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1 Introduction

Let (X, d) be a metric space. A maping T : X → X is said to be a nonexpansive
mapping if there is k ∈ (0, 1] such that d(Tx, Ty) ≤ kd(x, y) for all x, y ∈ X. If in
the case of k < 1, we call T a contraction. A point x ∈ X is called a fixed point of
T if Tx = x. In this paper, we use the notation F (T ) stand for the set of all fixed
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points of T .
A geodesic joining points x and y in a metric space X is a mapping c from a

closed interval [0, l] ⊂ R toX such that c(0) = x, c(l) = y and d(c(t), c(t′)) = |t−t′|
for all t, t′ ∈ [0, l]. In particular, c is an isometry and d(x, y) = l. The image γ
of c is called a geodesic (or metric) segment joining x and y. When it is unique
this geodesic is denoted by [x, y]. We write αx ⊕ (1 − α)y stand for the point
c(α0 + (1 − α)l) ∈ X. The space X is said to be a (uniquely) geodesic space if
every two points of X are joined by a (unique) geodesic. A geodesic space X is
said to be a CAT(0) space if every geodesic triangle in X is at least as thin as its
comparison triangle in the Euclidean plane, i.e.,

d(a, b) ≤ dR2(a, b), (1.1)

for any a, b ∈ ∆(x, y, z) and a, b ∈ ∆(x, y, z).

The first famous fixed point theorem in a metric space is established by Stefan
Banach [1] in 1922. They investigated the theorem, called Banach contraction
principle, which telling that a self mapping on a complete metric space X has
a unique fixed point. Browder [2] used the Banach’s result to prove the conver-
gence theorem for the implicit iterative in a Hilbert space, called the Browder’s
convergence theorem.

In 2008, Jachymski combined the knowledge of the original fixed point theory
and graph theory. First of all, they introduced a concept of a metric space endowed
with a graph as the following: For any metric space (X, d) and a directed graph
G = (V (G), E(G)), if V (G) = X and E(G) contains all loops, i.e., ∆ = {(x, x) :
x ∈ X} ⊆ E(G), the triple (X, d,G) is called a metric space endowed with a graph.
Let C be a nonempty subset of a metric space endowed with graph (X, d,G).
Suppose T : C → C preserves edges of G and satisfy d(Tx, Ty) ≤ kd(x, y) for any
x, y ∈ X for some k ∈ R+. Then

(1) if k < 1, we call T a G-contraction, and
(2) if k ≤ 1, we call T a G-nonexpansive mapping.

The following theorem, a generalization of Banach contraction principle, has been
presented in [3]:

Theorem 1.1 ([3]). Suppose that a metric space endowed with graph (X, d,G)
have the Property P:

for any {xn}n∈N if xn → x and (xn, xn+1) ∈ E(G) for n ∈ N,
then there is a subsequence {xkn}n∈N with (xkn , x) ∈ E(G) for n ∈ N.

Let T be a G-contraction, and XT = {x ∈ X : (x, T (x)) ∈ E(G)}. Then F (T ) 6= ∅
if and only if XT 6= ∅.

In 2015, Tiammee et al. [4] extened the Browders convergence theorem for
G-nonexpansive mappings in Hilbert spaces endowed with graphs. In the prove of
their theorem, they have to replace the Property P to the stronger one, called the
Property G: for every sequence {xn} in C converging weakly to x ∈ C, there is
a subsequence {xnk

} of {xn} such that (xnk
, x) ∈ E(G) for all k ∈ N.
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Theorem 1.2 ([4]). Let C be a bounded closed convex subset of Hilbert space H
and let G = (V (G), E(G)) be a directed graph such that V (G) = C and E(G) is
convex. Suppose C has Property G. Let T : C → C be G-nonexpansive. Assume
that there exists x0 ∈ C such that (x0, Tx0) ∈ E(G). Define Tn : C → C by

Tnx = (1− αn)Tx+ αnx0

for each x ∈ C and n ∈ N, where {αn} is a sequence in (0, 1) such that αn → 0
as n→∞. Then the following hold:

(i) Tn has a fixed point un ∈ C;
(ii) F (T ) 6= ∅
(iii) if F (T )×F (T ) ⊆ E(G) and Px0 is dominated by {un}, then the sequence

{un} converges strongly to Px0 where P is the metric projection onto F (T ).

