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Abstract : In this paper, we introduce a conservative difference method for
solving the Rosenau-KdV equation. The existence of the approximate solution
from the difference scheme is shown. We also prove the stability and convergence
of this scheme. The presented method gives second- and fourth-order accurate
in time and space, respectively. Numerical examples demonstrate the theoretical
results.
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1 Introduction

A nonlinear wave phenomenon is one of the important areas of scientific re-
search. A category of wave phenomena can be commonly expressed by using
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nonlinear partial differential equations. However, while nonlinear terms are im-
plicated, analytical solutions of these equations are barely feasible. Therefore,
numerical solution of these nonlinear partial differential equations is significantly
necessary because only limited types of the equations are solvable by analytical
methods. For example, the mathematical model of water wave attracts attention
for a long time. These models aim to explain from smaller-scale waves such as
ripples on the water surface to larger-scale waves such as a tsunami wave. There
are mathematical models which describe the dynamics of wave such as the KdV
equation, the Rosenau equation, the RLW equation and many others [1–11]. The
KdV equation has been used in very wide applications which can be used to study
wave propagation [1–4]. But the case of wave-wave and wave-wall interactions
cannot be described by the KdV equation. To overcome this shortcoming of the
KdV equation, Rosenau [5, 6] proposed an equation for describing the dynamics
of dense discrete systems. The existence and uniqueness of the solution for the
Rosenau equation were proved by Park [7]. For the further consideration of the
nonlinear wave, the viscous term uxxx needs to be included [10]

ut + ux + uxxx + uxxxxt + uux = 0. (1.1)

This equation is usually called the Rosenau-KdV equation.
The behavior of the solution to the Rosenau-KdV equation with the Cauchy

problem has been well studied for the past years [10, 12–14]. In this paper, we
consider the following problem of the Rosenau-KdV equation with an initial con-
dition

u(x, 0) = u0(x), (xl ≤ x ≤ xr), (1.2)

and the boundary conditions

u(xl, t) = u(xr, t) = 0, ux(xl, t) = ux(xr, t) = 0, (1.3)

uxx(xl, t) = uxx(xr, t) = 0, (0 ≤ t ≤ T ).

The initial-boundary value problem possesses the following conservative properties
[15]:

Q(t) =

∫ xr

xl

u(x, t)dx =

∫ xr

xl

u0(x, t)dx = Q(0),

and
E(t) = ‖u‖2L2

+ ‖uxx‖2L2
= E(0).

It is know that, the solitary wave solution for (1.1) is [10,15]

u(x, t) =

(
−35

24
+

35

312

√
313

)
sech4

[
1

24

√
−26 + 2

√
313

(
x−

(
1

2
+

1

26

√
313

)
t

)]
.

Up to date, there are many numerical studies on numerical method to the initial-
boundary value problem of the Rosenau-KdV equation [11, 16–18]. Finite differ-
ence methods are wildly used in most numerical works to solve the Rosenau-KdV.
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Hu et al. [11] has proposed the second-order conservative finite difference scheme
for the approximate solution. Zheng and Zhou [16] extended to study numerically
on the generalized Rosenau-KdV. A conservative high-order accuracy scheme for
the Rosenau-KdV was developed by mean of the Richardson extrapolation and
Crank-Nicolson method, which was proposed by He et al. [17]. Obviously, the
scheme is an two-level nonlinear implicit scheme which requires heavy algorithm
to solve. To overcome this, we introduce an high-order accuracy linear three-level
difference scheme for the Rosenau KdV by applying the average three-level tech-
nique and the Richardson extrapolation method. For the relevant works on the
Rosenau-KdV, see [19–22] and references therein.

The content of this paper is organized as follows. In the next section, we de-
scribe a conservative implicit finite difference method. In Section 3, we discuss
about solvability. The existence and uniqueness are proven in this section. In Sec-
tion 4, we give complete proofs on convergence and stability of the finite difference
scheme. The numerical results are given in Section 5 to confirm and illustrate our
theoretical analysis. Then, we finish our paper by concluding remarks.

2 Finite Difference Scheme

In this section, we introduce a modified finite difference scheme for the formu-
lation of (1.1)–(1.3). The solution domain Q = {(x, t)| xl ≤ x ≤ xr, 0 ≤ t ≤ T},
is covered by a uniform grid

Qh = {(xi, tn)| xi = xl + ih, tn = nτ, 0 ≤ i ≤M, 0 ≤ n ≤ N},

with spacings h = (xr − xl)/M and τ = T/N . Denote uni ≈ u(xi, tn),

Q̄h = {(xi, tn)| xi = xl + ih, tn = nτ, −2 ≤ i ≤M + 2, 0 ≤ n ≤ N},

and

Z0
h = {un = (uni )| u−2 = u−1 = u0 = uM = uM+1 = uM+2 = 0, −2 ≤ i ≤M +2}.

