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1 Introduction, Definitions and Results

In this paper, by meromorphic function we shall always mean meromorphic
function in the complex plane. We assume that the reader is familiar with the
fundamental results and the standard notations of Nevanlinna value distribution
theory (see [1–3]). Let f be a nonconstant meromorphic function in the complex
plane. By S(r, f), we mean any quantity satisfying S(r, f) = o{T (r, f)} as r →∞,
possibly outside a set of finite logarithmic measure. We say that the meromorphic
function α is a small function of f , if T (r, α) = S(r, f). We denote S(f) by the set
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of meromorphic functions in the complex plane C which are small functions with
respect to f .

Let f be a nonconstant meromorphic function and α ∈ S̃(f) = S(f) ∪ {∞}
and S be a subset of S̃(f). We define

E(S, f) =
⋃
α∈S
{z : f(z)− α = 0, counting multiplicity},

E(S, f) =
⋃
α∈S
{z : f(z)− α = 0, ignoring multiplicity}.

If E(S, f) = E(S, g), then we say that f and g share the set S CM; if E(S, f) =
E(S, g), then we say that f and g share the set S IM. Especially, if S = {α} and
E(S, f) = E(S, g), then we say that f and g share α CM; and we say that f and
g share α IM if E(S, f) = E(S, g).

During the last four decades the uniqueness theory of entire and meromorphic
functions has become a prominent branch of the value distribution theory. A
widely studied subtopic to the uniqueness theory has been to considering shared
value problems relative to a meromorphic function f and its derivative f (k). Many
research works on entire and meromorphic function f and its derivative f (k) have
been done by many mathematicians (see [1, 4–10]). A much investigated problem
in this direction is the following conjecture proposed by Brück [11].

Conjecture 1.1. Let f be a nonconstant entire function. Suppose that

ρ1(f) = lim
r→∞

sup
log log T (r, f)

log r

is not a positive integer or infinity. If f and f ′ share one finite value a CM, then

f ′ − a
f − a

= c,

for some nonzero constant c.

In 1996, Brück [11] proved that the conjecture is true if a = 0 or N(r, 0; f ′) =
S(r, f). In 1998, Gundersen and Yang [6] proved that the conjecture is true if f
is of finite order and fails, in general, for meromorphic functions. In 2005, Al-
Khaladi [12] proved that the conjecture is true for meromorphic function f when
N(r, 0; f ′) = S(r, f). Also, in 2004, Chen and Shon [13] proved the conjecture for
entire function f provided ρ1(f) < 1

2 .

In 2008, Yang and Zhang [14] obtained the following results.
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Theorem 1.2. Let f be a nonconstant meromorphic function and n (≥ 12) be an
integer. Let F and F ′ share 1 CM, where F = fn. Then F = F ′ and f assumes
the form f(z) = ce

1
n z, where c is a nonzero constant.

Theorem 1.3. Let f be a nonconstant entire function and n (≥ 7) be an integer.
Let F and F ′ share 1 CM, where F = fn. Then F = F ′ and f assumes the form
f(z) = ce

1
n z, where c is a nonzero constant.

So it will be quite interesting to investigate the situation if the sharing value
1 is replaced by a small meromorphic function. In 2009, Zhang and Yang [9]
obtained the following two theorems in this direction which improve Theorem 1.2
and Theorem 1.3 respectively.

Theorem 1.4. Let f be a nonconstant meromorphic function, n, k be two positive
integers and α (6≡ 0,∞) be a small meromorphic function of f . If fn − α and
(fn)(k) − α share the value 0 CM and n > k + 1 +

√
k + 1, then fn = (fn)(k),

and f assumes the form f(z) = ce
λ
n z, where c is a nonzero constant and λk = 1.

Theorem 1.5. Let f be a nonconstant entire function, n, k be two positive integers
and α ( 6≡ 0,∞) be a small meromorphic function of f . If fn − α and (fn)(k) − α
share the value 0 CM and n > k+ 1, then fn = (fn)(k), and f assumes the form

f(z) = ce
λ
n z, where c is a nonzero constant and λk = 1.

Regarding Theorems 1.4 and 1.5, the following questions are inevitable.

Question 1.6. Is it possible in any way to relax the nature of sharing the small
function ?

Question 1.7. What happen if one replace the small function α(z) by a set
Sm = {α(z), α(z)ω, . . . , α(z)ωm−1} where ω = cos 2π

m + i sin 2π
m and m is a

positive integer ?

Recently Xu, Yi and Wang [15] answered the above questions and obtained
following two theorems. To state the results we need the following definition of
weighted sharing introduced by Lahiri [7, 16] which measure how close a shared
value is to being shared CM or to being shared IM. The definition is as follows.

