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1 Introduction

Let C be a nonempty closed convex subset of a real reflexive Banach space E
with the dual space E∗. The norm and the dual pairing between E and E∗ are
denoted by ||.|| and 〈., .〉 respectively.

Definition 1.1. Let f : E → R ∪ {+∞} be a proper, convex and lower semi-
continuous function. The domain of a convex function f : E → R is defined to
be

domf := {x ∈ E : f(x) < +∞}.
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The Fenchel conjugate of f is the function f∗ : E∗ → (−∞,+∞] defined by

f∗(ξ) := sup{〈ξ, x〉 − f(x) : x ∈ E}.

A mapping T : C → C is said to be nonexpansive if

||T (x)− T (y)|| ≤ ||x− y||, ∀x, y ∈ C.

For a mapping T : C → C define

Fix(T ) := {x ∈ C : x = Tx}

to denote the fixed points of T . Let H be a bifunction from C × C into R. The
equilibrium problem for H : C × C → R is to find x ∈ C such that

H(x, y) ≥ 0, ∀y ∈ C. (1.1)

The set of solutions of (1.1) is denoted by EP (H). It is well known that equi-
librium problems and their generalizations have been important tools for solving
problems arising in the fields of linear or nonlinear programming, variational in-
equalities, complementary problems, optimization problems, fixed point problems
and have been widely applied to physics, structural analysis, management science
and economics (see, for example [1–7]). One of the most important and interesting
topics in the theory of equilibria is to develop efficient and implementable algo-
rithms for solving equilibrium problems and their generalizations (see, e.g., [5–8]
and the references therein). Since the equilibrium problems are closely related to
both the fixed point problems and the variational inequalities problems, finding
the common elements of these problems has drawn several people’s attention and
has become one of the most important topics in the past few years (see, e.g., [9–18]
and the references therein). In 1967, Bregman [19] discovered an elegant and effec-
tive technique of using the so-called Bregman distance function Df (see, Section
2, Definition 2.1) in the process of designing and analyzing feasibility and opti-
mization algorithms. This opened a growing area of research in which Bregman’s
technique has been applied in various ways in order to design and analyze not
only iterative algorithms for solving feasibility and optimization problems, but
also algorithms for solving variational inequalities, for approximating equilibria,
for computing fixed points of nonlinear mappings and so on (see, e.g., [20,21]) and
the references therein.

In 2015, Kumama, Witthayaratb, Kumam, Suantaie and Wattanawitoon [22]
introduced the following algorithm:

x1 = x ∈ C,
zn = ResfH(xn),

yn = ∇f∗(βn∇f(xn) + (1− βn)∇f(Tn(zn))),

xn+1 = ∇f∗(αn∇f(xn) + (1− αn)∇f(Tn(yn))),

(1.2)

where Tn, n ∈ N, is a Bregman strongly nonexpansive mapping.
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In 2016, Yekini Shehu [23] studied the approximation of a fixed point of a left
Bregman strongly nonexpansive mapping which is also solution to a finite system
of equilibrium problems in reflexive real Banach spaces:{

yn = ∇f∗(αn∇f(u) + (1− αn)∇f(xn)),

xn+1 = ∇f∗(βn∇f(yn) + (1− βn)∇f(T (yn))).
(1.3)

In this paper, inspired by (1.2) and (1.3) we introduce the following new algo-
rithm for a system of equilibrium problems:

x1 = x ∈ C,
zn = ResfgN ◦Res

f
gN−1

◦ · · · ◦Resfg2 ◦Res
f
g1(xn),

yn = ∇f∗(αn∇f(xn) + (1− αn)∇f(T (zn))),

xn+1 = ∇f∗(βn∇f(x) + γn∇f(zn) + ηn∇f(T (yn))),

(1.4)

where T is a Bregman strongly nonexpansive mapping. We will prove that the
sequence xn converges strongly to a point of Ω := Fix(T ) ∩

⋂N
k=1EP (gk).

The purpose of this paper is to prove a strong convergence theorem for approx-
imating a fixed point of a left Bregman strongly relatively nonexpansive mapping
which is also a solution to a finite system of equilibrium problems in the frame-
work of reflexive real Banach spaces. Our results complement many known recent
results in the literature. Numerical examples are also provided.

2 Preliminaries

Throughout this paper, we denote by N the set of positive integers and by R
the set of real numbers. We write xn ⇀ x to indicate that the sequence {xn}∞n=1

converges weakly to x, and xn → x to indicate that the sequence {xn}∞n=1 con-
verges strongly to x. For any x ∈ int(domf), the right-hand derivative of f at x
in the direction y ∈ E is defined by

f
′
(x, y) := lim

t↘0

f(x+ ty)− f(x)

t
.

The function f is called Gâteaux differentiable at x if limt↘0
f(x+ty)−f(x)

t exists

for all y ∈ E. In this case, f
′
(x, y) coincides with ∇f , the value of the gradient

(∇f) of f at x. The function f is called Gâteaux differentiable if it is Gâteaux
differentiable for any x ∈ int(domf) and f is called Fréchet differentiable at x
if this limit uniformly for all y satisfying ||y|| = 1. The function f is uniformly
Fréchet differentiable on a subset C of E if the limit is attained uniformly for any
x ∈ C and ||y|| = 1. It is known that if f is Gâteaux differentiable (resp. Fréchet
differentiable) on int(domf), then f is continuous and its Gâteaux derivative ∇f
is norm-to-weak* continuous (resp. continuous) on int(domf)(see [24]).

