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1 Introduction and Preliminaries

One of the most important results in fixed point theory is the Banach con-
traction principle [1] because of its application in many branches of mathematics
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and mathematical sciences. The Banach contraction principle has been used and
extended in many different directions. Recently, Branciari [2] introduced a class of
generalized metric spaces by replacing triangular inequality by similar one which
involves four or more points instead of three and improved Banach contraction
principle. Any metric space is a generalized metric space but the converse is not
true, for more details, see [3–14] and the related references contained therein. On
the other hand, the common fixed point theorems are generalizations of fixed point
theorems. There are many researchers are interested in generalizing fixed point
theorems to coincidence point theorems and common fixed point theorems.

In this paper, we prove the fixed point theorems and unique common fixed
point theorems for the generalized contractions appeared in [15] omitting some
conditions of ψ ∈ Ψ1 using the set Ψ2 introduced by [16]. The unique common
fixed point theorem for generalized contractions in the setting of partially ordered
Branciari metric spaces is proven using our main result. Moreover, we also present
the example that supports our main result.

Let R denote the set of all real numbers and N denote the set of all positive
integers. We now recall some important definitions, lemmas and theorems.

Definition 1.1. [2] Let X be a nonempty set. We say that a mapping d : X×X →
[0,∞) is a Branciari metric if for all x, y ∈ X and for all distinct points u, v ∈ X
where each of them different from x and y, we have

(i) d(x, y) = 0 if and only if x = y;

(ii) d(x, y) = d(y, x);

(iii) d(x, y) ≤ d(x, u) + d(u, v) + d(v, y) (rectangular inequality).

If d is a Branciari metric, then (X, d) is called a Branciari metric space (or for short
BMS). By the definition we see that a Branciari metric space is a generalization
of a metric space.

Definition 1.2. Let (X, d) be a BMS, {xn} be a sequence in X, and x ∈ X. Then

(i) We say that {xn} is convergent to x if and only if d(xn, x) → 0 as n → ∞
and denoted by xn → x as n→∞.

(ii) We say that {xn} is a Cauchy sequence if and only if d(xn, xm) → 0 as
n,m→∞.

(iii) We say that (X, d) is a complete BMS if and only if every Cauchy sequence
in X converges to some element in X.

Lemma 1.3. [17] Let (X, d) be a BMS, and let {xn} be a Cauchy sequence in X
such that xn 6= xm whenever n 6= m. Then {xn} converges to at most one point.

In 2014, Rosa and Vetro [18] introduced the notion of f -α-admissible mappings
as the following:
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Definition 1.4. Let T, f : X → X and α : X ×X → [0,∞). The mapping T is
said to be an f -α-admissible mapping if for all x, y ∈ X,

α(fx, fy) ≥ 1 implies α(Tx, Ty) ≥ 1

If f is an identity mapping, then T is called to be an α-admissible mapping.

In 2014, Popescu [19] introduced the notion of triangular α-orbital admissible
mappings.

Definition 1.5. [19] Let T : X → X and α : X ×X → [0,∞). We say that T is
α-orbital admissible if for all x ∈ X,

α(x, Tx) ≥ 1 implies α(Tx, T 2x) ≥ 1.

Definition 1.6. [19] Let T : X → X and α : X ×X → [0,∞). We say that T is
triangular α-orbital admissible if:

(i) T is α-orbital admissible;

(ii) for all x, y ∈ X, α(x, y) ≥ 1 and α(y, Ty) ≥ 1 imply that α(x, Ty) ≥ 1.

Lemma 1.7. [19] Let T : X → X and α : X ×X → [0,∞). Suppose that T is a
triangular α-orbital admissible mapping and assume that there exists x1 ∈ X such
that α(x1, Tx1) ≥ 1. Define a sequence {xn} by xn+1 = Txn for all n ∈ N. Then
α(xn, xm) ≥ 1 for all m,n ∈ N with n < m.

Denote by Ψ1 the set of all functions ψ : (0,∞) → (1,∞) satisfying the
following conditions:

(1) ψ is nondecreasing;

(2) for each sequence {tn} ⊂ (0,∞),

lim
n→∞

ψ(tn) = 1 if and only if lim
n→∞

tn = 0;

(3) there exist r ∈ (0, 1) and l ∈ (0,∞] such that limt→0
ψ(t)−1
tr = l.

Jleli et al. [15] established the following theorem by adding the continuity to
a function ψ ∈ Ψ1 on Branciari metric spaces.

Theorem 1.8. [15] Let (X, d) be a complete BMS and T : X → X. Suppose that
there exist ψ ∈ Ψ1 that is continuous and λ ∈ (0, 1) such that for all x, y ∈ X,

d(Tx, Ty) 6= 0 implies ψ(d(Tx, Ty)) ≤ [ψ(R(x, y))]λ,

where
R(x, y) = max{d(x, y), d(x, Tx), d(y, Ty)}.

Then T has a fixed point z in X and {Tnx1} converges to z.
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Arshad et al. [20] extended the results proved by Jleli et al. [21] and [15] by
using the concept of triangular α-orbital admissible mappings obtained in [19] by
adding the continuity to a function ψ ∈ Ψ1.

Theorem 1.9. [20] Let (X, d) be a complete BMS, T : X → X and α : X ×X →
[0,∞). Suppose that the following conditions hold :

(i) there exist ψ ∈ Ψ1 and λ ∈ (0, 1) such that for all x, y ∈ X,

d(Tx, Ty) 6= 0 implies α(x, y) · ψ(d(Tx, Ty)) ≤ [ψ(R(x, y))]λ,

where

R(x, y) = max{d(x, y), d(x, Tx), d(y, Ty),
d(x, Tx)d(y, Ty)

1 + d(x, y)
};

(ii) there exists x1 ∈ X such that α(x1, Tx1) ≥ 1 and α(x1, T
2x1) ≥ 1;

(iii) T is a triangular α-orbital admissible mapping;

(iv) if {Tnx1} is a sequence in X such that α(Tnx1, T
n+1x1) ≥ 1 for all n and

xn → x ∈ X as n → ∞, then there exists a subsequence {Tn(k)x1} of
{Tnx1} such that α(Tn(k)x1, x) ≥ 1 for all k ∈ N;

(v) ψ is continuous.

Then T has a fixed point z in X and {Tnx1} converges to z.