Motivating by the above results, in this paper, we will present the Brower
convergence theorem in the framework of CAT(0) spcaes endowed with graph. The
conditions on the set C in our result has been relaxed. The convergence theorems
of the Halpern’s iteration scheme for a family of G-nonexpansive mappings are
also presented.

2 Preliminaries

Let G = (V (G), E(G)) be a directed graph. A set X ⊆ V (G) is called a
dominating set if every v ∈ V (G) \X there exists x ∈ X such that (x, v) ∈ E(G)
and we say that x dominates v or v is dominated by x. Let v ∈ V (G), a set
X ⊆ V (G) is dominated by v if (v, x) ∈ E(G) for any x ∈ X and we say that X
dominates v if (x, v) ∈ E(G) for all x ∈ X. In this paper, we always assume that
E(G) contains all loops. Let G be a directed graph, and E(G) the set of edges of
G. We say E(G) is a convex set if, for any α ∈ [0, 1],

(αx+ (1− α)y, αu+ (1− α)v) ∈ E(G)

for all (x, y), (u, v) ∈ E(G).

LetX be a metric space. The following statements are equivalent for a uniquely
geodesic space X:

(i) X is a CAT(0) space;

(ii) X satisfies the (CN)-inequality: If x, y ∈ X and α ∈ (0, 1), then

d2(z, αx ⊕ (1− α)y) ≤ αd2(z, x) + (1− α)d2(z, y) − α(1− α)d2(x, y),

for all z ∈ X;

(iii) X satisfies the law of cosine: If a = d(x, z), b = d(y, z), c = d(x, y) and ξ
is the Alexandrov angle at z between [x, z] and [y, z], then

c2 ≥ a2 + b2 − 2ab cos ξ.
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Lemma 2.1 ([5]). Let X be a CAT(0) space. Then for each p, q, x, y ∈ X and
α ∈ [0, 1], we have

d(αp⊕ (1− α)q, αx⊕ (1− α)y) ≤ αd(p, x) + (1− α)d(q, y).

For any nonempty subset C of X, let π = πC be the projection mapping from
X to C. It is known that if C is closed and convex, the mapping π is well-defined,
nonexpansive and satisfies

d2(x, y) ≥ d2(x, πx) + d2(πx, y) for all x ∈ X and y ∈ C. (2.1)

In 2011, Dhompongsa et al. [6] introduced the following concepts of convex
combination in CAT(0) spaces. Let v1, v2, . . . , vn ⊂ X and λ1, λ2, . . . , λn ∈ (0, 1)
with

∑n
i=1 λi = 1. Using the result in [7], the partial sum of λ1v1, λ2v2. . . . , λnvn

can be written by:

n⊕
i=1

λivi := (1− λn)

(
λ1

1− λn
v1 ⊕

λ2
1− λn

v2 ⊕ · · · ⊕
λn−1

1− λn
vn−1

)
⊕ λnvn. (2.2)

Let {λn} ⊂ (0, 1) be such that
∑∞
n=1 λn = 1. Let {vn} ⊂ X be bounded and

v0 be an arbitrary point in X. Suppose λ′n =
∑∞
i=n+1 λi and

∑∞
i=n λ

′
i → 0 as

n→∞. Set

sn :=

(
n∑
i=1

λi

)
wn ⊕ λ′nv0, (2.3)

where w1 = v1 and for each n ≥ 2,

wn =
λ1∑n
i=1 λi

v1 ⊕
λ2∑n
i=1 λi

v2 ⊕ · · · ⊕
λn∑n
i=1 λi

vn.

Then sn → x as n → ∞ for some x ∈ X. In [6], they use the element x for
representing the infinite summation of λ1v1, λ2v2 . . . , i.e.,

x =

∞⊕
n=1

λnvn.

By (2.3), d(sn, wn) ≤ λ′nd(wn, v0), it follows that limn→∞ sn = limn→∞ wn. Thus
the limit x is independent of the choice of v0.

The followings are importance properties of the convex combination in CAT(0)
spaces introduced in [6].

Lemma 2.2. If y0 and vn belong to X, d(vn, y0) = d(x, y0) for all n where x =⊕∞
n=1 λnvn, then vn = x for all n.
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Lemma 2.3 ([6], Lemma 3.8). Let C be a nonempty closed convex subset of a
complete CAT(0) space X, let {Tn : n ∈ N} be a family of single-valued nonex-
pansive mappings on C. Suppose

⋂∞
n=1 F (Tn) is nonempty. Define T : C → C

by

Tx =

∞⊕
n=1

λntnx

for all x ∈ C where {λn} ⊂ (0, 1) with
∑∞
n=1 λn = 1 and

∑∞
i=n λ

′
i → 0 as n→∞.

