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Abstract : In 2011, Thailand has been confronted a largest flooding. The mass
of water has been drenched from many main and branch rivers to cover wide
areas. The residents who lived in the flooding area have to build a manmade
sandbag dike to protect their village. The flooding has been taken for a long time
meanwhile the flooding water becomes contaminated. There are some residents
in their flooding area want to drain their contaminated water to a nearest area.
They have been destroyed their sandbag dike. Consequently, the dispute among
residents is occurred. In this research, a mathematical simulation of a water-
quality on a long period flooding using a couple of two models is proposed. The
first model is the one-dimensional shallow water equations that provide the water
elevation and velocity. The second model is a one-dimensional advection-dispersion
equation that provides the water pollutant concentrations after the sandbag dike
has been destroyed. A revised Lax-diffusive is used to approximate the solution
of the first model. Consequently, the numerical solutions of the second model are
obtained by using the traditional and modified Siemieniuch-Gladwell schemes.
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1 Introduction

Two mathematical models are used to explain the situation. The first model
is one-dimensional hydrodynamic model that gives the velocity and elevation of
water. The second model is dispersion model that gives the pollutant concen-
tration of water after the sandbag-dike has been destroyed. In the recent years,
there has been many research magnitude on the evolution of numerical models to
simulate dam-break flows. For example, In [1] used Lax-Friendrichs to compare
MacCormack and MacCormack TVD with a one dimension (1D) dam-break flow
simulation. In [2] used central scheme for 1D and two dimension (2D) dam-break
simulation. In [3] used finite volume method for numerical solution of shallow
water equations in dam-break with flat topography. In [4] used 2D finite volume
multiblock flow solver. The model is based on Flux Vector Splitting method. In
[5] used a robust and effective flux-vector splitting method to simulate dam-break
problem base on finite volume method on a cartesian grid. In [6] used smoothed
particle hydrodynamics (SPH) to solve shallow-water dam break flow in open chan-
nels. In [7] used a new well-balanced unstraggered central finite volume scheme
for 1D and 2D dam break over a rectangular bump. In [8] used well-balanced hy-
drostatic upwind schemes for dam-break approximations. The dam-break model
is used to Explain unsteady dike failure flow. In [9] used Implicit (PriessMan) and
Explicit (Lax Diffusive) methods for Saint-Venent Equations to Simulate Flood
wave in Natural Rivers. In this work, the revised Lax diffusive technique is used
to solve dike failure problem.

2 Model Formulation

In this section, the couple of mathematical models are used to describe. The
first model is one-dimensional hydrodynamic model that provide water elevation
and water velocity. The second model is advection-diffusion-equation that give
water pollutant concentration. The second model need to input water velocity
from the first model.

2.1 A Dam-Break Model

The Navier-Stokes equations over the flow depth with two assumptions, the
hydrostatic pressure distributions and a small bottom slope, are govern the one-
dimensional hydrodynamic equations. Since the dam-break flow the model has the
high level velocity can be considered as the advection-dominated shallow water
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Figure 1: The shallow water system.

flows. These are the eddy viscosity terms can be omitted. The model equations
can be described in the system of partial differential equations:

∂x

(
h
hu

)
+ ∂t

(
hu

hu2 + 1
2gh

2

)
=

(
0

−gh∂xz

)
(2.1)

where x is the longitudinal length along a stream (m), t is time (s) and h(x, t) is
the depth of water (m). The velocity of water is defined by u(x, t) (m/s) and z(x)
is the function of bottom topography (m). g is gravitational constant (9.8 m/s2)
for all x ∈ [0, L]. The initial conditions are given by

u(x, 0) = 0, for all 0 ≤ x ≤ L, (2.2)

and

h(x, 0) =

{
hl if 0 ≤ x ≤ L

2 ,

hr if L
2 < x ≤ L,

(2.3)

where hl > hr, the water flow from the upstream to downstream at t = 0. The
Neumann boundary conditions are also given by

ux(0, t) = ux(L, t) = 0, (2.4)

hx(0, t) = hx(L, t) = 0. (2.5)

2.2 Dispersion Model

The governing equations are the one-dimensional advection-diffusion equations
(ADE). This equations give a water pollutant concentration and a simplified form
is shown in [10] as,

