges weakly to x.

Lemma 2.11 ([11]). Let {an}, {bn}and {δn} be sequences of nonnegative real
numbers satisfying the inequality

an+1 ≤ (1 + δn)an + bn,

for all n = 1, 2, . . . . If
∑∞
n=1 δn <∞ and

∑∞
n=1 bn <∞, then

(i) lim
n→∞

an exists;

(ii) lim
n→∞

an = 0 whenever lim inf
n→∞

an = 0.

Lemma 2.12 ([12]). Let p > 1, r > 0 be two fixed numbers. Then a Banach space
X is uniformly convex if and only if there exists a continuous, strictly increasing,
and convex function g : [0,∞)→ [0,∞), g(0) = 0 such that

||λx+ (1− λ)y||p ≤ λ||x||p + (1− λ)||y||p − wp(λ)g(||x− y||),

for all x, y in Br = {x ∈ X : ||x|| ≤ r}, λ ∈ [0, 1], where

wp(λ) = λ(1− λ)p + λp(1− λ).

Lemma 2.13 ([13]). Suppose C has Property G : {xn}⇀ x and (xn, xn+1) ∈ E(G),
there exists a subsequence {xnk

} such that for each k, (xnk
, x) ∈ E(G). Let T be

a G-asymptotically nonexpansive mapping on C with asymptotic coefficient {kn}
such that

∑∞
n=1(kn − 1) <∞. Then I − T is G-demiclosed at 0.

Lemma 2.14 ([14]). Let X be a Banach space which satisfies Opial’s condition
and let {xn} be a sequence in X. Let u, v ∈ X be such that lim

n→∞
||xn − u|| and

lim
n→∞

||xn−v|| exist. If {xnk
} and {xmk

} are subsequences of {xn} which converges

weakly to u and v, respectively, then u = v.

3 Weak and Strong Convergence Theorems

In this section, we prove weak and strong convergence theorems of the modified
SP-iteration scheme (1.1) for three G-asymptotically nonexpansive mappings in a
Banach space endowed with a directed graph. Thoughtout of this section, let C
be a nonempty closed, bounded and convex subset of a Banach space X with
a directed graph G = (V (G), E(G)) such that V (G) = C and E(G) is convex.
We also suppose that the graph G is transitive. Suppose T1, T2, T3 : C → C are
three G-asymptotically nonexpansive mappings with {kn} satisfying kn ≥ 1 and∑∞
n=1(kn − 1) <∞, and F = ∩3i=1F (Ti) 6= ∅.

For prove our main theorems, we need the following propositons and lemmas.
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Proposition 3.1. Let z0 ∈ F be such that (x0, z0), (z0, x0) are in E(G). Then
(xn, z0), (yn, z0), (zn, z0), (z0, xn), (z0, yn), (z0, zn), (xn, yn), (xn, zn) and (xn, xn+1)
are in E(G).

Proof. We proceed by induction. Since T1, T2 and T3 are edge-preserving, it can
be easily seen that Tn1 , T

n
2 and Tn3 are also edge-preserving for all n ∈ N. From

(x0, z0) ∈ E(G) and since Tn3 is edge-preserving, we get (Tn3 x0, z0) ∈ E(G) and
so (z0, z0) ∈ E(G) because E(G) is convex. Since Tn2 is edge-preserving and
(z0, z0) ∈ E(G), we have (Tn2 z0, z0) ∈ E(G) and then (y0, z0) ∈ E(G). Thus, since
Tn1 is edge-preserving and (y0, z0) ∈ E(G), we get (Tn1 y0, z0) ∈ E(G). By the con-
vexity of E(G) and (y0, z0), (Tn1 y0, z0) ∈ E(G), we get (x1, z0) ∈ E(G). Thus, by
edge-preserving of Tn3 , (Tn3 x1, z0) ∈ E(G). Again, by the convexity of E(G) and
(x1, z0), (Tn3 x1, z0) ∈ E(G), we have (z1, z0) ∈ E(G). Since Tn2 is edge-preserving
and (z1, z0) ∈ E(G), we get (Tn2 z1, z0) ∈ E(G) and so (y1, z0) ∈ E(G) and hence
(Tn1 y1, z0) ∈ E(G). Next, we assume that (xk, z0) ∈ E(G). Since Tn3 is edge-
preserving, we obtain (Tn3 xk, z0) ∈ E(G) and so (zk, z0) ∈ E(G), by E(G) is con-
vex. Since Tn2 is edge-preserving and (zk, z0) ∈ E(G), we get (Tn2 zk, z0) ∈ E(G).
By the convexity of E(G) and (zk, z0), (Tn2 zk, z0) ∈ E(G), we get (yk, z0) ∈ E(G).
Since Tn1 is edge-preserving, we have (Tn1 yk, z0) ∈ E(G). By the convexity of E(G),
we get (xk+1, z0) ∈ E(G). Then, since Tn3 is edge-preserving and (xk+1, z0) ∈
E(G), we have (Tn3 xk+1, z0) ∈ E(G) and so (zk+1, z0) ∈ E(G) because E(G) is
convex. Hence, by edge-preserving of Tn2 , we obtain (Tn2 zk+1, z0) ∈ E(G) and so
(yk+1, z0) ∈ E(G). Therefore (xn, z0), (yn, z0), (zn, z0) ∈ E(G) for all n ≥ 1. Using
a similar argument, we can show that (z0, xn), (z0, yn) and (z0, zn) ∈ E(G) under
the assumption that (z0, x0) ∈ E(G). By the transitivity of G, we obtain (xn, yn),
(xn, zn) and (xn, xn+1) ∈ E(G). This completes the proof.