Then T is nonexpansive and F (T ) =
⋂∞
n=1 F (Tn).

The following results are vary useful in the proof of our main results.

Lemma 2.4 ([8]). Let (a1, a2, ...) ∈ l∞ be such that µn(an) ≤ 0 for all Banach
limits µ and lim supn(an+1 − an) ≤ 0. Then lim supn an ≤ 0.

Lemma 2.5 ([9]). Let {sn} be a sequence of nonnegative real numbers, {αn} a
sequence of real numbers in [0, 1] with

∑∞
n=1 αn =∞, {un} a sequence of nonneg-

ative real numbers with
∑∞
n=1 un <∞, and {tn} a sequence of real numbers with

lim supn→∞ tn ≤ 0. Suppose that

sn+1 ≤ (1− αn)sn + αntn + un ∀n ∈ N. (2.4)

Then limn→∞ sn = 0.

Lemma 2.6 ([10]). Let C be a closed convex subset of a complete CAT(0) space
X and let T : C → C be a nonexpansive mapping. Let u ∈ C be fixed. For each
k ∈ (0, 1), the mapping Sk : C → C defined by

Skx = ku⊕ (1− k)Tx for x ∈ C (2.5)

has a unique fixed point xk ∈ C, that is,

xk = Skxk = ku⊕ (1− k)Txk. (2.6)

Then F (T ) 6= ∅ if and only if {xk} given by (2.6) is bounded as k → 0. In this
case, the following statements hold:

(i) {xk} converges to the unique fixed point z0 of T which is nearest to u;
(ii) d2(u, z0) ≤ µnd2(u, xn), for all Banach limits µ and all bounded sequences
{xn} with d(xn, Txn)→ 0.

3 Main Results

3.1 Browder’s Convergence Thorem

Lemma 3.1. Let (X, d,G) be a CAT(0) space endowed with graph. Suppose
T : X → X is a G-nonexpansive mapping. If X has a Property P , then T is
continuous.
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Proof. Let {xn} be a sequence in X converging to some x ∈ X. Let {Txnk
}

be any subsequence of {Txn}. Since xnk
→ x as k → 0, by Property P , there

exists a subsequence {xmk
} such that (xmk

, x) ∈ E(G) for each k ∈ N. Since T is
G-nonexpansive and (xmk

, x) ∈ E(G) we obtain

d(Txmk
, Tx) ≤ d(xmk

, x)→ 0 as k →∞.

Hence Txmk
→ Tx. By the double extract subsequence principle, we conclude

that Txn → Tx. Therefore T is continuous.

In what follows, we will prove the Brower’s convergence theorem for a G-
nonexpansive mapping on a bounded closed and star-shaped subset C of a CAT(0)
space X under the hypothesis that X satisfies the property P . We first present
the definition of a star-shaped set in a CAT(0) space.

Definition 3.2 ([11]). Let X be a CAT(0) space. A subset C is said to be star-
shaped if there exists p ∈ C such that (1−t)p⊕tx ∈ C for any x ∈ C and t ∈ [0, 1].
In this case, C is also called p-star-shaped, where p is the center of the star.

Remark 3.1. The assumption “C is p-star-shape”is weaker than the convexity
of C.

Theorem 3.3. Let (X, d,G) be a CAT(0) space endowed with graph having Prop-
erty P and C be a nonempty subset of X. Suppose T : C → C is a G-nonexpansive
mapping and F (T ) × F (T ) ⊆ E(G). If E(G) is convex, then F (T ) is closed and
convex.

Proof. Suppose F (T ) 6= ∅. Let {xn} be a sequence in F (T ) such that xn → x as
n→∞. By Property P , there is a subsequence {xnk

} of{xn} such that (xnk
, x) ∈

E(G) for all k ∈ N. Since T is G-nonexpansive, we obtain

d(x, Tx) ≤ d(x, xnk
) + d(xnk

, Tx)

= d(x, xnk
) + d(Txnk

, Tx)

≤ d(x, xnk
) + d(xnk

, x)→ 0.

Therefore x = Tx, i.e., x ∈ F (T ). This shows that F (T ) is closed.