∂C

∂t
+ u

∂C

∂x
= D

∂2C

∂x2
, (2.6)
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where C(x, t) is the pollutant concentration of water at the point x(m) and time
t(s). D is the diffusion coefficient and u(x, t) is the velocity component (m/s) for
all x ∈ [0, L]. The initial conditions are given by

C(x, 0) = C0 for all 0 ≤ x ≤ L. (2.7)

The boundary conditions are provided by

C(0, t) = Ct for all t > 0, (2.8)

Cx(L, t) = CR for all t > 0, (2.9)

where C(t) is the function depends on t. C0 and CR are constants.

3 Numerical Techniques

The water height and water velocity are obtained by the dam-break model.
The dispersion model have to input velocity field from the first model. The second
model which provides the pollutant concentration field.

3.1 A Revised Lax-Diffusive Method for a Dam-Break Model

In this section, the revised method of a traditional Lax-diffusive method for
the dam-break model of [9] is proposed. We now discretize Eq.(2.1) by dividing the
interval [0, L] into M subintervals such that M∆x = L and the interval [0, T ] into
N subintervals such that N∆t = T . We can then approximate h(xm, tn) by hnm,
value of the difference approximation of h(x, t) at point x = m∆x and t = n∆t,
where 0 ≤ m ≤ M and 0 ≤ n ≤ N , and similarly defined for unm. The grid point
(xm, tn) is defined by xm = m∆x for all m = 0, 1, 2, . . . ,M and tn = n∆t for all
n = 0, 1, 2, . . . , N in which M and N are positive integers.

We will modify f∗ from two points averaged [9] to be the three points aver-
aged. The discretization of Eq.(2.1) is base on a Lax-diffusive scheme. The semi-
discrete scheme is applied to Eq.(2.1) and using a uniform spatial grid (xm, tn) =
(m∆x, n∆t), we can define

fx ≈
fnm+1 − fnm−1

2∆x
, (3.1)

ft ≈
fn+1
m − f∗m

∆t
, (3.2)

where

f∗ =
fnm+1 + fnm + fnm−1

3
. (3.3)

The partial derivative of h and u with respect to x and t are approximated by
using Eqs.(3.1-3.3), respectively. We can see that Eq.(2.1) is written in a matrix
form as

At +Bx + C = 0, (3.4)
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where

A =

(
h

hu

)
, B =

(
hu

hu2 + 1
2gh

2

)
, C =

(
0

−gh∂xz

)
. (3.5)

It follows that Eq.(3.5) can be written by the uniform spatial grids as

An
m =

(
hnm

hnmu
n
m

)
, Bn

m =

(
hnmu

n
m

hnm(unm)2 + 1
2g(hnm)2

)
, C =

(
0

−ghnm∂xz

)
. (3.6)

Substituting the finite difference approximations of Eqs.(3.1-3.2) and Eq.(3.3) into
Eq.(3.4), we obtain that

An+1
m =

∆t

2∆x
(Bn

m−1 −Bn
m+1) +A∗ (3.7)

where A∗ =

(
h∗

(hu)∗

)
. Substituting Eq.(3.6) into Eq.(3.7), we can see that

(
hn+1
m

hn+1
m un+1

m

)
=

∆t

2∆x

(
hnm−1u

n
m−1 − hnm+1u

n
m+1

hnm−1(unm−1)2 − hnm+1(unm+1)2 + 1
2g((hnm−1)2 − (hnm+1)2)

)
+

1

3

(
hnm−1 + hnm + hnm+1

hnm−1u
n
m−1 + hnmu

n
m + hnm+1u

n
m+1

)
. (3.8)

for all 1 ≤ m < M and 0 ≤ n ≤ N − 1. For upper boundary, where m = 0, plug
the known value of the left boundary by un−1 = un0 and hn−1 = hn0 into Eq.(3.8) in
the right-hand side, we obtain(

hn+1
1

hn+1
1 un+1

1

)
=

∆t

2∆x

(
hn0u

n
0 − hn1un1

hn0 (un0 )2 − hn1 (un1 )2 + 1
2g((hn0 )2 − (hn1 )2)