Li and Jiang [16] introduced Ψ2 the set of all functions ψ : (0,∞) → (1,∞)
which is nondecreasing and continuous. They also gave some examples illustrating
the relationship between Ψ1 and Ψ2 as follows:

Example 1.10. [16] Let f(t) = ete
t

for t ≥ 0. Then f ∈ Ψ2 but f /∈ Ψ1 since

limt→0
ete

t
−1

tr = 0 for each r ∈ (0, 1).

Example 1.11. [16] Let g(t) = et
a

for t ≥ 0, where a > 0. If a ∈ (0, 1), then

g ∈ Ψ1 ∩ Ψ2. If a = 1, then g ∈ Ψ2 but g /∈ Ψ1 since limt→0
et−1
tr = 0 for each

r ∈ (0, 1). If a > 1, then g ∈ Ψ2 but g /∈ Ψ1 since limt→0
et

a
−1
tr = 0 for each

r ∈ (0, 1).

Remark 1.12. From Example 1.10 and Example 1.11, we can conclude that
Ψ2 6⊂ Ψ1 and Ψ1 ∩ Ψ2 6= ∅. Moreover, it is clear that if ψ ∈ Ψ1 and ψ is
continuous, then ψ ∈ Ψ2.

Definition 1.13. Let T, f : X → X. If ω = Tx = fx for some x ∈ X, then x is
called a coincidence point of T and f , and ω is called a point of coincidence of T
and f .

Definition 1.14. Let T, f : X → X. The pair {T, f} is said to be weakly
compatible if Tfx = fTx whenever Tx = fx for some x ∈ X.

Proposition 1.15. [22] Let T, f : X → X and {T, f} is weakly compatible. If
T and f have a unique point of coincidence ω = Tx = fx, then ω is the unique
common fixed point of T and f .
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2 Main Results

We now prove the existence of fixed point theorems for triangular α-orbital
admissible mappings omitting some conditions of ψ ∈ Ψ1 using Ψ2 the set of all
nondecreasing and continuous functions on (0,∞) to (1,∞).

Theorem 2.1. Let (X, d) be a complete BMS, T : X → X and α : X × X →
[0,∞). Suppose that the following conditions hold:

(i) there exist ψ ∈ Ψ2 and λ ∈ (0, 1) such that for all x, y ∈ X,

d(Tx, Ty) 6= 0 implies α(x, y) · ψ(d(Tx, Ty)) ≤ [ψ(R(x, y))]λ, (2.1)

where
R(x, y) = max{d(x, y), d(x, Tx), d(y, Ty)};

(ii) there exists x1 ∈ X such that α(x1, Tx1) ≥ 1;

(iii) T is a triangular α-orbital admissible mapping;

(iv) T is continuous.

Then T has a fixed point.

Proof. Let x1 ∈ X such that α(x1, Tx1) ≥ 1. Define the iterative sequence {xn}
such that

xn+1 = Txn, for all n ∈ N.

If xn0
= xn0+1 for some n0 ∈ N, then xn0

is a fixed point of T . We now suppose
that xn 6= xn+1 for all n ∈ N. By condition (ii), we have α(x1, Tx1) ≥ 1. Using
Lemma 1.7, we obtain that

α(xn, xn+1) ≥ 1 for alln ∈ N. (2.2)

From (2.1) and (2.2), for all n ∈ N, we have

ψ(d(xn, xn+1)) = ψ(d(Txn−1, Txn))

≤ α(xn−1, xn)ψ(d(Txn−1, Txn)) (2.3)

≤ [ψ(R(xn−1, xn))]λ,

where

R(xn−1, xn) = max
{
d(xn−1, xn), d(xn−1, Txn−1), d(xn, Txn)

}
= max

{
d(xn−1, xn), d(xn−1, xn), d(xn, xn+1)

}
= max{d(xn−1, xn), d(xn, xn+1)}.

If R(xn−1, xn) = d(xn, xn+1), then by (2.3) we obtain that

ψ(d(xn, xn+1)) ≤ [ψ(d(xn, xn+1))]λ < ψ(d(xn, xn+1)),
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which is a contradiction. Hence R(xn−1, xn) = d(xn−1, xn). Using (2.3), we have

ψ(d(xn, xn+1)) ≤ [ψ(d(xn−1, xn))]λ < ψ(d(xn−1, xn)).

Since ψ is nondecreasing, we have d(xn, xn+1) < d(xn−1, xn). Hence the sequence
{d(xn, xn+1)} is decreasing. Hence {d(xn, xn+1)} converges to a nonnegative real
number. Thus there exists r ≥ 0 such that lim

n→∞
d(xn, xn+1) = r and

d(xn, xn+1) ≥ r. (2.4)

We will prove that r = 0. Suppose that r > 0. Since ψ is nondecreasing and by
using (2.3) and (2.4), we obtain that

1 < ψ(r) ≤ ψ(d(xn, xn+1)) ≤ [ψ(d(xn−1, xn))]λ ≤ · · · ≤ [ψ(d(x0, x1))]λ
n

, (2.5)

for all n ∈ N. Letting n → ∞ in this inequality, we get that ψ(r) = 1, which
contradicts to the assumption that ψ(t) > 1 for each t > 0. Consequently, we have
r = 0 and therefore

lim
n→∞

d(xn, xn+1) = 0. (2.6)

Suppose that there exist n, p ∈ N such that xn = xn+p. We prove that p = 1.
Assume that p > 1. Using (2.1) and (2.2), we obtain that

ψ(d(xn, xn+1)) = ψ(d(xn+p, xn+p+1))

= ψ(d(Txn+p−1, Txn+p))

≤ α(xn+p−1, xn+p)ψ(d(Txn+p−1, Txn+p)) (2.7)

≤ [ψ(R(xn+p−1, xn+p))]
λ,

where

R(xn+p−1, xn+p) = max
{
d(xn+p−1, xn+p), d(xn+p−1, Txn+p−1), d(xn+p, Txn+p)

}
= max

{
d(xn+p−1, xn+p), d(xn+p−1, xn+p), d(xn+p, xn+p+1)

}
= max

{
d(xn+p−1, xn+p), d(xn+p, xn+p+1)

}
.