Let x, y ∈ F (T ) and λ ∈ [0, 1]. Denote z = λx+ (1− λ)y. By the convexity of
E(G), we obtain

(x, z) = (λx+ (1− λ)x, λx+ (1− λ)y) ∈ E(G).

Similarly, we also have (y, z) ∈ E(G). Finally, we will show by contradiction, that
z ∈ F (T ). Suppose the contrary i.e., z 6= Tz. Using the (CN)-inequality and the
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G-nonexpansiveness of T , we have

d2
(
z ⊕ Tz

2
, x

)
≤ d2(z, x)

2
+
d2(Tz, x)

2
− d2(z, Tz)

4

=
d2(z, x)

2
+
d2(Tz, Tx)

2
− d2(z, Tz)

4

≤ d2(z, x)

2
+
d2(z, x)

2
− d2(z, Tz)

4

= d2(z, x)− d2(z, Tz)

4

< d2(z, x).

Therefore d
(
z⊕Tz

2 , x
)
< d(z, x) and, by the similar argument, we also get d

(
z⊕Tz

2 , y
)

≤ d(z, y). Hence

d(x, y) ≤ d

(
x,
z ⊕ Tz

2

)
+ d

(
y,
z ⊕ Tz

2

)
< d(x, z) + d(y, z)

= d(x, y).

Which lead us a contradiction. Thus F (T ) is convex.

Now, we already to prove our first main result.

Theorem 3.4. Let (X, d,G) be a complete CAT(0) space endowed with graph.
Assume that there exists p ∈ C such that (p, Tp) ∈ E(G). Let C be a bounded closed
p-star-shaped of X which has Property P and E(G) is convex. Let T : C → C be
a G-nonexpansive mapping. Define Tn : C → C by

Tnx = (1− αn)Tx⊕ αnp

for each x ∈ C and n ∈ N, where {αn} is a sequence in (0, 1) such that αn → 0.
Then all of the followings hold:

(i) Tn has a fixed point un ∈ C;

(ii) F (T ) 6= ∅; and

(iii) if F (T ) × F (T ) ⊆ E(G) and (un, uk) ∈ E(G) for all n, k ∈ N, then the
sequence {un} converges strongly to v∗ ∈ F (T ) which is nearest to p.

Proof. We first show that Tn is G-contraction for all n ∈ N. Let n ∈ N and
x, y ∈ C such that (x, y) ∈ E(G). Since T is G-nonexpansive, we obtain Tn is also
nonexpansive. Since T is edge-preserving, (Tx, Ty) ∈ E(G). By the convexity
of E(G), we have (Tnx, Tny) = ((1 − αn)Tx ⊕ αnp, (1 − αn)Ty ⊕ αnp) ∈ E(G).
Hence Tn is G-contraction. For each sequence {xn} in C such that xn → x
and (xn, xn+1) ∈ E(G), by Property P , there is a subseqence {xnk

} such that
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(xnk
, x) ∈ E(G) for k ∈ N. Since E(G) is convex and (p, p) ∈ E(G), so (p, Tnp) =

((1 − αn)p ⊕ αnp, (1 − αn)Tp ⊕ αnp) ∈ E(G). Then Tn has a fixed point, i.e.,
un = Tnun, because XTn

= {x ∈ X : (x, Tn(x)) ∈ E(G)} 6= ∅.
To prove (ii) & (iii), let {um} be any subsequence of {un}. Since αn → 0

as n → ∞, there exists a monotone decreasing subsequence {αmk
} of {αm}. Let

{umk
} be a subsequence of {um} corresponds with the coefficient {αmk

}. We
show that {umk

} is a Cauchy sequence. Indeed, let l, k ∈ N and suppose without
loss of generality that l < k. So αml

> αmk
. Consider ∆(p, Tumk

, Tuml
), the

comparison triangle of ∆(p, Tumk
, Tuml

) in R2. For convenience, we take p = (0, 0)
d = uml

−umk
, a = 1−αml

and b = 1−αmk
. We have umk

= bTumk
and uml

=
aTuml

. Consider∥∥∥∥1

a
(umk

+ d)− 1

b
umk

∥∥∥∥2 =

∥∥∥∥(1

a
umk
− 1

b
umk

)
+

1

a
d

∥∥∥∥2
=

∥∥∥∥1

a
uml
− 1

b
umk

∥∥∥∥2
=‖Tuml

− Tumk
‖2 ≤ ‖d‖2.