Definition 1.8. Let l be a nonnegative integer or infinity. For a ∈ C ∪ {∞} we
denote by El(a; f) the set of all a-points of f where an a-point of multiplicity p is
counted p times if p ≤ l and l+1 times if p > l. If El(a; f) = El(a; g), we say that
f , g share the value a with weight l.

The definition implies that if f , g share a value a with weight l, then z0 is
an a-point of f with multiplicity p(≤ l) if and only if it is an a-point of g with
multiplicity p(≤ l) and z0 is an a-point of f with multiplicity p(> l) if and only
if it is an a-point of g with multiplicity q(> l), where p is not necessarily equal to q.
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We write f , g share (a, l) to mean that f , g share the value a with weight l.
Clearly if f , g share (a, l) then f , g share (a, l1) for any integer l1, 0 ≤ l1 < l. Also
we note that f , g share the value a IM or CM if and only if f , g share (a, 0) or
(a,∞) respectively.

Remark 1.9. Let S be a subset of S̃(f). Then we can obtain the definitions of
El(S, f) and El(S, f) = El(S, g), similarly.

The following are the results of Xu, Yi and Wang.

Theorem 1.10. Let f be a nonconstant meromorphic function, n, k, l, m be posi-
tive integers and α (6≡ 0,∞) be a small meromorphic function of f . If El(Sm, f

n) =
El(Sm, (f

n)(k)) and

n > max

{
k + 1,

l(m+ 1)k + 2γ

2lm
+

√
4γ(γ + kl) + k2l2(m− 1)2

2lm

}
,

where γ = k + l + 2, then fn = (fn)(k), and f assumes the form f(z) = ce
µ
n z,

where c is a nonzero constant and µkm = 1.

Theorem 1.11. Let f be a nonconstant entire function, n, k, l, m be positive
integers and α ( 6≡ 0,∞) be a small meromorphic function of f . If El(Sm, f

n) =
El(Sm, (f

n)(k)) and

n > max
{
k + 1, k +

γ

lm

}
,

where γ = k + l + 2, then fn = (fn)(k), and f assumes the form f(z) = ce
µ
n z,

where c is a nonzero constant and µkm = 1.

Regarding Theorems 1.10 and 1.11, it is natural to ask the following question
which is the motive of the authors.

Question 1.12. What happen if one replace fn by fn(f − a)s in Theorems 1.10
and 1.11 where s is a positive integer and a is a nonzero complex constant ?

In the paper, our aim is to find out the possible answer of the above question.
We prove following results which extend Theorems 1.10 and 1.11. The following
theorems are the main results of the paper.

Theorem 1.13. Let f be a nonconstant meromorphic function, n, k, l, m, s be
positive integers, and α(z) ( 6≡ 0, ∞) be a small meromorphic function of f . If
El(Sm, f

n(f − a)s) = El(Sm, (f
n(f − a)s)(k)) and

s ≥ n > max

{
k + 1,

l(m+ 1)k + 2γ − lms
2lm

+

√
4γ(γ + lk) + l2{(m− 1)k +ms}2

2lm

}
, (1.1)
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where γ = k + l + 2, then

fn+i = t(fn+i)(k),

for some i ∈ {0, 1, 2, . . . , s}, tm = 1, and f assumes the form

f(z) = ce
λ
n+i z,

where a, c are two nonzero constant and λkm = 1.

Theorem 1.14. Let f be a nonconstant entire function, n, k, l, m, s be pos-
itive integers, and α(z) (6≡ 0, ∞) be a small meromorphic function of f . If
El(Sm, f

n(f − a)s) = El(Sm, (f
n(f − a)s)(k)) and

s ≥ n > max
{
k + 1, k +

γ

lm

}
, (1.2)

where γ = k + l + 2, then

fn+i = t(fn+i)(k),

for some i ∈ {0, 1, 2, . . . , s}, tm = 1, and f assumes the form

f(z) = ce
λ
n+i z,

where a, c are two nonzero constant and λkm = 1.

Note 1.15. For higher derivative k ≥ 2, one may observed that f does not always

assume the form f(z) = ce
λ
n+i z, though El(Sm, f

n(f − a)s) = El(Sm, (f
n(f −

a)s)(k)).

We now give the following example for supporting the above observation.