We use the following notations for simplicity:

ūni =
un+1
i + un−1

i

2
, (uni )t̂ =

un+1
i − un−1

i

2τ
,

(uni )x =
uni+1 − uni

h
, (uni )x̄ =

uni − uni−1

h
,

(uni )x̂ =
uni+1 − uni−1

2h
, (uni )ẍ =

uni+2 − uni−2

4h
,

(un, vn) = h

M−1∑
i=1

uni v
n
i , ‖un‖2 = (un, un), ‖un‖∞ = max

1≤i≤M−1
|uni |.
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The following method is a proposed finite difference scheme to solve problem (1.1)–
(1.3):

(uni )t̂ +
4

3
(ūni )x̂ −

1

3
(ūni )ẍ +

5

3
(uni )xxx̄x̄t −

2

3
(uni )xx̄x̂x̂t +

3

2
(ūni )xx̄x̂ −

1

2
(ūni )xx̄ẍ

+ ϕ(uni , ū
n
i ) = 0, 1 ≤ i ≤M − 1, 1 ≤ n ≤ N − 1, (2.1)

where

ϕ(uni , ū
n
i ) =

4

9
(uni (ūni )x̂ + (uni ū

n
i )x̂)− 1

9
(uni (ūni )ẍ + (uni ū

n
i )ẍ) ,

u0
i = u0(xi), 0 ≤ i ≤M, (2.2)

un ∈ Z0
h, u

n
0 = unJ = 0, (un0 )x̂ = (unJ)x̂ = 0, (2.3)

(un0 )xx̄ = (unJ)xx̄ = 0, 1 ≤ n ≤ N.

To prove that the proposed scheme is conservative, we need following lemma.

Lemma 2.1. For any two mesh functions: v, u ∈ Z0
h, we have

(unx̂ , v
n) = − (un, vnx̂ ) , (unẍ , v

n) = − (un, vnẍ ) ,

(unxx̄x̂x̂, u
n) = ‖uxx̂‖2, (unxxx̄x̄, u

n) = ‖unxx‖
2
.

Theorem 2.2. Suppose that u0 ∈ H2
0 , u ∈ C8,3 then the scheme (2.1)–(2.3) is

conservative

Qn =
h

2

M−1∑
i=1

(
un+1
i + uni

)
+τh

M−1∑
i=1

[
2

9
uni
(
un+1
i

)
x̂
− 1

18
uni
(
un+1
i

)
ẍ

]
= Qn−1 = · · · = Q0, (2.4)

and

En =
(∥∥un+1

∥∥2
+ ‖un‖2

)
+

5

3

(∥∥un+1
xx

∥∥2
+ ‖unxx‖

2
)

− 2

3

(∥∥un+1
xx̂

∥∥2
+ ‖unxx̂‖

2
)

= En−1 = · · · = E0. (2.5)

Proof. By multiplying (2.1) by h , summing up for i form 1 to M − 1 and consid-
ering the boundary condition (2.3) together with Lemma 2.1, we get

h

2

M−1∑
i=1

(
un+1
i − un−1

i

)
+ τh

M−1∑
i=1

[2

9

(
uni
(
un+1
i

)
x̂
− un−1

i (uni )x̂
)

− 1

18

(
uni
(
un+1
i

)
ẍ
− un−1

i (uni )ẍ
) ]

= 0.
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Then, this gives (2.4).
We then take an inner product between (2.1) and 2ūn = un+1 + un. We obtain

1

2τ

(∥∥un+1
∥∥2 −

∥∥un−1
∥∥2
)

+
5

6τ

(∥∥un+1
xx

∥∥2 −
∥∥un−1

xx

∥∥2
)

− 1

3τ

(∥∥un+1
xx̂

∥∥2 −
∥∥un−1

xx̂

∥∥2
)

+
4

3
(ūnx̂ , ū

n)− 1

3
(ūnẍ , ū

n)