Thus (
1

a
− 1

b

)2

‖umk
‖2 +

(
1

a

)2

‖d‖2 + 2

〈(
1

a
− 1

b

)
umk

,
1

a
d

〉
≤ ‖d‖2.

Therefore (
1

a
− 1

b

)2

‖umk
‖2 +

(
1

a
− 1

)2

‖d‖2 ≤ 2

a

(
1

b
− 1

a

)
〈umk

, d〉.

This means 〈umk
, d〉 ≥ 0. Since uml

= umk
+ d, we have

‖uml
‖2 = 〈umk

+ d, umk
+ d〉

= ‖umk
‖2 + ‖d‖2 + 2〈umk

, d〉
≥ ‖umk

‖2 + ‖uml
− umk

‖2 ≥ ‖umk
‖2.

This show that the sequence {‖umk
‖2} is monotone decreasing. By the bounded-

ness of C, we can conclude that ‖umk
‖2 → M , for some M > 0 as k →∞. From

(1.1), we have

d2(umk
, uml

) ≤ ‖umk
− uml

‖2 ≤ ‖uml
‖2 − ‖umk

‖2 → 0

as k, l → ∞. Hence {umk
} is a Cauchy sequence. By the completeness of X, it

converges to some v∗ ∈ C. From the continuity of the metric d, we can say that
d(v∗, T v∗) = limk→∞ αmk

d(p, Tumk
) = 0. Therefore v∗ ∈ F (T ) and (ii) has been

proved.
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Now, let x∗ be an another fixed point of T . Taking uml
= u1 = x∗, then

d(p, x∗) = ‖x∗‖2 ≥ ‖umk
‖2 + ‖x∗ − umk

‖2

≥ ‖umk
‖2 + d2(x∗, umk

)

≥ d2(p, umk
) + d2(x∗, umk

).

By taking limit with k →∞, we have d2(p, x∗) ≥ d2(p, v∗) + d2(v∗, x∗). Hence v∗

is projection on F (T ). By double extract subsequence principle, we can conclude
that the sequence {un} converges to v∗ ∈ F (T ).

3.2 Halpern Iteration Process for G-Nonexpansive
Mappings

In this section, we will prove the strong convergence theorem for a family of
G−nonexpansive mappings in a complete CAT(0) space endowed with graph by
using the Halpern iteration process

Theorem 3.5. Let C be a convex subset of a complete CAT(0) space endowed with
graph (X, d,G). Suppose that G is transitive and E(G) is convex. Let T : C → C
be edge-preserving and {αn} be a sequence in [0, 1]. Let {xn} be a sequence defined
by x1 ∈ C and

xn+1 = αnu⊕ (1− αn)Txn ∀n ≥ 2, (3.1)

where u ∈ C such that (u, Tu) ∈ E(G). If {xn} dominates u, then (xn, xn+1),
(u, xn) and (xn, Txn) are in E(G) for any n ∈ N.

Proof. We prove by induction. Since E(G) is convex, (u, u) and (u, Tu) are
in E(G), we have (u, x1) ∈ E(G). Then (Tu, Tx1) ∈ E(G), since T is edge-
preserving. Because G is transitive, we have (u, Tx1) ∈ E(G). By convexity of
E(G) and (u, Tx1), (Tu, Tx1) ∈ E(G), we get (x1, Tx1) ∈ E(G). By assumption,
(x1, u) ∈ E(G). So, by convexity of E(G), we get (x1, x2) ∈ E(G).

Next, assume that (xk, xk+1), (u, Txk) and (xk, Txk) are in E(G). Then
(Txk, Txk+1) ∈ E(G), since T is edge-preserving. By transitivity of G, we have
(u, Txk+1) ∈ E(G). By convexity of E(G) and (u, Txk+1), (Txk, Txk+1) ∈ E(G),
we get (xk+1, Txk+1) ∈ E(G). Since u is dominated by {xn}, we have (xk+1, u) ∈
E(G). By convexity of E(G), we get (xk+1, xk+2) ∈ E(G).

Therefore, by induction, we can conclude that (xn, xn+1), (u, xn) and (xn, Txn)
are in E(G), for all n ∈ N.

Remark 3.2. The sequence {xn} generated by (3.1) is called the Halpern iteration
process.