The function f is said to be Legendre if it satisfies the following two conditions:
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(L1) int(domf) 6= ∅ and the subdifferential ∂f is single-valued on its domain.
(L2) int(domf∗) 6= ∅ and the subdifferential ∂f∗ is single-valued on its domain.
The class of Legendre functions in infinite dimensional Banach spaces was

first introduced and studied by Bauschke, Borwein and Combettes in [20]. Their
definition is equivalent to conditions (L1) and (L2) because the space E is assumed
to be reflexive (see [20], Theorems 5.4 and 5.6, page 634). It is well known that
in reflexive spaces, ∇f = (∇f∗)−1 (see [24], page 83). When this fact is combined
with conditions (L1) and (L2), we obtain

ran(∇f) = dom(∇f∗) = int(domf∗) and ran(∇f∗) = dom(∇f) = int(domf).

It is also known that f is Legendre if and only if f∗ is Legendre (see [20],
Corollary 5.5, page 634) and that the functions f and f∗ are Gâteaux differentiable
and strictly convex in the interior of their respective domains. When the Banach
space E is smooth and strictly convex, in particular, in a Hilbert space, the function
( 1
p )||.||p with p ∈ (1,∞) is Legendre (cf. [20], Lemma 6.2, page 639). To see

some examples and to get more information regarding Legendre functions, see, for
instance, [20,25].

Definition 2.1. The bifunction Df : domf × int(domf)→ [0,+∞) defined by

Df (y, x) := f(y)− f(x)− 〈∇f(x), y − x〉 (2.1)

is called the Bregman distance with respect to f (cf. [19, 26]).

The Bregman distance does not satisfy the well-known properties of a metric,
but it does have the following important property which is called the three point
identity: for any x ∈ domf and y, z ∈ int(domf)

Df (x, y) +Df (y, z)−Df (x, z) = 〈∇f(z)−∇f(y), x− y〉. (2.2)

Definition 2.2. Let f : E → (−∞,−∞] be a convex and Gâteaux differentiable
function. The Bregman projection with respect to f on x ∈ int(domf) onto a
nonempty, closed and convex subset C ⊂ int(domf) is defined as the necessarily

unique vector ProjfC (x) ∈ C which satisfies

Df (ProjfC (x), x) = inf{Df (y, x) : y ∈ C}. (2.3)

Remark. In the following we provide two examples for the Bregman projection
ProjfC (x):

1. If E is a Hilbert space and f(x) = 1
2 ||x||

2, then the Bregman projection

ProjfC (x) is reduced to the metric projection of x onto C.
2. If C is a smooth Banach space and f(x) = 1

2 ||x||
2, then the Bregman pro-

jection ProjfC (x) is reduced to the generalized projection ΠC(x), which is
defined by

φ(ΠC(x), x) = min
y∈C

φ(y, x),

where φ(y, x) = ||y||2 − 2〈y, J(x)〉 + ||x||2 and J is the normalized duality
mapping from E → 2E

∗
.
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Definition 2.3. Let f : E → (−∞,+∞] be a convex and Gâteaux differentiable
function. Then

(i) the function f is called totally convex at x if its modulus of total convexity at
x ∈ int(domf), that is, the bifunction νf : int(domf) × [0,+∞) → [0,+∞]
defined by

νf (x, t) := inf{Df (y, x) : y ∈ domf, ||y − x|| = t}

is positive whenever t > 0;

(ii) the function f is called totally convex if it is totally convex at every point
x ∈ int(domf);

(iii) the function f is called totally convex on bounded subsets if νf (B, t) is pos-
itive for any nonempty bounded subset B is the function νf : int(domf) ×
[0,+∞)→ [0,+∞] defined by

νf (B, t) := inf{νf (x, t) : x ∈ B ∩ domf}.

Examples of totally convex functions can be found, for instance, in [27–29]. We
remark in passing that f is totally convex on bounded subsets if and only if f is
uniformly convex on bounded subsets (see [28], Theorem 2.10, page 9).

Definition 2.4. Let C be a nonempty closed convex subset of int(domf) and let
T : C → C be a mapping. A point p in C is said to be an asymptotic fixed point
of T (see [30]) if C contains a sequence {xn}∞n=1 which converges weakly to p such
that limn→∞ ‖xn − T (xn)‖ = 0. The set of asymptotically fixed points of T is

denoted by F̂ ix(T ).

Definition 2.5. A mapping T with a nonempty asymptotic fixed point set is said
to be:

(i) left Bregman strongly nonexpansive with respect to a nonempty F̂ ix(T ) (see
[31]) if

Df (p, T (x)) ≤ Df (p, x), ∀x ∈ C, p ∈ F̂ ix(T ),

and if whenever {xn}∞n=1 ⊂ C is bounded, p ∈ F̂ ix(T ) and

lim
n→∞

(Df (p, xn)−Df (p, T (xn))) = 0,

it follows that limn→∞Df (T (xn), xn) = 0.