)
+

1

3

(
2hn0 + hn1

2hn0u
n
0 + hn1u

n
1

)
. (3.9)

For lower boundary, where m = M , substituting the approximate unknown value
of the right boundary by boundary conditions, we can let unM+1 = unM and hnM+1 =
hnM by rearranging, we obtain(

hn+1
M

hn+1
M un+1

M

)
=

∆t

2∆x

(
hnM−1u

n
M−1 − hnMunM

hnM−1(unM−1)2 − hnM (unM )2 + 1
2g((hnM−1)2 − (hnM )2)

)
+

1

3

(
hnM−1 + 2hnM

hnM−1u
n
M−1 + 2hnMu

n
M

)
. (3.10)

The stability condition of the scheme needed CFL number as [9],

Cn = umax(
∆t

∆x
) ≤ 1. (3.11)
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3.2 Numerical Method for a Dispersion Model

We consider both implicit and explicit methods for solving advection-diffusion
equations. The well-known traditional methods are also introduced [10].

3.2.1 The Modified Siemieniuch-Gladwell Implicit Procedure

We can then approximate C(xi, tn) by Cn
i , the value of the difference approxi-

mation of C(x, t) at point x = i∆x and t = n∆t, where 0 ≤ i < M and 0 ≤ n < N .
The grid point (xn, tn) is defined by xi = i∆x for all i = 0, 1, 2, ...,M and tn = n∆t
for all n = 0, 1, 2, ..., N in which M and N are positive integers. Taking the modified
Siemieniuch-Gladwell technique [10] into Eq.(2.6), by the following discretizations:

∂C

∂t
≈ (2β − αn

m)

4

(Cn+1
m−1 − Cn

m−1)

∆t
+

(2− 2β + αn
m)

2

(Cn+1
m − Cn

m)

∆t

+
(2β − αn

m)

4

(Cn+1
m+1 − Cn

m+1)

∆t
, (3.12)

∂C

∂x
≈

(Cn
m+1 − Cn

m−1)

4∆x
+

(Cn+1
m+1 − C

n+1
m−1)

4∆x
, (3.13)

∂2C

∂x2
≈ 1

2

(Cn+1
m+1 − 2Cn+1

m + Cn+1
m−1)

(∆x)2
+

1

2

(Cn
m+1 − 2Cn

m + Cn
m−1)

(∆x)2
, (3.14)

u ≈ ũnm, (3.15)

where u = ũnm are obtained by the revised Lax-diffusive method Eq.(3.8). Substi-
tuting Eqs.(3.12-3.15) into Eq.(2.6), we have

−αn
mC

n+1
m−1+(2+αn

m)Cn+1
m = 2βCn

m−1+(2−4β+αn
m)Cn

m+(2β−αn
m)Cn

m+1, (3.16)

where αn
m = u = ũnm( ∆t

∆x ) and β = D ∆t
(∆x)2 for all 1 ≤ m < M and 0 ≤ n < N .

For the left boundary condition, m = 0, the known value on the left boundary are
approximated by Cn

−1 = Cn
0 and Cn+1

−1 = Cn+1
0 , we can see that

2Cn+1
0 = (2− 2β + αn

0 )Cn
0 + (2β − αn

0 )Cn
1 . (3.17)

Similarly, the right boundary condition, m = M , the known value on the left
boundary are approximated by Cn

M+1 = Cn
M and Cn+1

M+1 = Cn+1
M into Eq.(3.16) in

the right-hand side, we have

− αn
MC

n+1
M−1 + (2 + αn

M )Cn+1
M = 2βCn

M−1 + (2− 2β)Cn
M . (3.18)

The stability of modified Siemieniuch-Gladwell procedure is [10],

0 < β ≤ 1 + αn
m

2
. (3.19)
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3.2.2 The BTCS-Type Implicit Method

Consider the Backward in time cecter in space(BTCS) scheme for the advection-
diffusion equation by the following discretizations:

∂C

∂t
≈ (Cn+1

m − Cn
m)

∆t
, (3.20)

∂C

∂x
≈

(Cn+1
m+1 − C

n+1
m−1)

2∆x
, (3.21)