+
3

2
(ūnxx̄x̂, ū

n)− 1

2
(ūnxx̄ẍ, ū

n) + (ϕ (un, ūn) , ūn) = 0, (2.6)

by considering the boundary condition (2.3) and Lemma 2.1. According to

(ūnx̂ , ū
n) = 0, (ūnẍ , ū

n) = 0, (ūnxx̄x̂, ū
n) = 0, (ūnxx̄ẍ, ū

n) = 0, (2.7)

and

(ϕ(un, ūn), ūn) (2.8)

=
4h

9

M−1∑
i=1

[(uni (ūni )x̂ + (uni ū
n
i )x̂)] ūni −

h

9

M−1∑
i=1

[uni (ūni )ẍ + (uni ū
n
i )ẍ] ūni

=
2

9

M−1∑
i=1

(
uni u

n+1
i un+1

i+1 − u
n
i u

n+1
i−1 u

n+1
i + uni+1u

n+1
i un+1

i+1 − u
n
i−1u

n+1
i−1 u

n+1
i

)
− 1

72

M−1∑
i=1

(
uni u

n+1
i un+1

i+2 − u
n
i u

n+1
i−2 u

n+1
i + uni+2u

n+1
i un+1

i+2 − u
n
i−2u

n+1
i−2 u

n+1
i

)
=

2

9

M−1∑
i=1

[(
uni u

n+1
i un+1

i+1 − u
n
i−1u

n+1
i−1 u

n+1
i

)
+
(
uni+1u

n+1
i un+1

i+1 − u
n
i u

n+1
i−1 u

n+1
i

)]
− 1

72

M−1∑
i=1

[(
uni u

n+1
i un+1

i+2 − u
n
i−2u

n+1
i−2 u

n+1
i

)
+
(
uni+2u

n+1
i un+1

i+2 − u
n
i u

n+1
i−2 u

n+1
i

)]
= 0,

from (2.6)–(2.8) , we have(∥∥un+1
∥∥2 −

∥∥un−1
∥∥2
)

+
5

3

(∥∥un+1
xx

∥∥2 −
∥∥un−1

xx

∥∥2
)
− 2

3

(∥∥un+1
xx̂

∥∥2 −
∥∥un−1

xx̂

∥∥2
)

= 0.

Finally, this gives (2.5). This completes the proof.

3 Solvability

In this section, we prove the existence and uniqueness of our proposed scheme.
This implies uniquely solvable.

Theorem 3.1. The finite difference scheme (2.1)– (2.3) is uniquely solvable.
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Proof. By using the mathematical induction, we can determine u0 uniquely by
initial condition and then choose a fourth-order method to compute u1. Now,
suppose u0, u1, u2, ..., un be solved uniquely. By considering the equation (2.1) for
un+1, we have

1

2τ
un+1
i +

2

3

(
un+1
i

)
x̂
− 1

6

(
un+1
i

)
ẍ

+
5

6τ

(
un+1
i

)
xxx̄x̄

− 1

3τ

(
un+1
i

)
xx̄x̂x̂

+
3

4

(
un+1
i

)
xx̄x̂
− 1

4

(
un+1
i

)
xx̄ẍ

+
1

2
ϕ(uni , u

n+1
i ) = 0, (3.1)

where

ϕ(uni , u
n+1
i ) =

4

9

(
uni
(
un+1
i

)
x̂

+
(
uni u

n+1
i

)
x̂

)
− 1

9

(
uni
(
un+1
i

)
ẍ

+
(
uni u

n+1
i

)
ẍ

)
.

By taking inner product of (3.1) with un+1, we obtain

1

2τ

∥∥un+1
∥∥2

+
5

6τ

∥∥un+1
xx

∥∥2 − 1

3τ

∥∥un+1
xx̂

∥∥2
+

1

2

(
ϕ(un, un+1), un+1

)
= 0. (3.2)

Indeed,(
ϕ(un, un+1), un+1

)
(3.3)

=
4h

9

M−1∑
i=1

[
uni
(
un+1
i

)
x̂

+
(
uni u

n+1
i

)
x̂

]
un+1
i − h

9

M−1∑
i=1

[
uni
(
un+1
i

)
ẍ

+
(
uni u

n+1
i

)
ẍ

]
un+1
i

=
2

9

M−1∑
i=1

[(
uni u

n+1
i un+1

i+1 − u
n
i−1u

n+1
i−1 u

n+1
i

)
+
(
uni+1u

n+1
i un+1

i+1 − u
n
i u

n+1
i−1 u

n+1
i

)]
− 1

36

M−1∑
i=1

[(
uni u

n+1
i un+1

i+2 − u
n
i−2u

n+1
i−2 u

n+1
i

)
+
(
uni+2u

n+1
i un+1

i+2 − u
n
i u

n+1
i−2 u

n+1
i

)]
= 0.