Proposition 3.2. Let X be a Banach space with a directed graph G and let T :
C → C be G-asymptotically nonexpansive mapping. If X has the Property G, then
T is G-continuous.

Proof. Let {xn} be a sequence in X such that xn → x. We show that Txn →
Tx. To show this, let {Txnk

} be a subsequence of {Txn}. Since (xn, xn+1) ∈
E(G) and G is transitive, we obtain (xnk

, xnk+1
) ∈ E(G). Since xnk

→ x and
(xnk

, xnk+1
) ∈ E(G), by the Property G, there is a subsequence {xn′

k
} of {xnk

}
such that (xn′

k
, x) ∈ E(G) for all k ∈ N. Since T is G-asymptotically nonexpansive

mapping and (xn′
k
, x) ∈ E(G), we obtain

||Txn′
k
− Tx|| ≤ k1||xn′

k
− x|| → 0

as k → ∞. Thus Txn′
k
→ Tx. By the double extract subsequence principle, we

include that Txn → Tx. Then T is G-continuous.

Lemma 3.3. Let X be a uniformly convex Banach space and (x0, z0), (z0, x0) ∈ E(G)
for arbitrary x1 ∈ C and z0 ∈ F. Then
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(i) lim
n→∞

||xn − z0|| exists.

(ii) If 0 < lim inf
n→∞

αn ≤ lim sup
n→∞

αn < 1, then lim
n→∞

||Tn1 yn − yn|| = 0.

(iii) If 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1, then lim
n→∞

||Tn2 zn − zn|| = 0.

(iv) If 0 < lim inf
n→∞

γn ≤ lim sup
n→∞

γn < 1, then lim
n→∞

||Tn3 xn − xn|| = 0.

Proof. Let z0 ∈ F. By Proposition 3.1, (xn, z0), (yn, z0) and (zn, z0) ∈ E(G).
Choose a number r > 0 such that C ⊆ Br and C−C ⊆ Br. By Lemma 2.12, there
exists a continuous, strictly increasing and convex function g : [0,∞)→ [0,∞),
g(0) = 0 such that

||λx+ (1− λ)y||2 ≤ λ||x||2 + (1− λ)||y||2 − w2(λ)g(||x− y||) (3.1)

for all x, y ∈ Br, λ ∈ [0, 1], where w2(λ) = λ(1−λ)2+λ2(1−λ). It follows from (3.1)
and G-asymptotically nonexpansiveness of T3 that

||zn − z0||2 = ||(1− γn)(xn − z0) + γn(Tn3 xn − z0)||2

≤ (1− γn)||xn − z0||2 + γn||Tn3 xn − z0||2 − w2(γn)g(||Tn3 xn − xn||)
≤ (1− γn)||xn − z0||2 + γnk

2
n||xn − z0||2 − w2(γn)g(||Tn3 xn − xn||)

= (1− γn + γnk
2
n)||xn − z0||2 − w2(γn)g(||Tn3 xn − xn||). (3.2)

Again, it follows from (3.1) and G-asymptotically nonexpansiveness of T2 that

||yn − z0||2 = ||(1− βn)(zn − z0) + βn(Tn2 zn − z0)||2

≤ (1− βn)||zn − z0||2 + βn||Tn2 zn − z0||2 − w2(βn)g(||Tn2 zn − zn||)
≤ (1− βn)||zn − z0||2 + βnk