If R(xn+p, xn+p+1) = d(xn+p, xn+p+1), then from (2.7) we obtain that

ψ(d(xn, xn+1)) = ψ(d(xn+p, xn+p+1))

≤ [ψ(d(xn+p, xn+p+1))]λ

< ψ(d(xn+p, xn+p+1)),

which is a contradiction. Hence R(xn+p, xn+p+1) = d(xn+p−1, xn+p). By (2.7),
we obtain that

ψ(d(xn, xn+1)) = ψ(d(xn+p, xn+p+1))

≤ [ψ(d(xn+p−1, xn+p))]
λ

< ψ(d(xn+p−1, xn+p)).
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Since ψ is nondecreasing, we have d(xn, xn+1) < d(xn+p−1, xn+p). By using (2.1),
we get that

ψ(d(xn+p−1, xn+p)) ≤ α(xn+p−2, xn+p−1)ψ(d(Txn+p−2, Txn+p−1))

≤ [ψ(R(xn+p−2, xn+p−1))]λ, (2.8)

where

R(xn+p−2, xn+p−1)

= max
{
d(xn+p−2, xn+p−1), d(xn+p−2, Txn+p−2), d(xn+p−1, Txn+p−1)

}
= max

{
d(xn+p−2, xn+p−1), d(xn+p−2, xn+p−1), d(xn+p−1, xn+p)

}
= max

{
d(xn+p−2, xn+p−1), d(xn+p−1, xn+p)

}
.

If R(xn+p−2, xn+p−1) = d(xn+p−1, xn+p), then by (2.8) we obtain that

ψ(d(xn+p−1, xn+p)) ≤ [ψ(d(xn+p−1, xn+p))]
λ < ψ(d(xn+p−1, xn+p)),

which is a contradiction. Hence R(xn+p−2, xn+p−1) = d(xn+p−2, xn+p−1). By
(2.8), we have

ψ(d(xn+p−1, xn+p)) ≤ [ψ(d(xn+p−2, xn+p−1))]λ < ψ(d(xn+p−2, xn+p−1)).

Since ψ is nondecreasing, we have d(xn+p−1, xn+p) < d(xn+p−2, xn+p−1). By
continuing this process, we obtain the following inequality

d(xn, xn+1) < d(xn+p−1, xn+p) < d(xn+p−2, xn+p−1) < . . . < d(xn, xn+1),

which is a contradiction and hence p = 1. We deduce that T has a fixed point.
We can assume that xn 6= xm for n 6= m. We now prove that {d(xn, xn+2)} is
bounded. Since {d(xn, xn+1)} is bounded, there exists M > 0 such that

d(xn, xn+1) ≤M for all n ∈ N.

If d(xn, xn+2) > M for all n ∈ N, then from

R(xn−1, xn+1) = max
{
d(xn−1, xn+1), d(xn−1, Txn−1), d(xn+1, Txn+1)

}
= max

{
d(xn−1, xn+1), d(xn−1, xn), d(xn+1, xn+2)

}
= d(xn−1, xn+1),

and Lemma 1.7, we obtain that

ψ(d(xn, xn+2)) = ψ(d(Txn−1, Txn+1))

≤ α(xn−1, xn+1)ψ(d(Txn−1, Txn+1))

≤ [ψ(R(xn−1, xn+1))]λ

= [ψ(d(xn−1, xn+1))]λ

< ψ(d(xn−1, xn+1)).
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This implies that {d(xn, xn+2)} is decreasing. Therefore {d(xn, xn+2)} is bounded.
If d(xn, xn+2) ≤M for some n ∈ N, then from

R(xn, xn+2) = max
{
d(xn, xn+2), d(xn, Txn), d(xn+2, Txn+2)

}
= max

{
d(xn, xn+2), d(xn, xn+1), d(xn+2, xn+3)

}
and Lemma 1.7, we obtain that

ψ(d(xn+1, xn+3)) = ψ(d(Txn, Txn+2))

≤ α(xn, xn+2)ψ(d(Txn, Txn+2))

≤ [ψ(R(xn, xn+2))]λ

≤ [ψ(M)]λ

< ψ(M).

Therefore d(xn+1, xn+3) < M . This implies that {d(xn, xn+2)} is bounded. We
next prove that lim

n→∞
d(xn, xn+2) = 0. Suppose that lim

n→∞
d(xn, xn+2) 6= 0. So there

exists a subsequence {xnk
} of {xn} such that

lim
k→∞

d(xnk
, xnk+2) = a for some a > 0.

Using (2.1) and Lemma 1.7, we have

ψ(d(xnk
, xnk+2)) = ψ(d(Txnk−1, Txnk+1))

≤ α(xnk−1, xnk+1)ψ(d(Txnk−1, Txnk+1))

≤ [ψ(R(xnk−1, xnk+1))]λ,

where

R(xnk−1, xnk+1) = max
{
d(xnk−1, xnk+1), d(xnk−1, Txnk−1), d(xnk+1, Txnk+1)

}
= max

{
d(xnk−1, xnk+1), d(xnk−1, xnk

), d(xnk+1, xnk+2)
}
.

Letting k →∞ in the above inequality, we obtain that

ψ(a) = lim
k→∞

ψ(d(xnk
, xnk+2)) ≤ lim

k→∞
[ψ(R(xnk−1, xnk+1))]λ = [ψ(a)]λ < ψ(a),

which is a contradiction. Therefore

lim
n→∞

d(xn, xn+2) = 0. (2.9)

We now prove that {xn} is a Cauchy sequence. Suppose that {xn} is not a Cauchy
sequence. Then there exist ε > 0 and two subsequences {xnk

} and {xmk
} of {xn}

such that nk is the smallest index with nk > mk > k for which

d(xmk
, xnk

) ≥ ε. (2.10)
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This implies that
d(xmk

, xnk−1) < ε. (2.11)

By applying the rectangular inequality and using (2.10) and (2.11), we obtain that

ε ≤ d(xmk
, xnk

)

≤ d(xmk
, xnk−1) + d(xnk−1, xnk−2) + d(xnk−2, xnk

)

< ε+ d(xnk−1, xnk−2) + d(xnk−2, xnk
).

Letting k →∞ in the above inequality, using (2.6) and (2.9), we get that

lim
k→∞

d(xmk
, xnk

) = ε. (2.12)

For each k ∈ N, we have

R(xnk
, xmk

) = max
{
d(xnk

, xmk
), d(xnk

, Txnk
), (xmk

, Txmk
)
}

= max
{
d(xnk

, xmk
), d(xnk

, xnk+1), (xmk
, xmk+1)

}
.