Then it follows that

∥∥un+1
xx̂

∥∥2
= h

M−1∑
i=1

(
un+1
i

)2
xx̂

=
h

4

M−1∑
i=1

[(
un+1
i

)
xx
−
(
un+1
i

)
xx̄

]2 ≤ ∥∥un+1
xx

∥∥2
. (3.4)

From (3.2) –(3.4) , hence ∥∥un+1
∥∥2

=
∥∥un+1

xx

∥∥2
= 0.

Therefore, (3.1) has the only one solution and (2.1) un+1 is uniquely solvable. This
completes the proof of Theorem 3.1.
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4 Convergence and Stability

In this section, we prove the convergence and stability of the scheme (2.1)–
(2.3). Let eni = vni − uni , where vni and uni are the solutions of (1.1) and (2.1),
respectively. We then obtain the following error equations:

rni = (eni )t̂ +
4

3
(ēni )x̂ −

1

3
(ēni )ẍ +

5

3
(eni )xxx̄x̄t̂ −

2

3
(eni )xx̄x̂x̂t̂

+
3

2
(ēni )xx̄x̂ −

1

2
(ēni )xx̄ẍ +M1 −M2 (4.1)

where

M1 =
4

9
(vni (v̄ni )x̂ + (vni v̄

n
i )x̂)− 4

9
(uni (ūni )x̂ + (uni ū

n
i )x̂) ,

M2 =
1

9
(vni (v̄ni )ẍ + (vni v̄

n
i )ẍ)− 1

9
(uni (ūni )ẍ + (uni ū

n
i )ẍ) ,

and rni denotes the truncation error. By using Taylor expansion, it is easy to see
that rni = O(τ2 + h4) holds as τ, h → 0. The following lemmas are essential for
the proof of convergence and stability of our scheme.

Lemma 4.1. (discrete Sobolev’s inequality [23]). There exist two constants C1

and C2 such that
‖un‖∞ ≤ C1‖un‖+ C2‖unx‖.

Lemma 4.2. (discrete Gronwall’s inequality [23]). Suppose that ω(k) and ρ(k)
are nonnegative function and ρ(k) is nondecreasing. If C > 0 and

ω(k) ≤ ρ(k) + Cτ

k−1∑
l=0

ω(l), ∀k,

then
ω(k) ≤ ρ(k)eCτk, ∀k.

Lemma 4.3. ( [11]). Suppose that u0 ∈ H2
0 [xl, xr], then the solution un of (2.1)–

(2.3) satisfies

‖u‖L2 ≤ C, ‖ux‖L2 ≤ C,
‖u‖L∞ ≤ C, ‖ux‖L∞ ≤ C.

Lemma 4.4. Suppose u0 ∈ H2
0 [xl, xr], then solution un satisfies ‖un‖ ≤ C and

‖unxx‖ ≤ C, which yield ‖un‖∞ ≤ C .

The following theorem shows that our scheme converges to the solution with
convergence rate O(τ2 + h4).

Theorem 4.5. Suppose u0 ∈ H2
0 [xl, xr], then solution un converges to the solution

of problem in the sense of ‖·‖∞ and the rate of convergence is O(τ2 + h4).
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Proof. By taking inner product on both sides of (4.1) with 2ēni = en+1
i + en−1

i , we
get

1

2τ

(∥∥en+1
∥∥2 −

∥∥en−1
∥∥2
)

+
5

6τ

(∥∥en+1
xx

∥∥2 −
∥∥en−1
xx

∥∥2
)

− 1

3τ

(∥∥en+1
xx̂

∥∥2 −
∥∥en−1
xx̂

∥∥2
)

= (rn, 2ēn)− (M1, 2ē
n) + (M2, 2ē

n) . (4.2)

According to the Schwarz inequality, Lemma 2.1, 4.3, and 4.4, we obtain

(M1, 2ē
n) =

8h

9

M−1∑
i=1

[(vni (v̄ni )x̂ − u
n
i (ūni )x̂) + ((vni v̄

n
i )x̂ − (uni ū

n
i )x̂)] ēni (4.3)

=
8h

9

M−1∑
i=1

[(vni (ēni )x̂ + eni (ūni )x̂)] ēni +
8h

9

M−1∑
i=1

(eni v̄ + uni ē
n
i ) (ēni )x̂

≤ C
(
‖ēnx̂‖

2
+ ‖ēn‖2 + ‖en‖2

)
≤ C

(∥∥en+1
x̂

∥∥2
+
∥∥en−1
x̂

∥∥2
+
∥∥en+1

∥∥2
+ ‖en‖2 +

∥∥en−1
∥∥2
)
.