2
n||zn − z0||2 − w2(βn)g(||Tn2 zn − zn||)

= (1− βn + βnk
2
n)||zn − z0||2 − w2(βn)g(||Tn2 zn − zn||) (3.3)

From (3.1), (3.2) and (3.3), we obtain

||xn+1 − z0||2 = ||(1− αn)(yn − z0) + αn(Tn1 yn − z0)||2

≤ (1− αn)||yn − z0||2 + αn||Tn1 yn − z0||2 − w2(αn)g(||Tn1 yn − yn||)
≤ (1− αn)||yn − z0||2 + αnk

2
n||yn − z0||2 − w2(αn)g(||Tn1 yn − yn||)

= (1− αn + αnk
2
n)||yn − z0||2 − w2(αn)g(||Tn1 yn − yn||)

≤ (1− αn + αnk
2
n)((1− βn + βnk

2
n)||zn − z0||2

− w2(βn)g(||Tn2 zn − zn||))− w2(αn)g(||Tn1 yn − yn||)
≤ (1− αn + αnk

2
n)((1− βn + βnk

2
n)((1− γn + γnk

2
n)||xn − z0||2

− w2(γn)g(||Tn3 xn − xn||))− w2(βn)g(||Tn2 zn − zn||))
− w2(αn)g(||Tn1 yn − yn||)
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= (1− αn + αnk
2
n)((1− βn + βnk

2
n)(1− γn + γnk

2
n)||xn − z0||2

− (1− βn + βnk
2
n)w2(γn)g(||Tn3 xn − xn||)

− w2(βn)g(||Tn2 zn − zn||))− w2(αn)g(||Tn1 yn − yn||)
= (1− αn + αnk

2
n)(1− βn + βnk

2
n)(1− γn + γnk

2
n)||xn − z0||2

− (1− αn + αnk
2
n)(1− βn + βnk

2
n)w2(γn)g(||Tn3 xn − xn||)

− (1− αn + αnk
2
n)w2(βn)g(||Tn2 zn − zn||)

− w2(αn)g(||Tn1 yn − yn||)
≤ ||xn − z0||2 + (k2n − 1)(βn + αn + αnβnk

2
n + γn + γnβnk

2
n

+ γnαnk
2
n + αnβnγnk

4
n)||xn − z0||2

− (1− βn + βnk
2
n)w2(γn)g(||Tn3 xn − xn||)

− (1− αn + αnk
2
n)w2(βn)g(||Tn2 zn − zn||)

− w2(αn)g(||Tn1 yn − yn||)

Since {kn} and C are bounded, there exists a constant M > 0 such that

(βn + αn + αnβnk
2
n + γn + γnβnk

2
n + γnαnk

2
n + αnβnγnk

4
n)||xn − z0||2 ≤M

for all n ≥ 1. It follows that

(1− βn + βnk
2
n)w2(γn)g(||Tn3 xn − xn||) ≤ ||xn − z0||2 − ||xn+1 − z0||2

+M(k2n − 1) (3.4)

and

(1− αn + αnk
2
n)w2(βn)g(||Tn2 zn − zn||) ≤ ||xn − z0||2 − ||xn+1 − z0||2

+M(k2n − 1) (3.5)

and

w2(αn)g(||Tn1 yn − yn||) ≤ ||xn − z0||2 − ||xn+1 − z0||2 +M(k2n − 1). (3.6)

(i) From (3.4), we obtain ||xn+1 − z0||2 ≤ ||xn − z0||2 + M(k2n − 1). Since∑∞
n=1(k2n − 1)<∞, it follows from Lemma 2.11 that lim

n→∞
||xn − z0|| exists.

(ii) If 0 < lim inf
n→∞

αn ≤ lim sup
n→∞

αn < 1, there exist some real number δ > 0

and a positive integer n0 such that

w2(αn) = αn(1− αn)2 + α2
n(1− αn) ≥ δ > 0,
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for all n ≥ n0. It follows from (3.6) that for any natural number m ≥ n0,

m∑
n=n0

g(||Tn1 yn − yn||) ≤
m∑

n=n0

w2(αn)g(||Tn1 yn − yn||)

≤ ||xn0
− z0||2 − ||xm+1 − z0||2 +M

m∑
n=n0

(k2n − 1)

≤ ||xn0
− z0||2 −M

m∑
n=n0

(k2n − 1). (3.7)

Since 0 ≤ t2 − 1 ≤ 2t(t − 1) for all t ≥ 1, the assumption
∑∞
n=1(kn − 1) < ∞

implies that
∑∞
n=1(k2n − 1) <∞. Let m→∞ in inequality (3.7). Thus

∞∑
n=n0

g(||Tn1 yn − yn||) <∞,

and therefore lim
n→∞

g(||Tn1 yn − yn||) = 0. Since g is strictly increasing and contin-

uous at 0 with g(0) = 0, it follows that lim
n→∞

||Tn1 yn − yn|| = 0.