∂2C

∂x2
≈

(Cn+1
m+1 − 2Cn+1

m + Cn+1
m−1)

(∆x)2
, (3.22)

u ≈ ũnm. (3.23)

Substituting Eqs.(3.20-3.23) into Eq.(2.6), we have

− (αn
m + 2β)Cn+1

m−1 + 2(1 + 2β)Cn+1
m + (αn

m − 2β)Cn+1
m+1 = 2Cn

m, (3.24)

for all 1 ≤ m < M and 0 ≤ n < N . For the left boundary condition, m = 0, the
known value on the left boundary are approximated Cn+1

−1 = Cn+1
0 , we can see

that
(2− αn

0 )Cn+1
0 + (αn

0 − 2β)Cn+1
1 = 2Cn

0 . (3.25)

Similarly, the right boundary condition, m = M , the known value on the left
boundary are approximated Cn+1

M+1 = Cn+1
M , we have

− (αn
M + 2β)Cn+1

M−1 + (2 + 2β + αn
M )Cn+1

M = 2Cn
M . (3.26)

The stability of BTCS scheme is unconditionally stable [10].

3.2.3 The Upwind Implicit Formula

Consider the upwind implicit scheme for the advection-diffusion equation by
the following discretizations:

∂C

∂t
≈ (Cn+1

m − Cn
m)

∆t
, (3.27)

∂C

∂x
≈

(Cn+1
m − Cn+1

m−1)

∆x
, (3.28)

∂2C

∂x2
≈

(Cn+1
m+1 − 2Cn+1

m + Cn+1
m−1)

(∆x)2
, (3.29)

u ≈ ũnm. (3.30)

Substituting Eqs.(3.27-3.30) into Eq.(2.6), we have

− (αn
m + β)Cn+1

m−1 + (1 + 2β + αn
m)Cn+1

m − βCn+1
m+1 = Cn

m, (3.31)
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for all 1 ≤ m < M and 0 ≤ n < N . For the left boundary condition, m = 0, the
known value on the left boundary are approximated by Cn+1

−1 = Cn+1
0 , we can see

that

(1 + β)Cn+1
0 − βCn+1

1 = Cn
0 . (3.32)

Similarly, the right boundary condition, m = M , the known value on the left
boundary are approximated Cn+1

M+1 = Cn+1
M , we have

− (αn
M + β)Cn+1

M−1 + (1 + β + αn
M )Cn+1

M = Cn
M . (3.33)

The stability of upwind implicit scheme is unconditionally stable [10].

3.2.4 The Crank-Nicolson Type Technique

Consider the Crank-Nicolson scheme for the advection-diffusion equation by
the following discretizations:

∂C

∂t
≈ (Cn+1

m − Cn
m)

∆t
, (3.34)

∂C

∂x
≈

(Cn+1
m − Cn+1

m−1)

∆x
, (3.35)

∂2C

∂x2
≈

(Cn+1
m+1 − 2Cn+1

m + Cn+1
m−1)

(∆x)2
, (3.36)

u ≈ ũnm. (3.37)

Substituting Eqs.(3.34-3.37) into Eq.(2.6), we have

−(αn
m + 2β)Cn+1

m−1 + 4(1 + β)Cn+1
m + (αn

m − 2β)Cn+1
m+1

= (αn
m + 2β)Cn

m−1 + 4(1− β)Cn
m + (2β − αn

m)Cn
m+1, (3.38)

for all 1 ≤ m < M and 0 ≤ n < N . For the left boundary condition, m = 0, the
known value on the left boundary are approximated Cn+1

−1 = Cn+1
0 and Cn

−1 = Cn
0

, we can see that

(4 + 2β − αn
0 )Cn+1

0 + (αn
0 − 2β)Cn+1

1 = (4− 2β + αn
0 )Cn

0 + (2β − αn
0 )Cn

1 . (3.39)

Similarly, the right boundary condition, m = M , the known value on the left
boundary are approximated Cn+1

M+1 = Cn+1
M and Cn

M+1 = Cn
M , we have

− (αn
M + 2β)Cn+1

M−1 + (4 + 2β+αn
M )Cn+1

M = (αn
M + 2β)Cn

M−1 + (4− 2β−αn
M )Cn

M .
(3.40)