Example 1.16. We assume a nonconstant meromorphic function f in such a way
that fn(f − a)s = c1e

z + c2e
wz + c3e

w2z, where w is a non-real cube root of unity
and ci are nonzero constants. Let n = 8, s = 8, l = 1, m = 2, k = 3, then it is
obvious that El(Sm, f

n(f − a)s) = El(Sm, (f
n(f − a)s)(k)) and

s ≥ n > max

{
k + 1,

l(m+ 1)k + 2γ − lms
2lm

+

√
4γ(γ + lk) + l2{(m− 1)k +ms}2

2lm

}
,

where γ = k + l + 2, but f(z) 6= ce
λ
n+i z, for some i ∈ {0, 1, 2, . . . , s}, where a, c

are two nonzero constants and λkm = 1.

We now explain the following definitions and notations which are used in the
paper.
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Definition 1.17. [7] For a positive integer p and a ∈ C ∪ {∞}, we denote by
N(r, a; f |≤ p) the counting function of those a-points of f (counted with proper
multiplicities) whose multiplicities are not greater than p. By N(r, a; f |≤ p) we
denote the corresponding reduced counting function. Analogously we can define
N(r, a; f |≥ p) and N(r, a; f |≥ p).

Definition 1.18. [7] Let p be a positive integer or infinity. We denote byNp(r, a; f)
the counting function of a-points of f , where an a-point of multiplicity q is counted
q times if q ≤ p and p times if q > p. Then

Np(r, a; f) = N(r, a; f) +N(r, a; f |≥ 2) + ...+N(r, a; f |≥ p).

Definition 1.19. [4,17] Let F and G be two nonconstant meromorphic functions
such that F and G share the value 1 IM and z0 be a zero of F −1 with multiplicity
p and a zero of G− 1 with multiplicity q. We denote by NL(r, 1;F ) the counting
function of those zeros of F − 1 for which p > q. In the same way, we can define
NL(r, 1;G).

2 Lemmas

In this section, we state some lemmas which will be needed in the sequel. We
will use the following notations.

H =

(
F ′′

F ′
− 2F ′

F − 1

)
−
(
G′′

G′
− 2G′

G− 1

)
, (2.1)

V =

(
F ′

F − 1
− F ′

F

)
−
(

G′

G− 1
− G′

G

)
, (2.2)

U =
F ′

F − 1
− G′

G− 1
, (2.3)

where F and G are nonconstant meromorphic functions defined in the complex
plane C.

Lemma 2.1. [18] Let f be a nonconstant meromorphic function, and p, k be two
positive integers. Then

Np

(
r, 0; f (k)

)
≤ T

(
r, f (k)

)
− T (r, f) +Np+k(r, 0; f) + S(r, f), (2.4)

Np

(
r, 0; f (k)

)
≤ kN(r,∞; f) +Np+k(r, 0; f) + S(r, f). (2.5)

Lemma 2.2. [2] Let f be a nonconstant meromorphic function and let an(z) (6≡
0), an−1(z), . . . , a0(z) be meromorphic functions such that T (r, ai(z)) = S(r, f)
for i = 0, 1, 2, . . . , n. Then

T (r, anf
n + an−1f

n−1 + . . . + a0) = nT (r, f) + S(r, f).
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Lemma 2.3. Let f be a nonconstant meromorphic function, and n, k, m, s
be positive integers, and α(z) ( 6≡ 0, ∞) be a small meromorphic function of f .

Suppose that F1 = fn(f−a)s
α , G1 = (fn(f−a)s)(k)

α , where a is a nonzero constant.

If fn(f − a)s and (fn(f − a)s)(k) share Sm IM and n > k+ 1, and if H 6= 0, then

T (r, f) = O(N(r, 0; f) +N(r, a; f) +N(r,∞; f)),

where H is given by (2.1), and F = (F1)m, G = (G1)m.

Proof. From the definitions of F, G, F1, G1 and noting that fn(f − a)s and
(fn(f − a)s)(k) share Sm IM, we see that F, G share the value 1 IM with the
possible exception of the zeros and poles of α(z). By the definition of H we have

N(r,H) ≤ N(r, 0;F |≥ 2) +N(r, 0;G |≥ 2) +N(r,∞;F ) +NL(r, 1;F )

+NL(r, 1;G) +N0(r, 0;F ′) +N0(r, 0;G′) + S(r, f),

where N0(r, 0;F ′) (N0(r, 0;G′)) denotes the counting function of those zeros of
F ′ (G′) which are not the zeros of F (F − 1) (G(G − 1)). Now using Lemma 2.2
and arguing similarly as in Lemma 2.3 [9] we obtain

T (r,G) ≤ N2(r, 0;F ) +N2(r, 0;G) + 3N(r,∞;F ) +NL(r, 1;F )

+2NL(r, 1;G) + S(r, f)