(iii) If 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1 and lim inf
n→∞

αn > 0, then by using a

similar method, together with inequality (3.5), it can be shown that lim
n→∞

||Tn2 zn−
zn|| = 0.

(iv) If 0 < lim inf
n→∞

γn ≤ lim sup
n→∞

γn < 1 and lim inf
n→∞

βn > 0, then by using a simi-

lar method, together with inequality (3.4), it can be shown that lim
n→∞

||Tn3 xn − xn|| = 0.

Lemma 3.4. Let X be a uniformly convex Banach space and (x0, z0), (z0, x0) ∈ E(G)
for arbitrary x0 ∈ C and z0 ∈ F. If

(i) lim
n→∞

||Tn1 yn − yn|| = 0,

(ii) lim
n→∞

||Tn2 zn − zn|| = 0,

(iii) lim
n→∞

||Tn3 xn − xn|| = 0,

then lim
n→∞

||Tixn − xn|| = 0 for all i = 1, 2, 3.

Proof. Let z0 ∈ F be such that (x0, z0), (z0, x0) are in E(G). By Proposition 3.1,
we get (xn, zn), (xn, yn) and (xn,xn+1) ∈ E(G). Note that ||zn−xn|| ≤ γn||Tn3 xn−
xn||. By (iii), we obtain

lim
n→∞

||zn − xn|| = 0. (3.8)
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Again note that ||yn − xn|| ≤ ||zn − xn|| + βn||Tn2 zn − zn||. Using (3.8) and (ii),
we obtain

lim
n→∞

||yn − xn|| = 0. (3.9)

Further, note that ||xn+1−xn|| ≤ ||yn−xn||+αn||Tn1 yn−yn||. Using (3.9) and (i),
we get

lim
n→∞

||xn+1 − xn|| = 0. (3.10)

Observe that

||xn+1 − Tn1 xn+1|| ≤ ||xn+1 − xn||+ ||Tn1 xn − Tn1 xn+1||+ ||Tn1 xn − xn||
≤ ||xn+1 − xn||+ kn||xn − xn+1||+ kn||xn − yn||

+ ||Tn1 yn − yn||+ ||yn − xn||
= (1 + kn)||xn+1 − xn||+ (1 + kn)||xn − yn||+ ||Tn1 yn − yn||.

Using (3.9), (3.10) and (i), we obtain

lim
n→∞

||xn+1 − Tn1 xn+1|| = 0.

Thus

||xn+1 − T1xn+1|| ≤ ||xn+1 − Tn+1
1 xn+1||+ ||T1xn+1 − Tn+1

1 xn+1||
≤ ||xn+1 − Tn+1

1 xn+1||+ k1||xn+1 − Tn1 xn+1|| → 0

as n→∞, which implies

lim
n→∞

||T1xn − xn|| = 0.

Note that

||xn+1 − Tn2 xn+1|| ≤ ||xn+1 − xn||+ ||Tn2 xn − Tn2 xn+1||+ ||Tn2 xn − xn||
≤ ||xn+1 − xn||+ kn||xn − xn+1||+ kn||xn − zn||

+ ||Tn2 zn − zn||+ ||zn − xn||
= (1 + kn)||xn+1 − xn||+ (1 + kn)||xn − zn||+ ||Tn2 zn − zn||.

Using (3.8), (3.10) and (ii), we obtain

lim
n→∞

||xn+1 − Tn2 xn+1|| = 0.

Thus

||xn+1 − T2xn+1|| ≤ ||xn+1 − Tn+1
2 xn+1||+ ||T2xn+1 − Tn+1

2 xn+1||
≤ ||xn+1 − Tn+1

2 xn+1||+ k2||xn+1 − Tn2 xn+1|| → 0
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as n→∞, which implies

lim
n→∞

||T2xn − xn|| = 0.