The stability of Crank-Nicolson scheme is unconditionally stable [10].
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3.2.5 The FTCS-Type Scheme

The traditional forward time central space scheme is considered the following
discretizations:

∂C

∂t
≈ (Cn+1

m − Cn
m)

∆t
, (3.41)

∂C

∂x
≈

(Cn
m+1 − Cn

m−1)

2∆x
, (3.42)

∂2C

∂x2
≈

(Cn
m+1 − 2Cn

m + Cn
m−1)

(∆x)2
, (3.43)

u ≈ ũnm. (3.44)

Substituting Eqs.(3.41-3.44) into Eq.(2.6), we have

Cn+1
m =

1

2
(2β + αn

m)Cn
m−1 + (1− 2β)Cn

m +
1

2
(2β − αn

m)Cn
m+1, (3.45)

for all 1 ≤ m < M and 0 ≤ n < N . For the left boundary condition, m = 0, the
known value on the left boundary are approximated Cn

−1 = Cn
0 , we can see that

Cn+1
0 = (1 +

1

2
αn

0 − β)Cn
0 +

1

2
(2β − αn

0 )Cn
1 . (3.46)

Similarly, the right boundary condition, m = M , the known value on the left
boundary are approximated Cn

M+1 = Cn
M , we have

Cn+1
M =

1

2
(2β + αn

M )Cn
M−1 + (1− 1

2
αn
M − β)Cn

M . (3.47)

The stability of FTCS scheme is [10]

(α)2

2
≤ β ≤ 1

2
. (3.48)

3.2.6 The Upwind Explicit Formula

The upwind explicit scheme is considered by the following discretizations:

∂C

∂t
≈ (Cn+1

m − Cn
m)

∆t
, (3.49)

∂C

∂x
≈

(Cn
m − Cn

m−1)

∆x
, (3.50)

∂2C

∂x2
≈

(Cn
m+1 − 2Cn

m + Cn
m−1)

(∆x)2
, (3.51)

u ≈ ũnm. (3.52)
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Substituting Eqs.(3.49-3.52) into Eq.(2.6), we have

Cn+1
m = (β + αn

m)Cn
m−1 + (1− 2β − αn

m)Cn
m + βCn

m+1, (3.53)

for all 1 ≤ m < M and 0 ≤ n < N . For the left boundary condition, m = 0, the
known value on the left boundary are approximated Cn

−1 = Cn
0 , we can see that

Cn+1
0 = (1− β)Cn

0 + βCn
1 . (3.54)

Similarly, the right boundary condition, m = M , the known value on the left
boundary condition are approximated Cn

M+1 = Cn
M , we have

Cn+1
M = (β + αn

M )Cn
M−1 + (1− β − αn

M )Cn
M . (3.55)

The stability of upwind explicit scheme is [10]

α2 − α
2

≤ β ≤ 1− α
2

. (3.56)

3.2.7 The Lax-Wendroff Technique

The Lax-wendroff scheme is considered by the following discretizations:

∂C

∂t
≈ (Cn+1

m − Cn
m)

∆t
, (3.57)

∂C

∂x
≈ αn

m

(Cn
m − Cn

m−1)

∆x
+ (1− αn

m)
(Cn

m+1 − Cn
m−1)

2∆x
, (3.58)

∂2C

∂x2
≈

(Cn
m+1 − 2Cn

m + Cn
m−1)

(∆x)2
, (3.59)

u ≈ ũnm. (3.60)

Substituting Eqs.(3.57-3.60) into Eq.(2.6), we have

Cn+1
m =

1

2
(2β+αn

m+(αn
m)2)Cn

m−1+(1−2β−(αn
m)2)Cn

m+
1

2
(2β−αn

m+(αn
m)2)Cn

m+1,

(3.61)
for all 1 ≤ m < M and 0 ≤ n < N . For the left boundary condition, m = 0, the
known value on the left boundary are approximated Cn

−1 = Cn
0 , we can see that

Cn+1
0 = (1− β +

1

2
αn

0 −
1

2
(αn

0 )2)Cn
0 +

1

2
(2β − αn

0 + (αn
0 )2)Cn

1 . (3.62)