≤ N2(r, 0; (F1)m) +N2(r, 0; (G1)m) + 3N(r,∞; (F1)m)

+NL(r, 1;F ) + 2NL(r, 1;G) + S(r, f)

≤ N2(r, 0; fn(f − a)s) +mN2(r, 0; (fn(f − a)s)(k)) + 3N(r,∞; f)

+NL(r, 1;F ) + 2NL(r, 1;G) + S(r, f)

≤ N2(r, 0; f) +N2(r, a; f) +mT (r, (fn(f − a)s)(k))

−mT (r, fn(f − a)s) +mNk+2(r, 0; fn(f − a)s)

+3N(r,∞; f) +NL(r, 1;F ) + 2NL(r, 1;G) + S(r, f). (2.6)

Since mT (r, (fn(f − a)s)(k)) ≤ T (r, (G1)m) + S(r, f) ≤ T (r,G) + S(r, f), from
(2.6) we obtain

mT (r, fn(f − a)s) ≤ 2N(r, 0; f) + 2N(r, a; f) +mNk+2(r, 0; fn(f − a)s)

+3N(r,∞; f) +NL(r, 1;F ) + 2NL(r, 1;G) + S(r, f)

≤ {m(k + 2) + 2}[N(r, 0; f) +N(r, a; f)] + 3N(r,∞; f)

+NL(r, 1;F ) + 2NL(r, 1;G) + S(r, f). (2.7)

Since n > k + 1, by Lemma 2.1 we obtain

NL(r, 1;F ) ≤ N

(
r,
F

F ′

)
≤ N

(
r,
F ′

F

)
+ S(r, f)

≤ N(r, 0;F ) +N(r,∞;F ) + S(r, f)

≤ N(r, 0;F1) +N(r,∞;F1) + S(r, f)

≤ N(r, 0; f) +N(r, a; f) +N(r,∞; f) + S(r, f). (2.8)
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Also

NL(r, 1;G) ≤ N

(
r,
G

G′

)
≤ N

(
r,
G′

G

)
+ S(r, f)

≤ N(r, 0;G) +N(r,∞;G) + S(r, f)

≤ N(r, 0;G1) +N(r,∞;G1) + S(r, f)

≤ Nk+1(r, 0; fn(f − a)s) + (k + 1)N(r,∞; f) + S(r, f)

≤ (k + 1)[N(r, 0; f) +N(r, a; f) +N(r,∞; f)] + S(r, f). (2.9)

Using (2.8), (2.9) and Lemma 2.2 we obtain from (2.7)

m(n+ s)T (r, f) ≤ {m(k + 2) + 2k + 5}[N(r, 0; f) +N(r, a; f)]

+(2k + 6)N(r,∞; f) + S(r, f).

This shows that

T (r, f) = O(N(r, 0; f) +N(r, a; f) +N(r,∞; f)).

This proves the lemma.

The following lemma can be proved in the line of the proof of Lemma 2.2 [19].

Lemma 2.4. Let f be a nonconstant meromorphic function and n ≥ k + 1. Let
P (z) = asz

s + as−1z
s−1 + . . . + a1z + a0 is a nonzero polynomial of degree

s. If fnP (f) ≡ t(fnP (f))(k) for some t satisfying tm = 1 where m is a positive
integer, then P (z) reduces to a nonzero monomial, namely P (z) = aiz

i 6≡ 0 for
some i ∈ {0, 1, 2, . . . , s}; and fn+i = (fn+i)(k), where f assumes the form

f(z) = ce
λ
n+i z, c is a nonzero constant and λkm = 1.

Lemma 2.5. Let V be given by (2.2), and F, G, F1, G1 be given as in Lemma
2.3. If n, m, k, s are positive integers such that n > k + 1, and V = 0, then

fn(f − a)s = t(fn(f − a)s)(k),

where tm = 1, and f assumes the form f(z) = ce
λ
n+i z, for some i ∈ {0, 1, 2, . . . , s};

a, c are two nonzero constants and λkm = 1.

Proof. Since V = 0, integrating (2.2) we obtain

1− 1

F
= A

(
1− 1

G

)
, (2.10)

where A ( 6= 0) is a constant. Now we discuss the following two cases.

Case (i). Let N(r,∞; f) = S(r, f). If A 6= 1, from (2.10) we get

N

(
r,

1

1−A
;F

)
= N(r,∞;G) = N(r,∞; f) = S(r, f).
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Using Nevanlinna’s second theorem and Lemma 2.2 we obtain

m(n+ s)T (r, f) ≤ T (r, F ) + S(r, f)

≤ N(r,∞;F ) +N(r, 0;F )

+N

(
r,

1

1−A
;F

)
+ S(r, f)

≤ N(r, 0;F1) + S(r, f)

≤ N(r, 0; f) +N(r, a; f) + S(r, f)

≤ 2T (r, f) + S(r, f),

a contradiction. This, however, means that A = 1.