Similarly, it can be easily shown that

(M2, 2ē
n) ≤ C

(∥∥en+1
ẍ

∥∥2
+
∥∥en−1
ẍ

∥∥2
+
∥∥en+1

∥∥2
+ ‖en‖2 +

∥∥en−1
∥∥2
)
. (4.4)

By the Cauchy–Schwarz inequality and a direct calculation, we obtain

‖enẍ‖ ≤ ‖enx̂‖ ≤ ‖enx‖, (4.5)

‖enx‖
2 ≤ 1

2

(
‖en‖2 + ‖enxx‖

2
)
, (4.6)

(rn, 2ēn) ≤ ‖rn‖2 +
1

2

(∥∥en+1
∥∥2

+
∥∥en−1

∥∥2
)
, (4.7)

from (4.2)-(4.7), which yields

1

2

(∥∥en+1
∥∥2 −

∥∥en−1
∥∥2
)

+
5

6

(∥∥en+1
xx

∥∥2 −
∥∥en−1
xx

∥∥2
)
− 1

3

(∥∥en+1
xx̂

∥∥2 −
∥∥en−1
xx̂

∥∥2
)

≤ τ‖rn‖2 + τC
(∥∥en+1

∥∥2
+ ‖en‖2 +

∥∥en−1
∥∥2

+
∥∥en+1
xx

∥∥2
+ ‖enxx‖

2
+
∥∥en−1
xx

∥∥2
)
.

(4.8)

Set

Bn =
1

2

(
‖en‖2 +

∥∥en−1
∥∥2
)

+
5

6

(
‖enxx‖

2
+
∥∥en−1
xx

∥∥2
)
− 1

3

(
‖enxx̂‖

2
+
∥∥en−1
xx̂

∥∥2
)

and

Dn =
1

2

(
‖en‖2 +

∥∥en−1
∥∥2
)

+
1

2

(
‖enxx‖

2
+
∥∥en−1
xx

∥∥2
)
.
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From (3.4), we get

Dn ≤ Bn ≤ 2Dn. (4.9)

From (3.4) and (4.8), a direct computation gives

Bn+1 −Bn ≤ τ‖rn‖2 + 2τC
(
Bn+1 +Bn

)
and

(1− 2τC)
(
Bn+1 −Bn

)
≤ τ‖rn‖2 + 4τCBn.

If τ is sufficiently small which satisfies 1− 2Cτ > 0, then

Bn+1 −Bn ≤ τC‖rn‖2 + τCBn. (4.10)

Summing up (4.10) from 1 to n, we have

Bn ≤ B1 + Cτ

n∑
k=1

∥∥rk∥∥2
+ Cτ

n∑
k=1

Bk. (4.11)

From (4.9) and (4.11), then

Dn ≤ 2D1 + Cτ

n∑
k=1

∥∥rk∥∥2
+ 2Cτ

n∑
k=1

Dk.

Thus we can use a fourth-order method to compute u1, such that

D1 ≤ O(τ2 + h4)
2
,

and

τ

n∑
k=1

∥∥rk∥∥2 ≤ nτ max
0≤l≤n−1

∥∥rl∥∥2 ≤ T ·O(τ2 + h4).

By Lemma 4.2, we obtain Dn ≤ O(τ2 + h4)
2
, that is

‖en‖ ≤ O(τ2 + h4), ‖enxx‖ ≤ O(τ2 + h4).

From (4.6),

‖enx‖ ≤ O(τ2 + h4).

By Lemma 4.1,

‖en‖∞ ≤ O(τ2 + h4).

This completes the proof.

Theorem 4.6. Under the conditions of Theorem 4.5, the solution un of (2.1)-
(2.3) is stable in norm ‖ · ‖∞.



798 Thai J. Math. 17 (2019)/ R. Chousurin et al.

5 Numerical Experiments

In this section, we present numerical experiments on a test problem to confirm
and illustrate the accuracy of our proposed method. We then measure the accuracy
of the method using ‖ · ‖ and ‖ · ‖∞ norm. Let xl = −60, xr = 80, and T = 40,

u0(x) =

(
−35

24
+

35

312

√
313

)
sech4

[
1

24

√
−26 + 2

√
313 (x)

]
.