By using (2.6) and (2.12), we obtain that

lim
k→∞

R(xnk
, xmk

) = ε. (2.13)

By (2.12) and (2.13), there exists a positive integer k0 such that

d(xnk+1, xmk+1) > 0 and R(xnk
, xmk

) > 0, for all k ≥ k0.

By Lemma 1.7 and using (2.1), we get that

ψ(d(xnk+1, xmk+1)) = ψ(d(Txnk
, Txmk

))

= ψ(d(Txmk
, Txnk

))

≤ α(xmk
, xnk

)ψ(d(Txmk
, Txnk

))

≤ [ψ(R(xmk
, xnk

))]λ

= [ψ(R(xnk
, xmk

))]λ,

for all nk > mk > k ≥ k0. Letting k →∞ in this inequality, by (2.12), (2.13) and
the continuity of ψ, we obtain that

ψ(ε) = lim
k→∞

ψ(d(xnk+1, xmk+1)) ≤ lim
k→∞

[ψ(R(xnk
, xmk

))]λ = [ψ(ε)]λ < ψ(ε),

which is a contradiction. Therefore {xn} is a Cauchy sequence in X. Since X is
a complete BMS, it follows that {xn} converges to x ∈ X. Since T is continuous,
we have

x = lim
n→∞

xn+1 = lim
n→∞

Txn = Tx.

Therefore x is a fixed point of T .
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We now replace the continuity of T in Theorem 2.1 by some appropriate con-
ditions to obtain the following theorem.

Theorem 2.2. Let (X, d) be a complete BMS, T : X → X and α : X × X →
[0,∞). Suppose that the following conditions hold :

(i) there exist ψ ∈ Ψ2 and λ ∈ (0, 1) such that for all x, y ∈ X,

d(Tx, Ty) 6= 0 implies α(x, y) · ψ(d(Tx, Ty)) ≤ [ψ(R(x, y))]λ, (2.14)

where
R(x, y) = max{d(x, y), d(x, Tx), d(y, Ty)};

(ii) there exists x1 ∈ X such that α(x1, Tx1) ≥ 1;

(iii) T is a triangular α-orbital admissible mapping;

(iv) if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n and xn →
x ∈ X as n → ∞, then there exists a subsequence {xnk

} of {xn} such that
α(xnk

, x) ≥ 1 for all k ∈ N.

Then T has a fixed point.

Proof. As in the proof of Theorem 2.1, we can construct the sequence {xn} in X
such that

xn+1 = Txn, for all n ∈ N,

α(xn, xn+1) ≥ 1 for all n ∈ N and limn→∞ xn = x. By (iv), there exists a
subsequence {xnk

} of {xn} such that α(xnk
, x) ≥ 1 for all k ∈ N. We can suppose

that xnk
6= Tx. Applying inequality (2.14), we obtain that

ψ(d(Txnk
, Tx)) ≤ α(xnk

, x)ψ(d(Txnk
, Tx))

≤ [ψ(R(xnk
, x))]λ,

where

R(xnk
, x) = max

{
d(xnk

, x), d(xnk
, Txnk

), d(x, Tx)
}

= max
{
d(xnk

, x), d(xnk
, xnk+1), d(x, Tx)

}
.

Taking the limit as k →∞ and since ψ is continuous, we obtain that

lim
k→∞

R(xnk
, x) = d(x, Tx).

We will prove that x = Tx. Suppose that x 6= Tx. Therefore

d(x, Tx) ≤ d(x, xnk−1) + d(xnk−1, xnk
) + d(xnk

, Tx).

It follows that
d(x, Tx) ≤ lim

k→∞
d(xnk

, Tx).
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Since ψ is continuous and nondecreasing, we obtain that

ψ(d(x, Tx)) ≤ lim
k→∞

ψ(d(xnk
, Tx)) ≤ [ψ(d(x, Tx))]λ < ψ(d(x, Tx)),

which is a contradiction. Thus x = Tx and hence x is a fixed point of T .

We now present the example for supporting our main result.

Example 2.3. Let X = {0, 1, 2, 3}. Define d : X ×X → [0,∞) as follows:

d(x, x) = 0 for all x ∈ X,
d(0, 2) = d(2, 0) = d(0, 3) = d(3, 0) = d(2, 3) = d(3, 2) = 2,

d(0, 1) = d(1, 0) = d(1, 2) = d(2, 1) = 4,

d(1, 3) = d(3, 1) = 1, and

d(x, y) = |x− y|, otherwise.

Therefore (X, d) is complete BMS but (X, d) is not a metric space because it lacks
the triangular property as the following:

d(1, 2) = 4 > 1 + 2 = d(1, 3) + d(3, 2).

Let T : X → X be the mapping defined by

Tx =

{
1 if x 6= 2
3 if x = 2.

Let α : X ×X → [0,∞) be given by

α(x, y) =

{
1 if x, y ∈ X\{2}
3
5 otherwise.

Define a function ψ : (0,∞) → (1,∞) by ψ(t) = et. By Example 1.11, we obtain
that ψ ∈ Ψ2 but ψ /∈ Ψ1. We next illustrate that all conditions in Theorem 2.2
hold. Taking x1 = 1, we have α(1, T1) = α(1, 1) = 1 ≥ 1. We next prove that T is
α-orbital admissible. Let x ∈ X such that α(x, Tx) ≥ 1. Therefore x, Tx ∈ X\{2}
and then x ∈ {0, 1, 3}. By the definition of α, we obtain that

α(T0, T 20) = α(1, 1) ≥ 1,

α(T1, T 21) = α(1, 1) ≥ 1,

α(T3, T 23) = α(1, 1) ≥ 1.

It follows that T is α-orbital admissible. Let x, y ∈ X such that α(x, y) ≥ 1 and
α(y, Ty) ≥ 1. By the definition of α, we have x, y, Ty ∈ X\{2}. This yields

α(0, 1) ≥ 1 and α(1, T1) ≥ 1 imply α(0, T1) ≥ 1,
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α(0, 3) ≥ 1 and α(3, T3) ≥ 1 imply α(0, T3) ≥ 1,

α(1, 3) ≥ 1 and α(3, T3) ≥ 1 imply α(1, T3) ≥ 1,

α(1, 0) ≥ 1 and α(0, T0) ≥ 1 imply α(1, T0) ≥ 1,

α(3, 0) ≥ 1 and α(0, T0) ≥ 1 imply α(3, T0) ≥ 1,

α(3, 1) ≥ 1 and α(1, T1) ≥ 1 imply α(3, T1) ≥ 1.