Case (ii). Let N(r,∞; f) 6= S(r, f). Then there exists a z0 (α(z0) 6= 0,∞) such
that 1

f(z0)
= 0, and therefore 1

F (z0)
= 1

G(z0)
= 0. So from (2.10) we obtain A = 1

and F = G, that is fn(f − a)s = t(fn(f − a)s)(k) for some t satisfying tm = 1.
Then the result follows from Lemma 2.4.

Lemma 2.6. Let U be given by (2.3), and F, G, F1, G1 be given as in Lemma
2.3. If n, m, k, s are positive integers such that n > k + 1, and U = 0, then

fn(f − a)s = t(fn(f − a)s)(k),

where tm = 1, and f assumes the form f(z) = ce
λ
n+i z, for some i ∈ {0, 1, 2, . . . , s};

a, c are two nonzero constants and λkm = 1.

Proof. Since U = 0, integrating (2.3) we obtain

F = AG+ 1−A, (2.11)

where A (6= 0) is a constant. From (2.11) and the definitions of F, G, F1, G1 we
see that N(r,∞; f) = S(r, f). We now consider the following two cases.

Case (i). Let A = 1. Then F = G and hence fn(f − a)s = t(fn(f − a)s)(k) for
some t satisfying tm = 1. Then the conclusion follows from Lemma 2.4.

Case (ii). Let A 6= 1. We assume that N(r, 0; f) 6= S(r, f). Then there exists a
z0 (α(z0) 6= 0) such that f(z0) = 0. Since n > k+1, we have F (z0) = G(z0) = 0.
Therefore from (2.11) we get A = 1, a contradiction.

Next we assume that N(r, 0; f) = S(r, f). Then from (2.11) we have

N(r, 1−A;F ) = N(r, 0;G)

≤ Nk+1(r, 0; fn(f − a)s) + kN(r,∞; f) + S(r, f)

≤ (k + 1)[N(r, 0; f) +N(r, a; f)] + S(r, f)

≤ (k + 1)N(r, a; f) + S(r, f).
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Using Nevanlinna’s second theorem and Lemma 2.2 we obtain

m(n+ s)T (r, f) ≤ T (r, F ) + S(r, f)

≤ N(r, 0;F ) +N(r, 1−A;F ) +N(r,∞;F ) + S(r, f)

≤ N(r, 0; f) + (k + 2)N(r, a; f) +N(r,∞; f) + S(r, f)

≤ (k + 2)T (r, f) + S(r, f),

a contradiction since n > k + 1 and s is a positive integer. This proves the
lemma.

Lemma 2.7. Let V be given by (2.2), and F, G, F1, G1 be given by Lemma 2.3,
n, m, k, s be positive integers. If V 6= 0, then

[m(n+ s)− 1]N(r,∞; f) ≤ N(r,∞;V ) + S(r, f).

Proof. From the definitions of F , G and V we see that if z0 (α(z0) 6= 0,∞) is a

pole of f with multiplicity p (≥ 1) then z0 is a zero of F ′

F−1 −
F ′

F with multiplicity

m(n+ s)p− 1 and a zero of G′

G−1 −
G′

G with multiplicity m[(n+ s)p+ k]− 1. Thus,
z0 is a zero of V with multiplicity q ≥ m(n + s) − 1. Since m(r, V ) = S(r, f),
from (2.2) we obtain

[m(n+ s)− 1]N(r,∞; f) ≤ N(r, 0;V ) + S(r, f) ≤ T (r, V ) + S(r, f)

≤ N(r,∞;V ) + S(r, f).

This proves the lemma.

Lemma 2.8. Let U be given by (2.3), and F, G, F1, G1 be given by Lemma 2.3.
If n, m, k, s are positive integers such that s ≥ n > k + 1, and U 6= 0, then

[m(n− k)− 1]N(r, 0; f) + [m(s− k)− 1]N(r, a; f) ≤ N(r,∞;U) + S(r, f),

where a is a nonzero constant.

Proof. From the definitions of F , G and U we see that if z1 (α(z1) 6= 0,∞) is

a zero of f with multiplicity p (≥ 1) then z1 is a zero of F ′

F−1 with multiplicity

mnp− 1 and a zero of G′

G−1 with multiplicity m(np− k)− 1. Thus, z1 is a zero of
U with multiplicity at least m(n− k)− 1.