According to Martin-Marquez et al. [32], a left Bregman strongly nonex-

pansive mapping T with respect to a nonempty F̂ ix(T ) is called strictly left
Bregman strongly nonexpansive mapping.
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(ii) The mapping T : C → int(domf) is said to be left Bregman firmly nonexpan-
sive (L-BFNE) if for all x, y ∈ C

〈∇f(T (x))−∇f(T (y)), T (x)− T (y)〉 ≤ 〈∇f(x)−∇f(y), T (x)− T (y)〉,

or equivalently,

Df (T (x), T (y)) +Df (T (y), T (x)) +Df (T (x), x) +Df (T (y), y)

≤ Df (T (x), y) +Df (T (y), x).

For more information and examples of L-BFNE operators, see [27,31] (opera-
tors in this class are also called Df -firm and BFNE).

If T is a Bregman firmly nonexpansive mapping and f is a Legendre function
which is bounded, uniformly Fréchet differentiable and totally convex on bounded
subsets of E, then Fix(T ) = F̂ ix(T ) and Fix(T ) is closed and convex (see [33]).
It is known that every Bregman firmly nonexpansive mapping is Bregman strongly
nonexpansive with respect to Fix(T ) = F̂ ix(T ).

Let f : E → R be a Gâteaux differentiable and totally convex function and let
x ∈ E, it is known from [28] that z = ProjfC (x) if and only if

〈∇f(x)−∇f(z), y − z〉 ≤ 0, ∀y ∈ C.

We also know that

Df (y, ProjfC (x)) +Df (ProjfC (x), x) ≤ Df (y, x), ∀x, y ∈ C. (2.4)

Following [34] and [26], we make use of the function Vf : E × E∗ → [0,+∞)
associated with f, which is defined by

Vf (x, x∗) = f(x)− 〈x∗, x〉+ f∗(x∗), ∀x ∈ E, x∗ ∈ E∗.

Then Vf is nonnegative and Vf (x, x∗) = Df (x,∇f∗(x∗)) for all x ∈ E and x∗ ∈ E∗.
Moreover in [35], by the subdifferential inequality,

Vf (x, x∗) + 〈y∗,∇f∗(x∗)− x〉 ≤ Vf (x, x∗ + y∗), ∀x ∈ E, x∗, y∗ ∈ E∗.

In addition, if f : E → (−∞,+∞] is a proper lower semi-continuous function,
then f∗ : E∗ → (−∞,+∞] is a proper weak∗ lower semi-continuous and convex
function (see [36]). Hence Vf is convex in the second variable. Thus, for all z ∈ E,

Df

(
z,∇f∗

( N∑
i=1

ti∇f(xi)

))
≤

N∑
i=1

tiDf (z, xi),

where {xi}Ni=1 ⊂ E and {ti}Ni=1 ⊂ (0, 1) with
∑N
i=1 ti = 1.

Definition 2.6. ([29,37]) A function f : E → (−∞,+∞) is called:

(i) cofinite if domf∗ = E∗;
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(ii) coercive if lim||x||→+∞
(f(x)

||x||
)

= 0;

(iii) sequentially consistent if for any two sequences {xn}∞n=1 and {yn}∞n=1 in E
such that {xn}∞n=1 is bounded,

lim
n→∞

Df (yn, xn) = 0⇒ lim
n→∞

‖yn − xn‖ = 0.

Lemma 2.1. ([37]) Let f : E → R be a Gâteaux differentiable and totally con-
vex function. If x0 ∈ E and the sequence {Df (xn, x0)}∞n=1 is bounded, then the
sequence {xn}∞n=1 is also bounded.

Lemma 2.2. ([29]) A function f is totally convex on bounded subsets if and only
if it is sequentially consistent.

For solving the equilibrium problem, we shall make the following assumptions
on the bifunction g : C × C → R:

(C1) g(x, x) = 0 for all x ∈ C,

(C2) g is monotone, that is

g(x, y) + g(y, x) ≤ 0, ∀x, y ∈ C,

(C3) g is upper-hemicontinuous, that is

lim sup
h→0+

g(hz + (1− h)x, y) ≤ g(x, y), ∀x, y, z ∈ C,

(C4) g(x, 0) is convex and lower semicontinuous for each x ∈ C.

The resolvent of a bifunction g : C×C → R (see [38]) is the operator Resfg : E → 2C

defined by

Resfg (x) = {z ∈ C : g(z, y) + 〈∇f(z)−∇f(x), y − z〉 ≥ 0, ∀y ∈ C}. (2.5)

For any x ∈ E, there exists z ∈ C such that z = Resfg (x); (see [39]).

Lemma 2.3. ([39]) Let f : E → (−∞,+∞) be a coercive Legendre function. Let
C be a closed and convex subset of E. If the bifunction g : C × C → R satisfies the
conditions (C1)− (C4), then we have

1. Resfg is single-valued;

2. Resfg is a Bregman firmly nonexpansive mapping;

3. Fix(Resfg ) = EP (g);

4. EP (g) is a closed and convex subset of C;

5. for all x ∈ E and q ∈ Fix(Resfg ),

Df (q,Resfg (x)) +Df (Resfg (x), x) ≤ Df (q, x).
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Lemma 2.4. ([40]) If f : E → R is uniformly Fréchet differentiable and bounded
on bounded subsets of E, then ∇f is uniformly continuous on bounded subsets of
E.