Theorem 3.6. Let C be a nonempty convex subset of a complete CAT(0) space
endowed with graph (X, d,G). Suppose G is transitive and E(G) is convex. Let
T : C → C be a G-nonexpansive mapping with nonempty fixed point set F (T ) and
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F (T )× F (T ) ⊆ E(G). Assume that u ∈ C such that (u, Tu) ∈ E(G) and x1 ∈ C
is an arbitrarity chosen and {xn} is iteratively generated by

xn+1 = αnu⊕ (1− αn)Txn ∀n ≥ 2, (3.2)

where {αn} is a sequence in (0, 1) satisfying
(C1) limn→∞ αn = 0;
(C2)

∑∞
n=1 αn =∞;

(C3)
∑∞
n=1 |αn − αn−1| <∞ or limn→∞

αn

αn+1
= 1.

If {xn} is dominated by p for some p ∈ F (T ) and {xn} dominates u, then {xn}
converges strongly to z ∈ F (T ) which is nearest to u.

Proof. We first show that the sequence {xn} is bounded. Let p be any point in
F (T ). Consider

d(xn+1, p) = d(αnu⊕ (1− αn)Txn, p)

≤ αnd(u, p) + (1− αn)d(xn, p)

≤ max{d(u, p), d(xn, p)}.

This implies that {xn} is bounded. By the nonexpansiveness of T and (xn, z) ∈
E(G), we have d(Txn, Tp) ≤ d(xn, p) ≤ max{d(u, p), d(x1, p)}. This shows that
{Txn} is also bounded. Consider the following calculation:

d(xn+1, xn) = d(αnu⊕ (1− αn)Txn, αn−1u⊕ (1− αn−1)Txn−1)

≤ d(αnu⊕ (1− αn)Txn, αnu⊕ (1− αn)Txn−1)

+ d(αnu⊕ (1− αn)Txn−1, αn−1u⊕ (1− αn−1)Txn−1)

≤ (1− αn)d(Txn, Txn−1) + |αn − αn−1|d(u, Txn−1)

≤ (1− αn)d(xn, xn−1) + |αn − αn−1|M,

for some M ≥ 0. By (C2), (C3) and Lemma 2.5, we can conclude that d(xn, xn+1)
→ 0 as n→∞. Consequently, by (C1),

d(xn, Txn) ≤ d(xn, xn+1) + d(xn+1, Txn)

= d(xn, xn+1) + d(αnu⊕ (1− αn)Txn, Txn)

≤ d(xn, xn+1) + αnd(u, Txn)→ 0.

From Lemma 2.6, let z = limk→∞ xk, xk given by (2.6), is the nearest point to u.
Consider

d2(xn+1, z) = d2(αnu⊕ (1− αn)Txn, z)

≤ αnd2(u, z) + (1− αn)d2(Txn, z)− αn(1− αn)d2(u, Txn)

≤ (1− αn)d2(xn, z) + αn(d2(u, z)− (1− αn)d2(u, Txn)). (3.3)

Lemma 2.4 guarantee that

lim sup
n→∞

(d2(u, z)− d2(u, xn)) ≤ 0. (3.4)
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Moreover, by law of cosine, we get that

d2(xn, Txn) ≥ d2(xn, u) + d2(Txn, u)− 2d(xn, u)d(Txn, u)

= (d(xn, u)− d(Txn, u))2 ≥ 0.

Since d2(xn, Txn)→ 0, this implies that d(xn, u)− d(Txn, u)→ 0, and

lim
n→∞

d(u, xn) = lim
n→∞

d(u, Txn) = lim
n→∞

(1− αn)d(u, Txn). (3.5)

From (3.4) and (3.5),

lim sup
n→∞

(d2(u, z)− (1− αn)d2(u, Txn)) =d2(u, z)− lim sup
n→∞

(1− αn)d2(u, Txn)

=d2(u, z)− lim sup
n→∞

d2(u, xn)

= lim sup
n→∞

(d2(u, z)− d2(u, xn)) ≤ 0

Hence, from (3.3) and Lemma 2.5, we get limn→∞ d2(xn, z) = 0. The proof has
been completed.

This following lemma, the extension of Lemma 2.3, will be used for proving
the last main theorem.

Lemma 3.7. Let C be a nonempty closed convex subset of a complete CAT(0)
space endowed with graph (X, d,G), and let {Tn : n ∈ N} be a family of single-
valued G-nonexpansive mappings on C. Suppose that

⋂∞
n=1 F (Tn) is nonempty.