Let z2 (α(z2) 6= 0,∞) is an a-point of f with multiplicity q (≥ 1). Then z2
is a zero of F ′

F−1 with multiplicity msq − 1 and a zero of G′

G−1 with multiplicity
m(sq− k)− 1. Therefore, z2 is a zero of U with multiplicity at least m(s− k)− 1.
Using the fact that m(r, U) = S(r, f), from (2.3) we obtain

[m(n− k)− 1]N(r, 0; f) + [m(s− k)− 1]N(r, a; f) ≤ N(r, 0;U) + S(r, f)

≤ T (r, U) + S(r, f)

≤ N(r,∞;U) + S(r, f).

This proves the lemma.
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Lemma 2.9. Let H be given by (2.1), and F, G, F1, G1 be given as in Lemma
2.3. If n, m, k, s are positive integers such that n > k + 1, and

N(r,∞; f) = N(r, 0; f) = N(r, a; f) = S(r, f), (2.12)

and H = 0, then

fn(f − a)s = t(fn(f − a)s)(k),

where tm = 1, and f assumes the form f(z) = ce
λ
n+i z, for some i ∈ {0, 1, 2, . . . , s};

a, c are two nonzero constants and λkm = 1.

Proof. Since H = 0, from (2.1), integrating twice we obtain

1

F − 1
=

A

G− 1
+B, (2.13)

where A (6= 0) and B are constants. From (2.13) we have

G =
(B −A)F + (A−B − 1)

BF − (B + 1)
.

We now discuss the following three cases.

Case (i) We assume that B 6= 0, −1. Then from (2.13) we have

N

(
r,
B + 1

B
;F

)
= N(r,∞;G).

Using second main theorem of Nevanlinna, Lemma 2.2 and the assumptions of the
lemma we obtain

m(n+ s)T (r, f) = T (r, F ) + S(r, F )

≤ N(r, 0;F ) +N(r,∞;F ) +N

(
r,
B + 1

B
;F

)
+ S(r, F )

≤ N(r, 0; f) +N(r, a; f) + 2N(r,∞; f) + S(r, f)

≤ S(r, f),

a contradiction.

Case (ii) Assume that B = 0. Then from (2.13) we have

N

(
r,
A− 1

A
;F

)
= N(r, 0;G).

Now we consider the following two subcases.
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Subcase (i) Let A 6= 1. Using second main theorem of Nevanlinna, Lemma 2.2
and the assumptions of the lemma we obtain

m(n+ s)T (r, f) = T (r, F ) + S(r, F )

≤ N(r, 0;F ) +N

(
r,
A− 1

A
;F

)
+N(r,∞;F ) + S(r, F )

≤ N(r, 0;F ) +N(r, 0;G) +N(r,∞;F ) + S(r, F )

≤ N(r, 0; f) +N(r, a; f) +Nk+1(r, 0; fn(f − a)s)

+(k + 1)N(r,∞; f) + S(r, f)

≤ (k + 2)N(r, 0; f) + (k + 2)N(r, a; f)

+(k + 1)N(r,∞; f) + S(r, f)

≤ S(r, f),

a contradiction.

Subcase (ii) Let A = 1. Then we have F = G that is

fn(f − a)s = t(fn(f − a)s)(k),

where tm = 1. Then the conclusion follows from Lemma 2.4.

Case (iii) Let B = −1. Then from (2.13) we have

G =
(A+ 1)F −A

F
.

Arguing similarly as in Case (ii) we obtain FG = 1, that is

fn(f − a)s(fn(f − a)s)(k) = tα2(z)

where tm = 1. Now

2T

(
r,
fn(f − a)s

α

)
= T

(
r,

(fn(f − a)s)2

α2

)
= T

(
r,

tα2

(fn(f − a)s)2

)
+ S(r, f)

= T

(
r,

(fn(f − a)s)(k)

(fn(f − a)s)

)
+ S(r, f)

≤ Nk(r, 0; fn(f − a)s) + kN(r,∞; f) + S(r, f)

≤ k[N(r, 0; f) +N(r, a; f) +N(r,∞; f)] + S(r, f)

≤ S(r, f),

a contradiction. This proves the lemma.
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3 Proof of Theorems

3.1 Proof of Theorem 1.13

Let F, G, F1, G1 be given as in Lemma 2.3. We follow the idea proposed in [9].
If V = 0 or U = 0, we get the conclusion of the theorem from Lemmas 2.5 and
2.6. Now we assume that V 6= 0 and U 6= 0. Since El(1, F ) = El(1, G), from
the definitions of V and U we have