We make a comparison between the scheme (2.1) and the scheme proposed in [11].
The results on this experiment in term of errors at the time t = 10 and t = 40 are
reported in Tables 1 and 2. It is clear that the result obtained by the scheme (2.1)
are more accurate then the result obtained by the scheme of [11]. As shown in
Tables 3 and 4, on one particular choice of the parameters, the estimated rate is
close to the theoretically predicted fourth-order rate of convergence. We can also
say that when we use smaller time and space steps, numerical values are almost
the same as the exact values. In Table 5, it results from the present method and
the values of Qn and En at any time t ∈ [0, 40] coincide with the theory.

Absolute error distributions for the two methods with τ = h = 0.5 are drawn
at t = 10 and t = 40 in Figs. 1 and 2, respectively. It is can be easily observed
that maximum error is taken place around the peak amplitude of the solitary wave.
Figure 3 illustrates the numerical solutions of solitary waves computed by scheme
(2.1) with τ = 0.25 and h = 0.5 at t = 0, 20, 40, which also demonstrates the
accuracy of the scheme.

Table 1: Comparison of errors ‖e‖ between proposed scheme and Hu et
al. [11].

τ = 0.5, h = 0.5

τ, h τ
4
, h
2

τ
16
, h
4

t = 10 Present 2.8557068E − 02 1.8476735E − 03 1.1589057E − 04
Hu et al. [11] 3.9304493E − 02 4.7247751E − 03 8.4099091E − 04

t = 40 Present 9.1929440E − 02 6.0190039E − 03 3.7762026E − 04
Hu et al. [11] 1.2443028E − 01 1.5032040E − 02 2.6543550E − 03

Table 2: Comparison of errors ‖e‖∞ between proposed scheme and Hu et
al. [11].

τ = 0.5, h = 0.5

τ, h τ
4
, h
2

τ
16
, h
4

t = 10 Present 1.0886426E − 02 7.0772788E − 04 4.4416201E − 05
Scheme [11] 1.5015535E − 02 1.8245955E − 03 3.2598499E − 04

t = 40 Present 3.2393080E − 02 2.1309079E − 03 1.3369728E − 04
Scheme [11] 4.3734420E − 02 5.3364748E − 03 9.4467612E − 04
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Table 3: Error and convergence rate at t = 10.

τ = 0.5, h = 0.5

Mesh size τ, h τ
4
, h
2

τ
16
, h
4

τ
64
, h
8

‖e‖ 2.8557068E − 2 1.8476735E − 3 1.1589057E − 4 7.2477155E − 6
Rate 3.95007 3.99487 3.99909
‖e‖∞ 1.0886426E − 2 7.0772788E − 4 4.4416201E − 5 2.7785746E − 6
Rate 3.94319 3.99404 3.99867

Table 4: Error and convergence rate at t = 40.

τ = 0.5, h = 0.5

Mesh size τ, h τ
4
, h
2

τ
16
, h
4

τ
64
, h
8

‖e‖ 3.239308E − 2 2.130908E − 3 1.336973E − 4 8.359881E − 6
Rate 3.92615 3.99443 3.99934
‖e‖∞ 9.192944E − 2 6.019004E − 4 3.776203E − 5 2.361714E − 5
Rate 3.93293 3.99452 3.99903

Table 5: Two conservative invariants Qn and En at various time t.

τ = 0.5, h = 0.5 τ = 0.125, h = 0.25
Qn En Qn En

t = 0 5.49891446878910 3.96961562713998 5.49818488235170 3.96890044391951
t = 10 5.49892677460539 3.96990909427802 5.49818496400364 3.96892306450770
t = 20 5.49895690079020 3.97031625894044 5.49818525479978 3.96895220660664
t = 30 5.49900172956839 3.97058828753461 5.49818749045364 3.96897182591078
t = 40 5.49879989238951 3.97076212531140 5.49817225144428 3.96898443340805
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Figure 1: Absolute error distribu-
tion at t = 10.
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Figure 2: Absolute error distribu-
tion at t = 40.
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Figure 3: Numerical solutions at different times.
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Figure 4: Numerical solutions at different times.
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Figure 5: Numerical solutions at different times.

6 Conclusion

A conservative finite difference scheme for the Rosenau-KdV equation is intro-
duced and analyzed. The present method gives implicit linear system, which can
be easily implemented. This method is shown second- and fourth-order accurate
in time and space, respectively. The numerical experiments show that the present
method support the analysis of convergence rate.
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