This implies that T is triangular α-orbital admissible. Let {xn} be a sequence such
that α(xn, xn+1) ≥ 1 for all n ∈ N and xn → x as n→∞. By the definition of α,
for each n ∈ N, we get that xn ∈ X\{2} = {0, 1, 3}. We obtain that x ∈ {0, 1, 3}.
Thus we have α(xn, x) ≥ 1 for each n ∈ N. We next prove that (2.14) holds. Let
x, y ∈ X be such that d(Tx, Ty) 6= 0. So we consider the following cases:

• x = 2 and y ∈ {0, 1, 3} or

• y = 2 and x ∈ {0, 1, 3}.

We divide the proof into three cases as follows:
(1) If (x, y) ∈ {(0, 2), (2, 0)}, then

R(0, 2) = max
{
d(0, 2), d(0, 1), d(2, 3)

}
= max

{
2, 4, 2

}
= 4.

This implies that

ψ(d(T0, T2)) = ψ(d(1, 3)) = ψ(1) = e1 ≤ [e4]0.3 = [ψ(4)]0.3 ≤ [ψ(R(0, 2))]0.3.

Therefore

α(0, 2)ψ(d(T0, T2)) =
3

5
ψ(d(T0, T2)) ≤ ψ(d(T0, T2)) ≤ [ψ(R(0, 2))]0.3.

Since d(x, y) = d(y, x) for all x, y ∈ X, we also obtain that

α(2, 0)ψ(d(T2, T0)) ≤ [ψ(R(2, 0))]0.3.

(2) If (x, y) ∈ {(2, 1), (1, 2)}, then

R(2, 1) = max
{
d(2, 1), d(2, 3), d(1, 1)

}
= max

{
1, 2, 0

}
= 2.

This implies that

ψ(d(T2, T1)) = ψ(d(3, 1)) = ψ(1) = e1 ≤ [e2]0.7 = [ψ(2)]0.7 ≤ [ψ(R(2, 1))]0.7.

Therefore

α(2, 1)ψ(d(T2, T1)) =
3

5
ψ(d(T2, T1)) ≤ ψ(d(T2, T1)) ≤ [ψ(R(2, 1))]0.7.

Since d(x, y) = d(y, x) for all x, y ∈ X, we also obtain that

α(1, 2)ψ(d(T1, T2)) ≤ [ψ(R(1, 2))]0.7.
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(3) If (x, y) ∈ {(2, 3), (3, 2)}, then

R(2, 3) = max
{
d(2, 3), d(2, 3), d(3, 1)

}
= max

{
2, 2, 1

}
= 2.

This implies that

ψ(d(T2, T3)) = ψ(d(3, 1)) = ψ(1) = e1 ≤ [e2]0.7 = [ψ(2)]0.7 ≤ [ψ(R(2, 3))]0.7.

Therefore

α(2, 3)ψ(d(T2, T3)) =
3

5
ψ(d(T2, T3)) ≤ ψ(d(T2, T3)) ≤ [ψ(R(2, 3))]0.7.

Since d(x, y) = d(y, x) for all x, y ∈ X, we also obtain that

α(3, 2)ψ(d(T3, T2)) ≤ [ψ(R(3, 2))]0.7.

It follows that if x, y ∈ X and d(Tx, Ty) 6= 0, then

α(x, y)ψ(d(Tx, Ty)) ≤ [ψ(R(x, y))]λ.

Hence all assumptions in Theorem 2.2 are satisfied and thus T has a fixed point
which is x = 1.

We now introduce the notion of triangular f -α-admissible mappings and prove
a key lemma that will be used for proving our results.

Definition 2.4. Let T, f : X → X and α : X ×X → [0,∞). Then T is said to
be a triangular f -α-admissible mapping if

(i) T is an f -α-admissible mapping;

(ii) for all x, y ∈ X,α(fx, fy) ≥ 1 and α(fy, Ty) ≥ 1 imply α(fx, Ty) ≥ 1.

Lemma 2.5. Let T, f : X → X and α : X×X → [0,∞). Suppose that T : X → X
is a triangular f -α-admissible mapping and assume that there exists x1 ∈ X such
that α(fx1, Tx1) ≥ 1. Define a sequence {fxn} by fxn+1 = Txn for all n ∈ N.
Then α(fxn, fxm) ≥ 1 for all m,n ∈ N with n < m.

Proof. Since T is a triangular f -α-admissible mapping and α(fx1, Tx1) ≥ 1, we
have α(fx2, fx3) = α(Tx1, Tx2) ≥ 1. By continuing this process, we obtain that

α(fxn, fxn+1) ≥ 1 for all n ∈ N.

Suppose that α(fxn, fxm) ≥ 1. We will prove that α(fxn, fxm+1) ≥ 1 where
n < m. Since T is triangular f -α-admissible and α(fxm, fxm+1) ≥ 1, we obtain
that α(fxn, fxm+1) ≥ 1. Hence α(fxn, fxm) ≥ 1 for all m,n ∈ N with n < m.

Theorem 2.6. Let (X, d) be a BMS and T, f : X → X be such that TX ⊆ fX
where one of these two subsets of X being complete. Assume that α : X × X →
[0,∞) and suppose that the following conditions hold:
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(i) there exist ψ ∈ Ψ2 and λ ∈ (0, 1) such that for all x, y ∈ X,

d(Tx, Ty) 6= 0 implies α(fx, fy) · ψ(d(Tx, Ty)) ≤ [ψ(R(x, y))]λ, (2.15)

where
R(x, y) = max{d(fx, fy), d(fx, Tx), d(fy, Ty)};

(ii) there exists x1 ∈ X such that α(fx1, Tx1) ≥ 1;

(iii) T is a triangular f -α-admissible mapping;

(iv) T is continuous with respect to f ;

(v) either α(fu, fv) ≥ 1 or α(fv, fu) ≥ 1 whenever fu = Tu and fv = Tv.

Then T and f have a unique point of coincidence. Moreover, if the pair {T, f} is
weakly compatible, then T and f have a unique common fixed point.

Proof. Let x1 ∈ X such that α(fx1, Tx1) ≥ 1. Define the iterative sequences {xn}
and {yn} in X by

yn = fxn+1 = Txn, for all n ∈ N.