N(r,∞;V ) ≤ N(r, 0;G) +N(r, 1;F |≥ l + 1) +N(r, 1;G |≥ l + 1)

+S(r, f), (3.1)

and

N(r,∞;U) ≤ N(r,∞; f) +N(r, 1;F |≥ l + 1) +N(r, 1;G |≥ l + 1)

+S(r, f). (3.2)

Now

N(r, 1;F |≥ l + 1) ≤ 1

l
N

(
r,∞;

F

F ′

)
≤ 1

l
N

(
r,∞;

F ′

F

)
+ S(r, f)

≤ 1

l
N(r, 0;F ) +

1

l
N(r,∞;F ) + S(r, f)

≤ 1

l

[
N(r, 0; f) +N(r, a; f) +N(r,∞; f)

]
+S(r, f), (3.3)

and

N(r, 1;G |≥ l + 1) ≤ 1

l
N

(
r,∞;

G

G′

)
≤ 1

l
N

(
r,∞;

G′

G

)
+ S(r, f)

≤ 1

l
N(r, 0;G) +

1

l
N(r,∞;G) + S(r, f)

≤ k + 1

l

[
N(r, 0; f) +N(r, a; f) +N(r,∞; f)

]
+S(r, f). (3.4)

From (3.1) - (3.4) we obtain

N(r,∞;V ) ≤ N(r, 0;G) +
k + 2

l

[
N(r, 0; f) +N(r, a; f) +N(r,∞; f)

]
+S(r, f)

≤ kl + γ

l
N(r, 0; f) +

kl + γ

l
N(r, a; f) +

kl + k + 2

l
N(r,∞; f)

+S(r, f), (3.5)

and

N(r,∞;U) ≤ k + 2

l
N(r, 0; f) +

k + 2

l
N(r, a; f) +

γ

l
N(r,∞; f) + S(r, f), (3.6)
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where γ = k + l + 2. From Lemma 2.7 and (3.5) we obtain

[m(n+ s)− 1]N(r,∞; f) ≤ N(r,∞;V ) + S(r, f)

≤ kl + γ

l
N(r, 0; f) +

kl + γ

l
N(r, a; f)

+
kl + k + 2

l
N(r,∞; f) + S(r, f).

From this we obtain

[lm(n+ s)− (kl + γ)]N(r,∞; f) ≤ (kl + γ)[N(r, 0; f) +N(r, a; f)]

+S(r, f). (3.7)

From Lemma 2.8 and (3.6) we obtain

[m(n− k)− 1]N(r, 0; f) + [m(s− k)− 1]N(r, a; f)

≤ N(r,∞;U) + S(r, f)

≤ k + 2

l
N(r, 0; f) +

k + 2

l
N(r, a; f) +

γ

l
N(r,∞; f) + S(r, f).

From this we obtain

[lm(n− k)− γ]N(r, 0; f) ≤ γN(r,∞; f) + [γ − lm(s− k)]N(r, a; f)

+S(r, f). (3.8)

From (3.7) and (3.8) we obtain

[{lm(n+ s)− (kl + γ)}{lm(n− k)− γ} − γ(kl + γ)]N(r,∞; f)

≤ lm(n− s)(kl + γ)N(r, a; f) + S(r, f), (3.9)

and

[{lm(n+ s)− (kl + γ)}{lm(n− k)− γ} − γ(kl + γ)]N(r, 0; f)

≤ lm[γ(n+ s)− lm(n+ s)(s− k) + (s− k)(kl + γ)]N(r, a; f)

+S(r, f). (3.10)

Adding (3.9) and (3.10) we get

[{lm(n+ s)− (kl + γ)}{lm(n− k)− γ} − γ(kl + γ)]{N(r, 0; f) +N(r,∞; f)}
≤ lm[γ(n+ s)− lm(n+ s)(s− k) + (n− k)(kl + γ)]N(r, a; f) + S(r, f).

From this we obtain

[{lm(n+ s)− (kl + γ)}{lm(n− k)− γ} − γ(kl + γ)]

{N(r, 0; f) +N(r,∞; f) +N(r, a; f)} ≤ l2m2(n2 − s2)N(r, a; f) + S(r, f)

≤ S(r, f).
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Since by (1.1)

{lm(n+ s)− (kl + γ)}{lm(n− k)− γ} − γ(kl + γ) > 0

we obtain from above

N(r, 0; f) = N(r,∞; f) = N(r, a; f) = S(r, f). (3.11)

Now we consider the following two cases.