Lemma 2.5. ([41]) Assume that {an} is a sequence of nonnegative real numbers
such that

an+1 ≤ (1− αn)an + bn, ∀n ≥ 0,

where

1. {αn} ⊆ (0, 1) and
∑∞
n=1 αn =∞;

2. lim supn→∞
bn
an
≤ 0, and

∑∞
n=1 |bn| <∞.

Then limn→∞ an = 0.

Lemma 2.6. ([42]) Let {an} be a sequence of real numbers such that there exists
a subsequence {ni} of {n} such that ani ≤ ani+1

for all i ≥ 0. Then there exists a
nondecreasing sequence {mk} ⊂ N such that mk →∞ and the following properties
are satisfied by all (sufficiently large) numbers k ∈ N:

amk ≤ amk+1 and ak ≤ amk+1.

In fact mk = max{j ≤ k : aj < aj+1}.

3 Main Result

This section is devoted to the main results of this paper.

Theorem 3.1. Let E be a real reflexive Banach space and C be a nonempty, closed
convex subset of E. For each k = 1, 2, · · · , N , let gk be a bifunction from C × C to
R satisfying (C1)− (C4). Let f : E → R be a strongly coercive Legendre function
which is bounded, uniformly Fréchet differentiable and totally convex on bounded
subsets of E and let ∇f∗ be bounded on bounded subsets of E∗ and T be a Bregman
strongly nonexpansive mapping on E such that Fix(T ) = F̂ ix(T ). Assume that T

is uniformly continuous and Ω := Fix(T )∩
⋂N
k=1EP (gk) is nonempty and bounded.

Let {αn}, {βn}, {γn} and {ηn} be sequences in (0, 1) such that βn + γn + ηn =
1, (1−βn)a ≤ ηn for a > 0 and limn→∞ βn = 0,

∑∞
n=1 βn =∞. Suppose {xn}∞n=1

is generated by the following algorithm:
x1 = x ∈ C,
zn = ResfgN ◦Res

f
gN−1

◦ · · · ◦Resfg2 ◦Res
f
g1(xn),

yn = ∇f∗(αn∇f(xn) + (1− αn)∇f(T (zn))),

xn+1 = ∇f∗(βn∇f(xn) + γn∇f(zn) + ηn∇f(T (yn))).

(3.1)

Then the sequence {xn} converges strongly to a point in

Ω := Fix(T ) ∩
N⋂
k=1

EP (gk).
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Proof. Let x∗ ∈ Ω. By taking θfk = Resfgk ◦ Res
f
gk−1

◦ · · · ◦ Resfg2 ◦ Res
f
g1 for

k = 1, 2, · · · , N and θf0 = I, we obtain zn = θfNxn. Using the fact that Resfgk , k =
1, 2, · · · , N , is a strictly left quasi-Bregmen nonexpansive mapping, we obtain from
(3.1) that

Df (x∗, yn) = Df (x∗,∇f∗ (αn∇f(xn) + (1− αn)∇f(T (zn))))

≤ αnDf (x∗, xn) + (1− αn)Df (x∗, T (zn))

≤ αnDf (x∗, xn) + (1− αn)Df (x∗, zn)

≤ αnDf (x∗, xn) + (1− αn)Df (x∗, xn)

= Df (x∗, xn). (3.2)

By (3.1) and (3.2) we obtain

Df (x∗, xn+1) = Df (x∗,∇f∗(βn∇f(xn) + γn∇f(zn) + ηn∇f(T (yn))))

≤ βnDf (x∗, xn) + γnDf (x∗, zn) + ηnDf (x∗, T (yn))

≤ βnDf (x∗, xn) + γnDf (x∗, zn) + ηnDf (x∗, yn)

≤ βnDf (x∗, xn) + γnDf (x∗, xn) + ηnDf (x∗, xn)

≤ βnDf (x∗, xn) + (1− βn)Df (x∗, xn)

= Df (x∗, xn)

...

≤ Df (x∗, x1). (3.3)

Also, by (3.2) and (3.3) we conclude that

Df (x∗, zn+1) = Df (x∗, θfNxn+1)

≤ Df (x∗, xn+1)

≤ Df (x∗,∇f∗(βn∇f(xn) + γn∇f(zn) + ηn∇f(T (yn))))

≤ βnDf (x∗, xn) + γnDf (x∗, zn) + ηnDf (x∗, T (yn))

≤ βnDf (x∗, xn) + γnDf (x∗, zn) + ηnDf (x∗, yn)

≤ βnDf (x∗, xn) + γnDf (x∗, zn) + ηnDf (x∗, xn)

≤ max{Df (x∗, zn), Df (x∗, xn)}
≤ max{Df (x∗, zn), Df (x∗, x1)}
...