Moreover, we assume that if Txn = yn = ym = Txm for some n 6= m, then
we choose xn+1 = xm+1, this can be done since TX ⊆ fX. It follows that
yn+1 = ym+1. If yn0

= yn0+1 for some n0 ∈ N, then yn0+1 is a point of coincidence
of T and f . Consequently, we can suppose that yn 6= yn+1 for all n ∈ N. By
condition (ii), we have α(fx1, Tx1) ≥ 1. Using Lemma 2.5, we obtain that

α(fxn, fxn+1) ≥ 1 for all n ∈ N. (2.16)

From (2.15) and (2.16), for all n ∈ N, we have

ψ(d(yn, yn+1)) = ψ(d(Txn, Txn+1))

≤ α(fxn, fxn+1)ψ(d(Txn, Txn+1)) (2.17)

≤ [ψ(R(xn, xn+1))]λ,

where

R(xn, xn+1) = max
{
d(fxn, fxn+1), d(fxn, Txn), d(fxn+1, Txn+1)

}
= max

{
d(yn−1, yn), d(yn−1, yn), d(yn, yn+1)

}
= max{d(yn−1, yn), d(yn, yn+1)}.

If R(xn, xn+1) = d(yn, yn+1), then by (2.17) we obtain that

ψ(d(yn, yn+1)) ≤ [ψ(d(yn, yn+1))]λ < ψ(d(yn, yn+1)),

which is a contradiction. Hence R(xn, xn+1) = d(yn−1, yn). Using (2.17), we have

ψ(d(yn, yn+1)) ≤ [ψ(d(yn−1, yn))]λ < ψ(d(yn−1, yn)).
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Since ψ is nondecreasing, we have d(yn, yn+1) < d(yn−1, yn). Hence the sequence
{d(yn, yn+1)} is decreasing. Hence {d(yn, yn+1)} converges to a nonnegative real
number. Thus there exists r ≥ 0 such that lim

n→∞
d(yn, yn+1) = r and

d(yn, yn+1) ≥ r for all n ∈ N. (2.18)

We will prove that r = 0. Suppose that r > 0. Since ψ is nondecreasing and by
using (2.17) and (2.18), we obtain that

1 < ψ(r) ≤ ψ(d(yn, yn+1)) ≤ [ψ(d(yn−1, yn))]λ ≤ · · · ≤ [ψ(d(y0, y1))]λ
n

, (2.19)

for all n ∈ N. Letting n → ∞ in this inequality, we get that ψ(r) = 1 which
contradicts to the assumption that ψ(t) > 1 for each t > 0. Consequently, we have
r = 0 and therefore

lim
n→∞

d(yn, yn+1) = 0. (2.20)

Suppose that there exist n, p ∈ N such that yn = yn+p. We prove that p = 1.
Assume that p > 1. By using (2.15), we obtain that

ψ(d(yn, yn+1)) = ψ(d(yn+p, yn+p+1))

= ψ(d(Txn+p, Txn+p+1))

≤ α(fxn+p, fxn+p+1)ψ(d(Txn+p, Txn+p+1)) (2.21)

≤ [ψ(R(xn+p, xn+p+1))]λ,

where

R(xn+p, xn+p+1)

= max
{
d(fxn+p, fxn+p+1), d(fxn+p, Txn+p), d(fxn+p+1, Txn+p+1)

}
= max

{
d(yn+p−1, yn+p), d(yn+p−1, yn+p), d(yn+p, yn+p+1)

}
= max

{
d(yn+p−1, yn+p), d(yn+p, yn+p+1)

}
.

If R(xn+p, xn+p+1) = d(yn+p, yn+p+1), then from (2.21) we obtain that

ψ(d(yn, yn+1)) = ψ(d(yn+p, yn+p+1))

≤ [ψ(d(yn+p, yn+p+1))]λ

< ψ(d(yn+p, yn+p+1)),

which is a contradiction. Hence R(xn+p, xn+p+1) = d(yn+p−1, yn+p). By (2.21),
we obtain that

ψ(d(yn, yn+1)) = ψ(d(yn+p, yn+p+1))

≤ [ψ(d(yn+p−1, yn+p))]
λ

< ψ(d(yn+p−1, yn+p)).
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Since ψ is nondecreasing, we have d(yn, yn+1) < d(yn+p−1, yn+p). Next, by using
(2.15), we get that

ψ(d(yn+p−1, yn+p)) ≤ α(fxn+p−1, fxn+p)ψ(d(Txn+p−1, Txn+p))

≤ [ψ(R(xn+p−1, xn+p))]
λ, (2.22)

where

R(xn+p−1, xn+p)

= max
{
d(fxn+p−1, fxn+p), d(fxn+p−1, Txn+p−1), d(fxn+p, Txn+p)

}
= max

{
d(yn+p−2, yn+p−1), d(yn+p−2, yn+p−1), d(yn+p−1, yn+p)

}
= max

{
d(yn+p−2, yn+p−1), d(yn+p−1, yn+p)

}
.

If R(xn+p−1, xn+p) = d(yn+p−1, yn+p), then by (2.22) we obtain that

ψ(d(yn+p−1, yn+p)) ≤ [ψ(d(yn+p−1, yn+p))]
λ < ψ(d(yn+p−1, yn+p)),

which is a contradiction. Hence R(xn+p−1, xn+p) = d(yn+p−2, yn+p−1). By (2.22),
we have

ψ(d(yn+p−1, yn+p)) ≤ [ψ(d(yn+p−2, yn+p−1))]λ < ψ(d(yn+p−2, yn+p−1)).

Since ψ is nondecreasing, we have d(yn+p−1, yn+p) < d(yn+p−2, yn+p−1). By con-
tinuing this process, we obtain the following inequality

d(yn, yn+1) < d(yn+p−1, yn+p) < d(yn+p−2, yn+p−1) < . . . < d(yn, yn+1),

which is a contradiction and hence p = 1. We deduce that T and f have a point
of coincidence. We can assume that yn 6= ym for n 6= m. We now prove that
{d(yn, yn+2)} is bounded. Since {d(yn, yn+1)} is bounded, there exists M > 0
such that

d(yn, yn+1) ≤M for all n ∈ N.
If d(yn, yn+2) > M for all n ∈ N, then from

R(xn, xn+2) = max
{
d(fxn, fxn+2), d(fxn, Txn), d(fxn+2, Txn+2)

}
= max

{
d(yn−1, yn+1), d(yn−1, yn), d(yn+1, yn+2)