Again note that

||xn+1 − Tn3 xn+1|| ≤ ||xn+1 − xn||+ ||Tn3 xn − Tn3 xn+1||+ ||Tn3 xn − xn||
≤ ||xn+1 − xn||+ kn||xn − xn+1||+ ||Tn3 xn − xn||.

Using (3.10) and (iii), we obtain

lim
n→∞

||xn+1 − Tn3 xn+1|| = 0.

Thus

||xn+1 − T3xn+1|| ≤ ||xn+1 − Tn+1
3 xn+1||+ ||T3xn+1 − Tn+1

3 xn+1||
≤ ||xn+1 − Tn+1

3 xn+1||+ k3||xn+1 − Tn3 xn+1|| → 0

as n→∞, which implies

lim
n→∞

||T3xn − xn|| = 0.

Theorem 3.5. Let X be a uniformly convex Banach space satisfying the Opial’s
condition and let C be a nonempty closed and convex subset of X. Let T1, T2
and T3 be three G-asymptotically nonexpansive mappings on C with the nonempty
common fixed point set F = ∩3i=1F (Ti). Let {αn}, {βn} and {γn} be sequences in
[0, 1] satisfying

(i) 0 < lim inf
n→∞

αn ≤ lim sup
n→∞

αn < 1,

(ii) 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1, and

(iii) 0 < lim inf
n→∞

γn ≤ lim sup
n→∞

γn < 1.

Assume that C has the Property G. Let x0 ∈ C be fixed so that (x0, z0) and (z0, x0)
are in E(G) for some z0 ∈ F. If {xn} is a sequence defined by recursion (1.1),
then {xn} converges weakly to a common fixed point of T1, T2 and T3.

Proof. Let z0 ∈ F be such that (x0, z0), (z0, x0) ∈ E(G). It follows from Lemma
3.3 (i) that lim

n→∞
||xn − z0|| exists. So {xn} is bounded, hence it has a weakly

convergent subsequence. We prove that {xn} has a unique weak subsequential
limit in F. For, let u and v be weak limits of the subsequences {xnk

} and {xmk
}

of {xn}, respectively. By Lemma 3.4, we have lim
n→∞

||T1xn−xn|| = 0 and I −T1 is

G-demiclosed with respect to zero by Lemma 2.13, therefore we obtain T1u = u.
Similarly, T2u = u and T3u = u. Again in the same fashion, we can prove that
v ∈ F. By Lemma 2.14, we have u = v. Thus {xn} converges weakly to a common
fixed point in F.
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Theorem 3.6. Let C be a nonempty closed and convex subset of a uniformly
convex Banach space X. Let T1, T2 and T3 be three G-asymptotically nonexpansive
mappings on C with the nonempty common fixed point set F = ∩3i=1F (Ti). Let
{αn}, {βn} and {γn} be sequences in [0, 1] satisfying

(i) 0 < lim inf
n→∞

αn ≤ lim sup
n→∞

αn < 1,

(ii) 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1, and

(iii) 0 < lim inf
n→∞

γn ≤ lim sup
n→∞

γn < 1.

Assume that C has the Property G and one of T1, T2 and T3 is G-semicompact.
Let x0 ∈ C be fixed so that (x0, z0) and (z0, x0) are in E(G) for some z0 ∈ F. If
{xn} is a sequence defined by recursion (1.1), then {xn} converges strongly to a
common fixed point of T1, T2 and T3.

Proof. We may assume that T1 is G-semicompact. By Lemma 3.3, we obtain {xn}
is bounded. From Lemma 3.4, we get

lim
n→∞

||xn − Tixn|| = 0

for all i = 1, 2, 3. Then, there exists a subsequence {xnk
} of {xn} such that xnk

→
z0 as k →∞.Thus

lim
k→∞

||xnk
− Tixnk

|| = 0

for all i = 1, 2, 3. By Proposition 3.2, we obtain T1, T2 and T3 are G-continuous.
It follows that

||z0 − Tiz0|| = lim
k→∞

||xnk
− Tixnk

|| = 0

for all i = 1, 2, 3. This yield z0 ∈ F so that {xnk
} converges strongly to z0 ∈ F.

But again by Lemma 3.4, lim
n→∞

||xn − p|| exists for all p ∈ F therefore {xn} must

itself converge to z0 ∈ F. This completes the proof.

4 Numerical Example

In this section, we give an example of the numerical experiments for supporting
our main theorem. The next definitions give the idea of the comparison of the rate
of convergence between the two iterative methods.