≤ max{Df (x∗, z1), Df (x∗, x1)}. (3.4)

Hence, {Df (x∗, zn)}∞n=1 and {Df (x∗, xn)}∞n=1 and {Df (x∗, yn)}∞n=1 are bounded.
Now, we show that the sequence {xn}∞n=1 is bounded too. Since {Df (x∗, xn)}∞n=1

is bounded, there exists M > 0 such that

f(x∗)− 〈∇f(xn), x∗〉+ f∗(∇f(xn)) = Vf (x∗,∇f(xn)) = Df (x∗, xn) ≤M.
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Hence, {∇f(xn)}∞n=1 is contained in the sublevel set levψ≤(M − f(x∗)), where
ψ = f∗−〈., x∗〉. Since f is lower-semicontinuous, f∗ is weak∗ lower-semicontinuous.
Hence, the function ψ is coercive by Moreau-Rockafellar Theorem (see [43], Theo-
rem 7A and [44]). This shows that {∇f(xn)} is bounded. Since f is strongly coer-
cive, f∗ is bounded on bounded subsets (see [45], Lemma 3.6.1 and [20], Theorem
3.3). Hence, ∇f∗ is also bounded on bounded subsets of E∗, (see [29], Proposi-
tion 1.1.11). Since f is a Legendre function, it follows that xn = ∇f∗(∇f(xn)) is
bounded. Therefore {xn}∞n=1 is bounded. Let wn := ∇f∗(βn∇f(xn)+γn∇f(zn)+
ηn∇f(T (yn))), n ≥ 1. Furthermore, by (3.1) and (3.2) we have

Df (x∗, xn+1) = Vf (x∗, βn∇f(xn) + γn∇f(zn) + ηn∇f(T (yn)))

≤ Vf (x∗, βn∇f(xn) + γn∇f(zn) + ηn∇f(T (yn))− βn(∇f(xn)−∇f(x∗)))

− 〈∇f∗(βn∇f(xn) + γn∇f(zn) + ηn∇f(T (yn))− x∗,−βn(∇f(xn)−∇f(x∗))〉
= Vf (x∗, βn∇f(x∗)+γn∇f(zn)+ηn∇f(T (yn))) + βn〈wn−x∗,∇f(xn)−∇f(x∗)〉
= Df (x∗,∇f∗(βn∇f(x∗) + γn∇f(zn) + ηn∇f(T (yn)))

+ βn〈wn − x∗,∇f(xn)−∇f(x∗)〉
≤ βnDf (x∗, x∗)+γnDf (x∗, zn)+ηnDf (x∗, T (yn))+βn〈wn−x∗,∇f(xn)−∇f(x∗)〉
≤ γnDf (x∗, xn) + ηnDf (x∗, yn) + βn〈wn − x∗,∇f(xn)−∇f(x∗)〉
≤ γnDf (x∗, xn) + ηnDf (x∗, xn) + βn〈wn − x∗,∇f(xn)−∇f(x∗)〉
≤ (1− βn)Df (x∗, xn) + βn〈wn − x∗,∇f(xn)−∇f(x∗)〉. (3.5)

The rest of the proof will be divided into two cases:
Case 1. Suppose that there exists n0 ∈ N such that {Df (x∗, xn)}∞n=1 is nonin-
creasing. Then {Df (x∗, xn)}∞n=1 converges and

Df (x∗, xn+1)−Df (x∗, xn)→ 0, n→∞.

Let Sn := ∇f∗( γn
1− βn

∇f(I)+
ηn

1− βn
∇f(T )) for all n > 1. By Propositions 13-15

of [46], we know that Sn is a left Bregman strongly nonexpansive mapping for each
n ≥ 1. Observe that

Df (x∗, xn+1) ≤ βnDf (x∗, x) + (1− βn)Df (x∗, Snxn).

It then follows that

Df (x∗, xn)−Df (x∗, Snxn)

= Df (x∗, xn)−Df (x∗, xn+1) +Df (x∗, xn+1)−Df (x∗, Snxn)

≤ Df (x∗, xn)−Df (x∗, xn+1) + βn(Df (x∗, x)−Df (x∗, Snxn))→ 0, (3.6)
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as n→∞. Therefor limn→∞Df (Snxn, xn) = 0. Furthermore,

Df (x∗, Snxn) ≤ ηn
1− βn

Df (x∗, T (yn)) +
γn

1− βn
Df (x∗, xn)

=
ηn

1− βn
Df (x∗, T (yn)) + (1− ηn

1− βn
)Df (x∗, xn)

=
ηn

1− βn
(Df (x∗, T (yn))−Df (x∗, xn)) +Df (x∗, xn).

Thus

ηn
1− βn

(Df (x∗, xn)−Df (x∗, T (yn)) ≤ Df (x∗, xn)−Df (x∗, Snxn)→ 0,

as n→∞. Thus,
lim
n→∞

Df (x∗, xn)−Df (x∗, T (yn)) = 0.

Therefore
lim
n→∞

Df (T (yn), xn) = 0.

By Lemma 2.2, we now conclude that

lim
n→∞

‖ T (yn)− xn ‖= 0. (3.7)

From (3.1), Lemma 2.3 and (2.4), we have

lim
n→∞

Df (xn, zn) = lim
n→∞

Df (xn, θ
f
Nxn)

≤ lim
n→∞

[Df (x∗, θfNxn)−Df (x∗, xn)]

≤ lim
n→∞

[Df (x∗, xn)−Df (x∗, xn)] = 0.