Define T : C → C by

Tx =

∞⊕
n=1

λnTnx

for all x ∈ C, where {λn} ⊂ (0, 1) with
∑∞
n=1 λn = 1 and

∑∞
i=n λ

′
i → 0 as n→∞.

Then T is G-nonexpansive and F (T ) =
⋂∞
n=1 F (Tn).

Proof. Let y0 ∈
⋂∞
n=1 F (Tn) be arbitrary given. Since d(Tn(x), y0) ≤ d(x, y0), for

all n ∈ N, {Tn(x)} is bounded. For each n ∈ N, let wn : C → C given by

wnx =
λ1∑n
i=1 λi

T1x⊕
λ2∑n
i=1 λi

T2x⊕ · · · ⊕
λn∑n
i=1 λi

Tnx. (3.6)

Since w1 = T1, so w1 is G-nonexpansive. Suppose that wk is G-nonexpansive and
let x, y ∈ X be such that (x, y) ∈ E(G). Consider

d(wk+1x,wk+1y) =d

(∑k
i=1 λi∑k+1
i=1 λi

wkx⊕
λk+1∑k+1
i=1 λi

Tk+1x,

∑k
i=1 λi∑k+1
i=1 λi

wky ⊕
λk+1∑k+1
i=1 λi

Tk+1y

)

≤
∑k

i=1 λi∑k+1
i=1 λi

d(wkx,wky) +
λk+1∑k+1
i=1 λi

d(Tk+1x, Tk+1y)

≤d(x, y).
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So wk+1 is nonexpansive. This show that wn is nonexpansive. By the convexity
of E(G), we have

(wnx,wny) =

(∑n−1
i=1 λi∑n
i=1 λi

wn−1x⊕
λn∑n
i=1 λi

Tnx,

∑n−1
i=1 λi∑n
i=1 λi

wn−1y ⊕
λn∑n
i=1 λi

Tny

)
∈ E(G).

Thus wn is G-nonexpansive and T is nonexpansive. If (x, y) ∈ E(G) by convexity
of E(G), we obtain that

(Tx, Ty) =

( ∞⊕
n=1

λnTnx,

∞⊕
n=1

λnTny

)
∈ E(G).

Therefore T is also G-nonexpansive. It is easy to see that
⋂∞
n=1 F (Tn) ⊂ F (T ).

Now, let x0 ∈ F (T ). Since y0 = wny0, we have

d(x0, y0) =d(Tx0, y0) = lim
n→∞

d(snx0, y0)

≤ lim
n→∞

[λ1d(T1x0, y0) + · · ·+ λnd(Tnx0, y0) + λ′nd(y0, y0)]

=

∞∑
n=1

λnd(Tnx0, y0) ≤ d(x0, y0).

Thus d(Tnx0, y0) = d(x0, y0) for all n ∈ N, by Lemma 2.2, Tnx0 = x0 for all
n ∈ N.

Using the result in the above Lemma, we can extent Theorem 3.6 to the family
of G-nonexpansive mappings.

Theorem 3.8. Let C be a nonempty convex subset of a complete CAT(0) space en-
dowed with graph (X, d,G). Suppose G is transitive and E(G) is convex. Let {Tn :
C → C} be a countable family of G-nonexpansive mappings with

⋂∞
n=1 F (Tn). Let

{λn} ⊂ (0, 1) such that
∑∞
n=1 λn = 1 and

∑∞
i=n λ

′
i → 0 as n → 0. Suppose that

u, x1 ∈ C are arbitrary chosen and xn is defined by

xn+1 = αnu⊕ (1− αn)wnxn ∀n ≥ 2, (3.7)

where wn defined by (3.6) and {αn} ∈ (0, 1) satisfying
(C1) limn→∞ αn = 0;
(C2)

∑∞
n=1 αn =∞;

(C3)
∑∞
n=1 |αn − αn−1| <∞ or limn→∞

αn

αn+1
= 1.

If {xn} is dominated by p for some p ∈
⋂∞
n=1 F (Tn) and {xn} dominates u. Then

{xn} converges to z ∈
⋂∞
n=1 F (Tn) which is nearest to u.

Proof. Let {wn} and T be as in the proof of lemma 3.7, so wn is G-nonexpansive
and

⋂∞
n=1 F (wn) = F (T ) =

⋂∞
n=1 F (Tn) and wn(p) = p for all p ∈ F (T ). Then

we follow the proof from Theorem 3.6 by replace wn by Tn. Then the proof is
complete.
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