}
= d(yn−1, yn+1),

and Lemma 2.5, we obtain that

ψ(d(yn, yn+2)) = ψ(d(Txn, Txn+2))

≤ α(fxn, fxn+2)ψ(d(Txn, Txn+2))

≤ [ψ(R(xn, xn+2))]λ

= [ψ(d(yn−1, yn+1))]λ

< ψ(d(yn−1, yn+1)).
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This implies that {d(yn, yn+2)} is decreasing. Therefore {d(yn, yn+2)} is bounded.
If d(yn, yn+2) ≤M for some n ∈ N, then from

R(xn+1, xn+3) = max
{
d(fxn+1, fxn+3), d(fxn+1, Txn+1), d(fxn+3, Txn+3)

}
= max

{
d(yn, yn+2), d(yn, yn+1), d(yn+2, yn+3)

}
,

and Lemma 2.5, we obtain that

ψ(d(yn+1, yn+3)) = ψ(d(Txn+1, Txn+3))

≤ α(fxn+1, fxn+3)ψ(d(Txn+1, Txn+3))

≤ [ψ(R(xn+1, xn+3))]λ

≤ [ψ(M)]λ

< ψ(M).

It follows that d(yn+1, yn+3) < M . This implies that {d(yn, yn+2)} is bounded.
We next prove that lim

n→∞
d(yn, yn+2) = 0. Suppose that lim

n→∞
d(yn, yn+2) 6= 0. So

there exists a subsequence {ynk
} of {yn} such that

lim
k→∞

d(ynk
, ynk+2) = a for some a > 0.

Using (2.1), we have

ψ(d(ynk
, ynk+2)) = ψ(d(Txnk

, Txnk+2))

≤ α(fxnk
, fxnk+2)ψ(d(Txnk

, Txnk+2))

≤ [ψ(R(xnk
, xnk+2))]λ,

where

R(xnk
, xnk+2) = max

{
d(fxnk

, fxnk+2), d(fxnk
, Txnk

), d(fxnk+2, Txnk+2)
}

= max
{
d(ynk−1, ynk+1), d(ynk−1, ynk

), d(ynk+1, ynk+2)
}
.

Letting k →∞ in the above inequality, we obtain that

ψ(a) = lim
k→∞

ψ(d(ynk
, ynk+2)) ≤ lim

k→∞
[ψ(R(xnk

, xnk+2))]λ = [ψ(a)]λ < ψ(a),

which is a contradiction. Therefore

lim
n→∞

d(yn, yn+2) = 0. (2.23)

We now prove that {yn} is a Cauchy sequence. Suppose that {yn} is not a Cauchy
sequence. Then there exist ε > 0 and two subsequences {ynk

} and {ymk
} of {yn}

such that nk is the smallest index with nk > mk > k for which

d(ymk
, ynk

) ≥ ε. (2.24)
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This implies that
d(ymk

, ynk−1) < ε. (2.25)

By applying the rectangular inequality and using (2.24) and (2.25), we obtain that

ε ≤ d(ymk
, ynk

)

≤ d(ymk
, ynk−1) + d(ynk−1, ynk−2) + d(ynk−2, ynk

)

< ε+ d(ynk−1, ynk−2) + d(ynk−2, ynk
).

Letting k →∞ in the above inequality and using (2.20), we get that

lim
k→∞

d(ymk
, ynk

) = ε. (2.26)

For each k ∈ N, we have

R(xnk
, xmk

) = max
{
d(fxnk

, fxmk
), d(fxnk

, Txnk
), (fxmk

, Txmk
)
}

= max
{
d(ynk−1, ymk−1), d(ynk−1, ynk

), (ymk−1, ymk
)
}
.

By using (2.20) and (2.26), we obtain that

lim
k→∞

R(xnk
, xmk

) = ε. (2.27)

By (2.26) and (2.27), there exists a positive integer k0 such that

d(ynk
, ymk

) > 0 and R(xnk
, xmk

) > 0, for all k ≥ k0.

By Lemma 2.5 and using (2.15), we get

ψ(d(ynk
, ymk

)) = ψ(d(Txnk
, Txmk

))

= ψ(d(Txmk
, Txnk

))

≤ α(fxmk
, fxnk

)ψ(d(Txmk
, Txnk

))

≤ [ψ(R(xmk
, xnk

))]λ

= [ψ(R(xnk
, xmk

))]λ,

for all nk > mk > k ≥ k0. Letting k → ∞ in this inequality, by (2.26) and (2.27)
and the continuity of ψ, we obtain that

ψ(ε) = lim
k→∞

ψ(d(ynk
, ymk

)) ≤ lim
k→∞

[ψ(R(xnk
, xmk

))]λ = [ψ(ε)]λ < ψ(ε),

which is a contradiction. Therefore {yn} is a Cauchy sequence in X. Assume that
fX is a complete BMS. It follows that {yn} converges to z ∈ fX. Thus there
exists x ∈ X such that fx ∈ fX and lim

n→∞
yn = fx. Therefore lim

n→∞
fxn+1 = fx.

Since T is continuous with respect to f , we have

fx = lim
n→∞

fxn+2 = lim
n→∞

Txn+1 = Tx.
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Therefore x is a coincidence point of T and f . In the case of completeness of TX,
we obtain that {yn} converges to z ∈ TX ⊆ fX.

We now prove that the point of coincidence of T and f is unique. Suppose
that u and v are two coincidence points of T and f . Therefore Tu = fu and
Tv = fv. We will show that fu = fv. Suppose that fu 6= fv. By (v), we have
α(fu, fv) ≥ 1 or α(fv, fu) ≥ 1. Suppose that α(fu, fv) ≥ 1. By condition (2.15),
we obtain that

ψ(d(fu, fv)) = ψ(d(Tu, Tv)) ≤ α(fu, fv)ψ(d(Tu, Tv)) ≤ [ψ(R(u, v))]λ,

where

R(u, v) = max{d(fu, fv), d(fu, Tu), d(fv, Tv)} = d(fu, fv).

This implies that

ψ(d(fu, fv)) ≤ [ψ(d(fu, fv))]λ < ψ(d(fu, fv))

which is a contradiction. Thus fu = fv. This implies that T and f have a unique
point of coincidence. Since the pair {T, f} is weakly compatible and by Proposition
1.15, we have that T and f have a unique common fixed point.