Definition 4.1 ([15]). Let C be a nonempty closed convex subset of a Banach
space X and T : C → C be a mapping. Suppose {xn} and {mn} are two iterations
which converge to a fixed point q of T . Then {xn} is said to converge faster than
{mn} if

||xn − q|| ≤ ||mn − q||

for all n ≥ 1.
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Definition 4.2 ([16]). Suppose {an} is a sequence that converges to a, with an 6= a
for all n. If positive constants λ and α exist with

lim
n→∞

|an+1 − a|
|an − a|α

= λ,

then {an} converges to a of order α, with asymptotic error constant λ. If α = 1
(and λ < 1), the sequence is linearly convergent, and if α = 2, the sequence is
quadratically convergent.

Definition 4.3 ([17]). Let {an} and {bn} be two sequences of positive numbers
that converge to a, b, respectively. Assume there exists

lim
n→∞

|an − a|
|bn − b|

= l.

(i) If l = 0, then it is said that the sequence {an} converges to a faster than the
sequence {bn} to b.

(ii) If 0 < l < ∞, then we say that the sequences {an} and {bn} have the same
rate of convergence.

Definition 4.4 ([18]). Let C be a nonempty closed convex subset of a Banach
space X and T : C → C be a mapping. Suppose {xn} and {mn} are two iterations
which converge to a fixed point q of T . We say that {xn} converges faster than
{mn} to q if

lim
n→∞

||xn − q||
||mn − q||

= 0.

We now give an example which shows numerical experiment for supporting our
main results and comparing the rate of convergence of the modified SP-iteration
and the modified Noor iteration.

Example 4.5. Let X = R and C = [0, 2]. Let G = (V (G), E(G)) be a directed
graph defined by V (G) = C and (x, y) ∈ E(G) if and only if 0.50 < x, y ≤ 1.70.
Define a mapping T1, T2, T3 : C → C by

T1x =
5

8
arcsin(x− 1) + 1

T2x =
1

3
tan(x− 1) + 1

T3x = xln x

for all x ∈ C. Let αn = n+1
5n+3 , βn = n+4

10n+7 and γn = n+2
8n+5 . Choose mn = x0 = 1.4.

Let {xn} be a sequence generated by (1.1) and {mn} be a sequence generated by
the modified Noor iteration. We obtain the following numerical experiments for
common fixed point of T1, T2 and T3 and rate of convergence of {xn} and {mn}
as shown in Table 1 and 2.
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For the first one, we would like to illustrate the rate of convergence of the
modified Noor iteration and the modified SP-iteration.

Table 1

n modified Noor modified SP Rate of convergence

mn xn |mn − 1| |xn − 1| |xn−1|
|mn−1|

1 1.3292 1.1951 0.3292 0.1951 0.5926
2 1.2773 1.1091 0.2773 0.1091 0.3935
3 1.2359 1.0650 0.2359 0.0650 0.2755
4 1.2017 1.0401 0.2017 0.0401 0.1987
5 1.1731 1.0253 0.1731 0.0253 0.1462
· · · · · · · · · · · · · · · · · ·
20 1.0196 1.0001 0.0196 0.0001 0.0030

Figure 1: Comparison between the modified Noor iteration and the modi-
fied SP-iteration.

From Table 1 and Figure 1, we observe that |xn − 1| ≤ |mn − 1| and

lim
n→∞

|xn − 1|
|mn − 1|

= 0,

so the sequence {xn} converges faster than the sequence {mn} generated by the
modified Noor iteration.
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Regarding second one, we would like to demonstrate the numerical errors of
the modified Noor iteration and the modified SP-iteration.

Table 2

n modified Noor modified SP
mn |mn −mn−1| xn |xn − xn−1|

1 1.3292 0.0519 1.1951 0.0860
2 1.2773 0.0414 1.1091 0.0441
3 1.2359 0.0342 1.0650 0.0249
4 1.2017 0.0287 1.0401 0.0148
5 1.1731 0.0242 1.0253 0.0091
· · · · · · · · · · · · · · ·
20 1.0196 0.0026 1.0001 0.0000

We note that x = 1 is a common fixed point of T1, T2 and T3. Also, we see
that both {mn} and {xn} converge to 1 ∈ ∩3i=1F (Ti). For Figure 2, we would like
to show the comparison of the errors between the modified Noor and the modified
SP-iterations.

Figure 2: Comparison of errors of the modified Noor iteration and the
modified SP-iteration
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