By Lemma 2.2, we also have

lim
n→∞

‖ xn − zn ‖= 0. (3.8)

Since f is uniformly Fréchet differentiable on bounded subsets of E, and by Lemma
2.4, ∇f is norm-to-norm uniformly continuous on bounded subsets of E, we have

lim
n→∞

‖ ∇f(xn)−∇f(zn) ‖∗= 0. (3.9)

Since f is uniformly Fréchet differentiable, it is also uniformly continuous, so that

lim
n→∞

‖ f(xn)− f(zn) ‖∗= 0. (3.10)

By the definition of Bregman distance we obtain

Df (x∗, xn)−Df (x∗, zn)

= f(x∗)− f(xn)− 〈∇f(xn), x∗ − xn〉 − f(x∗) + f(zn) + 〈∇f(zn), x∗ − zn〉
= f(zn)− f(xn) + 〈∇f(zn), x∗ − zn〉 − 〈∇f(xn), x∗ − xn〉
= f(zn)− f(xn) + 〈∇f(zn), xn − zn〉 − 〈∇f(zn)−∇f(xn), x∗ − xn〉,
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for every x∗ ∈ Ω. From (3.8)-(3.10), we have

lim
n→∞

[Df (x∗, xn)−Df (x∗, zn)] = 0. (3.11)

We now consider the following inequalities

lim
n→∞

Df (zn, yn)

= lim
n→∞

[Df (x∗, yn)−Df (x∗, zn)]

= lim
n→∞

[Df (x∗,∇f∗(αn∇f(xn) + (1− αn)∇f(T (zn)))−Df (x∗, zn)]

≤ lim
n→∞

[αnDf (x∗, xn) + (1− αn)Df (x∗, T (zn))−Df (x∗, zn)]

≤ lim
n→∞

[αnDf (x∗, xn) + (1− αn)Df (x∗, zn)−Df (x∗, zn)]

= lim
n→∞

βn[Df (x∗, xn)−Df (x∗, zn)].

From (3.11), we have

lim
n→∞

Df (zn, yn) = 0. (3.12)

By Lemma 2.2, we also have

lim
n→∞

‖ zn − yn ‖= 0. (3.13)

Now, by the triangle inequality, we have

‖ xn − yn ‖≤‖ xn − zn ‖ + ‖ zn − yn ‖ .

Combining (3.8) with (3.13), we conclude that

lim
n→∞

‖ xn − yn ‖= 0,

and since T is uniformly continuous,

lim
n→∞

‖ T (yn)− T (xn) ‖= 0. (3.14)

By using again the triangle inequality, we get

‖ T (xn)− xn ‖≤‖ T (xn)− T (yn) ‖ + ‖ T (yn)− xn ‖ .

From (3.7) and (3.14), we obtain

lim
n→∞

‖ T (xn)− xn ‖= 0.

Since {xn} is bounded, there exists a subsequence {xnj} of {xn} that converges

weakly to p. Since Fix(T ) = F̂ ix(T ) we have p ∈ Fix(T ).
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Next, we show that p ∈
⋂N
k=1EP (gk). Now, using the fact that Resfgk , k =

1, 2, · · · , N , is a strictly quasi-Bregman nonexpansive mapping, we obtain

Df (x∗, zn) = Df (x∗, θfNxn)

= Df (x∗, ResfgN θ
f
N−1xn)

≤ Df (x∗, θfN−1xn)

≤ · · · ≤ Df (x∗, xn). (3.15)

Since x∗ ∈ EP (gN ) = Fix(ResfgN ), it follows from Lemma 2.3, (3.11) and (3.15)
that

Df (zn, θ
f
N−1xn) = Df (ResfgN θ

f
N−1xn, θ

f
N−1xn)

≤ Df (x∗, θfN−1xn)−Df (x∗, zn)

≤ Df (x∗, xn)−Df (x∗, zn)→ 0, n→∞.

Thus, we obtain

lim
n→∞

Df (θfNxn, θ
f
N−1xn) = lim

n→∞
Df (zn, θ

f
N−1xn) = 0.

From Lemma 2.2, we have

lim
n→∞

‖ θfNxn − θ
f
N−1xn ‖= 0. (3.16)

Since f is uniformly Fréchet differentiable, it follows from Lemma 2.4 and (3.16)
that

lim
n→∞

‖ ∇f(θfNxn)−∇f(θfN−1xn) ‖∗= 0.

Again, since x∗ ∈ EP (gN−1) = Fix(ResfgN−1
), it follows from Lemma 2.3, (3.11)

and (3.15) that

Df (θfN−1xn, θ
f
N−2xn) = Df (ResfgN−1

θfN−2xn, θ
f
N−2xn)

≤ Df (x∗, θfN−2xn)−Df (x∗, θfN−1xn)

≤ Df (x∗, xn)−Df (x∗, zn)→ 0, n→∞.

Again, we obtain
lim
n→∞

Df (θfN−1xn, θ
f
N−2xn) = 0.