Theorem 2.7. Let (X, d) be a BMS and T, f : X → X be such that TX ⊆ fX
where one of these two subsets of X being complete. Suppose that α : X ×X →
[0,∞) and the following conditions hold :

(i) there exist ψ ∈ Ψ2 and λ ∈ (0, 1) such that for all x, y ∈ X,

d(Tx, Ty) 6= 0 implies α(fx, fy) · ψ(d(Tx, Ty)) ≤ [ψ(R(x, y))]λ, (2.28)

where
R(x, y) = max{d(fx, fy), d(fx, Tx), d(fy, Ty)};

(ii) there exists x1 ∈ X such that α(fx1, Tx1) ≥ 1;

(iii) T is a triangular f -α-admissible mapping;

(iv) if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n and xn →
x ∈ X as n → ∞, then there exists a subsequence {xnk

} of {xn} such that
α(xnk

, x) ≥ 1 for all k ∈ N;

(v) either α(fu, fv) ≥ 1 or α(fv, fu) ≥ 1 whenever fu = Tu and fv = Tv.

Then T and f have a unique point of coincidence. Moreover, if the pair {T, f} is
weakly compatible, then T and f have a unique common fixed point.

Proof. As in the proof of Theorem 2.6, we can construct the sequences {xn} and
{yn} in X such that

yn = fxn+1 = Txn, for all n ∈ N,
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α(fxn, fxn+1) ≥ 1 for all n ∈ N and limn→∞ fxn = fx. By (iv), there exists a
subsequence {fxnk

} of {fxn} such that α(fxnk
, fx) ≥ 1 for all k ∈ N. We can

suppose that fxnk
6= Tx. Applying inequality (2.28), we obtain that

ψ(d(Txnk
, Tx)) ≤ α(fxnk

, fx)ψ(d(Txnk
, Tx)) ≤ [ψ(R(xnk

, x))]λ,

where

R(xnk
, x) = max

{
d(fxnk

, fx), d(fxnk
, Txnk

), d(fx, Tx)
}

= max
{
d(ynk−1, fx), d(ynk−1, ynk

), d(fx, Tx)
}
.

Taking the limit as k →∞ and since ψ is continuous, we obtain that

lim
k→∞

R(xnk
, x) = d(fx, Tx).

We will prove that fx = Tx. Suppose that fx 6= Tx. Therefore

d(fx, Tx) ≤ d(fx, ynk−1) + d(ynk−1, ynk
) + d(Txnk

, Tx).

It follows that
d(fx, Tx) ≤ lim

k→∞
d(Txnk

, Tx).

Since ψ is continuous and nondecreasing, we obtain that

ψ(d(fx, Tx)) ≤ lim
k→∞

ψ(d(Txnk
, Tx)) ≤ [ψ(d(fx, Tx))]λ < ψ(d(fx, Tx)),

which is a contradiction. Thus fx = Tx. Let z = fx = Tx. Hence z is a point of
coincidence for T and f . As in the proof of Theorem 2.6, we obtain that T and
f have a unique point of coincidence. Since the pair {T, f} is weakly compatible
and by Proposition 1.15, then we have that T and f have a unique common fixed
point.

Let X be a nonempty set. If (X, d) is a BMS and (X,�) is a partially ordered
set, then (X, d,�) is called a partially ordered BMS. We say that x, y ∈ X are
comparable if x � y or y � x. Let (X,�) be a partially ordered set and T, f :
X → X. A mapping T is called an f -nondecreasing mapping if Tx � Ty whenever
fx � fy for all x, y ∈ X.

Using Theorem 2.7, we obtain the following theorem in the setting of partially
ordered BMS spaces.

Theorem 2.8. Let (X, d,�) be a partially ordered BMS and let T and f be self-
mappings on X such that TX ⊆ fX. Assume that (fX, d) is a complete BMS.
Suppose that the following conditions hold :

(i) there exist ψ ∈ Ψ2 and λ ∈ (0, 1) such that for all x, y ∈ X with fx � fy,

d(Tx, Ty) 6= 0 implies ψ(d(Tx, Ty)) ≤ [ψ(R(x, y))]λ, (2.29)

where
R(x, y) = max{d(fx, fy), d(fx, Tx), d(fy, Ty)};
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(ii) T is f -nondecreasing;

(iii) there exists x1 ∈ X such that fx1 � Tx1;

(iv) if {xn} is a sequence in X such that xn � xn+1 for all n and xn → x ∈ X
as n→∞, then there exists a subsequence {xnk

} of {xn} such that xnk
� x

for all k ∈ N;

(v) fu and fv are comparable whenever fu = Tu and fv = Tv.

Then T and f have a unique point of coincidence. Moreover, if the pair {T, f} is
weakly compatible, then T and f have a unique common fixed point.

Proof. Define a mapping α : X ×X → [0,∞) such that

α(x, y) =

{
1 if x, y ∈ X and x � y
0 otherwise.

We first show that T is f -α-admissible. Let x, y ∈ X such that α(fx, fy) ≥ 1.
Therefore fx � fy. Since T is f -nondecreasing, we have Tx � Ty and then
α(Tx, Ty) ≥ 1. We next prove that T is a triangular f -α-admissible. Let x, y ∈ X
such that α(fx, fy) ≥ 1 and α(fy, Ty) ≥ 1. Then we have fx � fy and fy � Ty.
This implies that fx � Ty. So α(fx, Ty) ≥ 1. Therefore T is a triangular f -α-
admissible mapping. Since there exists x1 ∈ X such that fx1 � Tx1, we have
α(fx1, Tx1) ≥ 1. Let {xn} be a sequence in X such that α(xn, xn+1) ≥ 1 for all
n ∈ N and xn → x as n → ∞. By definition of α, we have xn � xn+1 for all
n ∈ N. By (iv), there exists a subsequence {xnk

} of {xn} such that xnk
� x for all

k ∈ N and hence α(xnk
, x) ≥ 1 for all k ∈ N . Let u, v ∈ X such that fu = Tu and

fv = Tv. Since fu and fv are comparable, then we have fu � fv or fv � fu.
This implies that α(fu, fv) ≥ 1 or α(fv, fu) ≥ 1. Finally, we prove that (2.28)
holds. Let x, y ∈ X and d(Tx, Ty) 6= 0. If α(fx, fy) = 1, then fx � fy and then
(2.28) holds. If α(fx, fy) = 0, then (2.28) holds. It follows that all assumptions
of Theorem 2.7 hold. By Theorem 2.7, we obtain that T and f have a unique
common fixed point.
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