Case 1. Let H 6= 0. Then by Lemma 2.3 and (3.11) we obtain T (r, f) = S(r, f),
a contradiction.

Case 2. Let H = 0. Then from Lemma 2.9, we obtain the conclusion of the
theorem.
This completes the proof of Theorem 1.13.

3.2 Proof of Theorem 1.14

Since f is an entire function, N(r,∞; f) = S(r, f). If U = 0, we can get the
conclusions of the Theorem from Lemma 2.6. If U 6= 0, then from Lemma 2.8 and
(3.11), we obtain

{lm(n− k)− γ}N(r, 0; f) + {lm(s− k)− γ}N(r, a; f) ≤ S(r, f).

From this we deduce that

{lm(n− k)− γ}[N(r, 0; f) +N(r, a; f)] ≤ lm(n− s)N(r, a; f) + S(r, f)

≤ S(r, f).

Since by (1.2), lm(n− k)− γ > 0, from above we can conclude that

N(r, 0; f) = N(r, a; f) = S(r, f).

Now using the same argument as in Cases 1 and 2 of the proof of Theorem 1.13,
we obtain the conclusion of Theorem 1.14. This completes the proof of Theorem
1.14.

Acknowledgement : The authors are grateful to the referees for their helpful
remarks and suggestions towards the improvement of the paper.



742 Thai J. Math. 17 (2019)/ P. Sahoo and G. Biswas

References

[1] W.K. Hayman, Meromorphic Functions, The Clarendon Press, Oxford 1964.

[2] C.C. Yang, H.X. Yi, Uniqueness Theory of Meromorphic Functions, Kluwer,
Dordrecht, 2003.

[3] L. Yang, Value Distribution Theory, Springer-Verlag, Berlin, 1993.

[4] A. Banerjee, Weighted sharing of a small function by a meromorphic function
and its derivative, Comput. Math. Appl. 53 (2007) 1750-1761.

[5] G.G. Gundersen, Meromorphic functions that share finite values with their
derivative, J. Math. Anal. Appl. 75 (1980) 441-446.

[6] G.G. Gundersen, L.Z. Yang, Entire functions that share one value with one
or two of their derivatives, J. Math. Anal. Appl. 223 (1998) 88-95.

[7] I. Lahiri, Weighted value sharing and uniqueness of meromorphic functions,
Complex Var. Theory Appl. 46 (2001) 241-253.

[8] J.L. Zhang, Meromorphic functions sharing a small function with their deriva-
tives, Kyungpook Math. J. 49 (2009) 143-154.

[9] J.L. Zhang, L.Z. Yang, A Power of a meromorphic function sharing a small
function with its derivative, Ann. Acad. Sci, Fenn. Math. 34 (2009) 249-260.

[10] Q.C. Zhang, Meromorphic function that shares one small function with its
derivative, J. Inequal. Pure. Appl. Math. 6 (2005) 116.

[11] R. Brück, On entire functions which share one value CM with their first
derivative, Results Math. 30 (1996) 21-24.

[12] A. Al-Khaladi, On meromorphic functions that share one value with their
derivatives, Analysis 25 (2005) 131-140.

[13] Z.X. Chen, K.H. Shon, On conjecture of R. Brück concerning entire function
sharing one value CM with its derivative, Taiwanese J. Math. 8 (2004) 235-
244.

[14] L.Z. Yang, J.L. Zhang, Non-existence of meromorphic solutions of Fermat
type functional equation, Aequationes Math. 76 (2008) 140-150.

[15] H.Y. Xu, C.F. Yi, H. Wang, On a conjecture of R. Brück concerning mero-
morphic function sharing small functions, Revista De Matematica, Teoria Y
Aplicaciones 23 (2016) 291-308.

[16] I. Lahiri, Weighted sharing and uniqueness of meromorphic functions, Nagoya
Math. J. 161 (2001) 193-206.

[17] H.X. Yi, Meromorphic functions that share one or two values II, Kodai Math.
J. 22 (1999) 264-272.



Meromorphic Function Sharing Small Function with Its Derivative 743

[18] J.L. Zhang, L.Z. Yang, Some results related to a conjecture of R. Brück, J.
Inequal. Pure Appl. Math. 8 (2007) 18.

[19] S. Majumder, Values shared by meromorphic functions and their derivatives,
Arab J. Math. Sci 22 (2016) 265-274.

(Received 3 February 2017)
(Accepted 6 December 2019)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

http://thaijmath.in.cmu.ac.th

	Introduction, Definitions and Results
	Lemmas
	Proof of Theorems
	Proof of Theorem 1.13
	Proof of Theorem 1.14