From Lemma 2.2, we have

lim
n→∞

‖ θfN−1xn − θ
f
N−2xn ‖= 0, (3.17)

and hence
lim
n→∞

‖ ∇f(θfN−1xn)−∇f(θfN−2xn) ‖∗= 0. (3.18)
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Similarly, we can verify that

lim
n→∞

‖ θfN−2xn − θ
f
N−3xn ‖= · · · = lim

n→∞
‖ θf1xn − xn ‖= 0. (3.19)

Now, using (3.16), (3.17) and (3.19), we conclude that

lim
n→∞

‖ θfkxn − θ
f
k−1xn ‖= 0, k = 1, 2, · · · , N. (3.20)

Since xnj ⇀ p and limn→∞ ‖ xn − zn ‖= 0, from (3.16), (3.17) and (3.19),

θfkxnj ⇀ p, j →∞, for each k = 1, 2, · · · , N. Also, using (3.20), we obtain

lim
j→∞

‖ ∇f(θfkxnj )−∇f(θfk−1xnj ) ‖∗= 0, k = 1, 2, · · · , N. (3.21)

It follows from (2.5) that for each k = 1, 2, · · · , N

gk(θfkxnj , y) + 〈y − θfkxnj ,∇f(θfkxnj )−∇f(θfk−1xnj )〉 ≥ 0, ∀y ∈ C,

and by using (C2) we obtain

〈y − θfkxnj ,∇f(θfkxnj )−∇f(θfk−1xnj )〉 ≥ gk(y, θfkxnj ). (3.22)

By (C4), (3.21), (3.22) and the fact that θfkxnj ⇀ p, we have for each k =
1, 2, · · · , N

gk(y, p) ≤ 0, ∀y ∈ C.
For fixed y ∈ C, let zt := ty+ (1− t)p for all t ∈ (0, 1]. Since C is convex, it follows
that zt ∈ C. This yields that gk(zt, p) ≤ 0. It follows from (C1) and (C4) that

0 = gk(zt, zt) ≤ tgk(zt, y) + (1− t)gk(zt, p) ≤ tgk(zt, y), ∀y ∈ C,

and hence 0 ≤ gk(zt, y). Now, from (C3), we conclude that

gk(p, y) ≥ 0, ∀y ∈ C.

Therefore p ∈ EP (gk), for each k = 1, 2, · · · , N. Thus p ∈
⋂N
k=1EP (gk). Therefore

p ∈ Ω := Fix(T ) ∩
N⋂
k=1

EP (gk).

Since E is a reflexive Banach space and {xn} is bounded, there exists a subsequence
{xnj} of {xn} such that {xnj}⇀ q ∈ C and

lim sup
n→∞

〈∇f(xn)−∇f(p), xn − p〉 = 〈∇f(xn)−∇f(p), q − p〉.

On the other hand, since ‖ xnj − T (xnj ) ‖→ 0 as j → ∞, we have q ∈ F̂ ix(T ) =
Fix(T ). It follows from the definition of the Bregman projection that

lim sup
n→∞

〈∇f(xn)−∇f(p), xn − p〉 = 〈∇f(xn)−∇f(p), q − p〉 ≤ 0. (3.23)
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Now, by Lemma 2.5, (3.5) and (3.23), we conclude that limn→∞Df (p, xn) = 0.
Therefore, by Lemma 2.2, we have xn → p, as n→∞.
Case 2. Suppose that there exists a subsequence {ni} of {n} such that Df (x∗, xni)
< Df (x∗, xni+1

) for all i ∈ N. Then by Lemma 2.6, there exists a nondecreasing
sequence {mk} ⊆ N such that mk →∞ and the following properties are satisfied
by all k ∈ N:

Df (x∗, xmk) ≤ Df (x∗, xmk+1) and Df (x∗, xk) ≤ Df (x∗, xmk+1).

Furthermore, we obtain

Df (x∗, xmk)−Df (x∗, T (xmk))

= Df (x∗, xmk)−Df (x∗, xmk+1) +Df (x∗, xmk+1)−Df (x∗, T (xmk))

≤ Df (x∗, xmk)−Df (x∗, xmk+1) + βmk(Df (x∗, x)−Df (x∗, xmk))→ 0,

as k → ∞. Therefore limn→∞Df (T (xmk), xmk) = 0. By the same arguments as
in Case 1, we obtain that

lim sup
k→∞

〈∇f(xmk)−∇f(p), xmk − p〉 ≤ 0, (3.24)

and

Df (p, xmk+1) ≤ (1− βmk)Df (p, xmk) + βmk〈∇f(xmk)−∇f(p), xmk − p〉. (3.25)

Since Df (p, xmk) ≤ Df (p, xmk+1), we conclude that

βmkDf (p, xmk) ≤ Df (p, xmk)−Df (p, xmk+1) + βmk〈∇f(xmk)−∇f(p), xmk − p〉
≤ βmk〈∇f(xmk)−∇f(p), xmk − p〉,

and since βmk > 0, we get

Df (p, xmk) ≤ 〈∇f(xmk)−∇f(p), xmk − p〉. (3.26)

Eventually, from (3.24) and (3.26), we have Df (p, xmk) → 0, k → ∞, and
from (3.25) and (3.26), we have Df (p, xmk+1) → 0, k → ∞. Since Df (p, xk) ≤
Df (p, xmk+1) for all k ∈ N, we conclude that xk → p, as k → ∞. This completes
the proof.

4 A Numerical Experiment

In the following, we provide a numerical example of a Bregman strongly non-
expansive mapping satisfying the conditions of Theorem 3.1 and some numerical
experiment results to clarify the conclusion of our algorithm (3.1). Let E = R be

equipped with the usual absolute value norm. For C = [− 2

π
, 0] and θ ∈ [0,

π

2
], we

consider the rotation mapping Aθ : R2 −→ R2 defined by

Aθ(x, y) :=

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
x
y

]
.
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For θ =
π

2
, we get

g1(x, y) = g2(x, y) = · · · = gN (x, y) = Aπ
2

(x, y).

It is easy to see that gk for each k = 1, · · · , N satisfies the conditions (C1)− (C4)
and 0 ∈ EP (gk), since Aπ

2
(0, y) = −y ≥ 0 for all y ∈ C. Let f(x) = ||x||2 then

∇f(x) = 2x and ∇f∗(x) =
1

2
x and the Bregman projection P fC reduces to the

metric projection PC from R into C. Now, let T : C −→ C be defined by

T (x) =

0, x = 0,

x| sin(
1

x
)|, x ∈ [− 2

π
, 0).

Clearly, Fix(T ) 6= ∅ (see Figure 1). Thus, for each x ∈ [− 2

π
, 0] and p ∈ Fix(T )

we have

Df (p, T (x)) = f(p)− f(T (x))− 〈∇f(T (x)), p− T (x)〉
= ||p||2 − ||T (x)||2 − 〈2T (x), p− T (x)〉
= ||p||2 + ||T (x)||2 − 2〈T (x), p〉

= ||p− T (x)||2 =

∥∥∥∥0− x| sin(
1

x
)|
∥∥∥∥2

≤ ||0− x||2 = ||p− x||2

= Df (p, x).

Moreover, T is uniformly continuous and we have Fix(T ) = F̂ ix(T ). Now, we

put αn =
1

n+ 100
, βn =

1

10n+ 100
+ 0.01, γn =

1

10n+ 100
+ 0.01, ηn = 1 −

2

10n+ 100
−0.02. Let x1 = − 1

2π
∈ [− 2

π
, 0] and fix y = 0, then the algorithm (3.1)

reduces to:

zn = ResfgN ◦Res
f
gN−1

◦ · · · ◦Resfg2 ◦Res
f
g1(xn) = (

2

3
)Nxn,

yn =
1

2
(2αnxn + 2(1− αn)T (zn)) = αnxn + (1− αn)T (zn),

xn+1 =
1

2
(2βnxn + 2γnzn + 2ηnT (yn)) = βnxn + γnzn + ηnT (yn).

Here comes the table of numerical results for the first step x1 = − 1

2π
(see Table

1). Note that xn converges to zero. On the other hand

Fix(T ) ∩
N⋂
k=1

EP (gk) = {0}.

The list plot of our algorithm is shown in Figure 1.
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Numerical Results
Iteration xn (our algorithm) xn (Kumama) xn (Shehu)
1 −0.159155 −0.159155 −0.159155
2 −0.003458 −0.003622 0.000030
3 −0.000108 −0.000995 0.000028
4 −3.79900× 10−6 −0.000630 0.000027
5 −9.41535× 10−8 −0.000158 0.000026
6 −2.75527× 10−9 −9.37770× 10−6 0.000025
7 −1.13377× 10−10 −2.13992× 10−6 0.000024
8 −2.36551× 10−12 −9.97458× 10−7 0.000023
9 −8.12392× 10−14 −1.72109× 10−7 0.000022
10 −2.38078× 10−15 −1.13249× 10−7 0.000022
11 −6.43541× 10−17 −2.71047× 10−8 0.000021
12 −1.67915× 10−18 −1.35376× 10−8 0.000021
13 −3.38989× 10−20 −4.22246× 10−9 0.000020
14 −1.09766× 10−21 −3.82420× 10−10 0.000020
15 −3.48769× 10−23 −2.08948× 10−11 0.000019
16 −8.28869× 10−25 −4.14498× 10−12 0.000019
17 −2.36274× 10−26 −1.93473× 10−12 0.000018
18 −6.83535× 10−28 −1.19831× 10−13 0.000018
19 −9.88195× 10−30 −1.29570× 10−15 0.000018
20 −1.90481× 10−31 −4.09951× 10−17 0.000017
21 −3.31514× 10−33 −8.69304× 10−18 0.000017
22 −1.08697× 10−34 −2.79989× 10−18 0.000017
23 −2.71051× 10−36 −3.12619× 10−19 0.000017
24 −6.51009× 10−38 −1.24651× 10−19 0.000016
25 −1.35089× 10−39 −1.08602× 10−20 0.000016
26 −3.20757× 10−41 −1.44533× 10−21 0.000016
27 −4.49109× 10−43 −5.53612× 10−23 0.000016
28 −7.81907× 10−45 −1.93916× 10−23 0.000015
29 −1.10054× 10−46 −4.56055× 10−24 0.000015
30 −2.44983× 10−48 −1.94134× 10−24 0.000015
31 −7.81145× 10−50 −6.56617× 10−25 0.000015
32 −1.36587× 10−51 −1.37873× 10−25 0.000015
33 −4.40603× 10−53 −7.80601× 10−26 0.000014
34 −1.31616× 10−54 −4.32801× 10−26 0.000014
35 −2.99150× 10−56 −2.45481× 10−26 0.000014
36 −9.88461× 10−58 −7.29338× 10−27 0.000014
37 −3.13348× 10−59 −7.52123× 10−28 0.000014
38 −4.34489× 10−61 −5.11110× 10−29 0.000014
39 −1.14032× 10−62 −2.26530× 10−29 0.000013
40 −3.84576× 10−64 −3.93617× 10−30 0.000013

Table 1: Numerical results corresponding to x1 = − 1

2π
for 40 steps.
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Figure 1: Convergence behaviors of the introduced algorithms
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