Similarly, the right boundary condition, m = M , the known value on the left
boundary are approximated Cn

M+1 = Cn
M , we have

Cn+1
M =

1

2
(2β − αn

M + (αn
M )2)Cn

M−1 + (1− β − 1

2
αn
M −

1

2
(αn

M )2)Cn
M . (3.63)

The stability of upwind explicit scheme is [10]

0 < β ≤ 1− α2

2
. (3.64)
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4 Numerical Experiments

Suppose that the measurement of pollutant concentration C in a dam-break
flow stream is considered. A stream is aligned with longitudinal distance, 2000
(m) total length. There is a dam-break which discharges waste water into the
flooding area at middle point of the domain and the pollutant concentrations at
the discharge point are assumed:

C(1000, t) = (1− | sin t|)T − t
T

for all 0 ≤ t < T, (4.1)

Cx(2000, t) = 0, (4.2)

C(x, 0) =

{
1 kg/m3 if x = 1000,

0.1 kg/m3 if 1000 < x ≤ 2000.
(4.3)

The elevation and velocity of water are obtained by the dam-break model that
we assume the initial and boundary conditions by several cases as below,
Case A: Dam-break on wet bed (pollutant discharging into the high flooding area)

h(x, 0) =

{
1 m if x = 1000,

0.75 m if 1000 < x ≤ 2000,
(4.4)

where u(x, 0) = 0 for all 1000 ≤ x ≤ 2000 and ux(0, t) = ux(2000, t) = 0.
Case B: Dam-break on wet bed (pollutant discharging into the medium flooding
area)

h(x, 0) =

{
1 m if x = 1000,

0.50 m if 1000 < x ≤ 2000,
(4.5)

where u(x, 0) = 0 for all 1000 ≤ x ≤ 2000 and ux(0, t) = ux(2000, t) = 0.
Case C: Dam-break on wet bed (pollutant discharging into the low flooding area)

h(x, 0) =

{
1 m if x = 1000,

0.25 m if 1000 < x ≤ 2000,
(4.6)

where u(x, 0) = 0 for all 1000 ≤ x ≤ 2000 and ux(0, t) = ux(2000, t) = 0. The phys-
ical parameters of the polluted system are diffusion coefficient D = 1.00(m2/s).
In the analysis conducted in this study, meshes the stream into 1000 elements
with ∆x = 2 , and time increment is 0.1(s) with ∆t = 0.1 , characterizing a
one-dimensional flow. Using the modified Lax-diffusive method Eq.(3.7) to ob-
tain the velocity and elevation of water when sandbag-dike is destroyed. We can
get the water velocity u(x, t) on Tables 2, 4 and 6 in 3 cases of the high level
flooding area, the medium level flooding area and the low level flooding area,
respectively. We also get the water elevation h(x, t) on Tables 1, 3 and 5, respec-
tively. Next, it can be plug the approximate water velocity into their implicit and
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explicit methods such as Modified Siemieniuch-Gladwell method, BTCS method,
Upwind implicit method, Crank-Nicolson method, FTCS method, Upwind explicit
method, Lax-wendroff method. The approximation of pollutant concentrations C
of several schemes are shown in Tables 7-13. The comparison of approximated
pollutant concentrations of FTCS, Upwind explicit and Lax-wendroff with several
dam-break cases A, B and C are shown in Fig. 5.

Figure 2: (a) The water elevation h(x, t)(m) and (b) The water velocity
u(x, t)(m/sec) of case A (wet bed with depth ratio 0.75) at t = 50 sec

Table 1: The water elevation of water flow h(x, t)m where hl = 1m and
hl = 0.75m (Case A)

t(sec), x(m) 0 200 400 600 800 1000 1200 1400 1600 1800 2000
10 1.0000 1.0000 1.0000 1.0000 1.0000 0.8746 0.7500 0.7500 0.7500 0.7500 0.7500
20 1.0000 1.0000 1.0000 1.0000 1.0000 0.8710 0.7500 0.7500 0.7500 0.7500 0.7500
30 1.0000 1.0000 1.0000 1.0000 1.0000 0.8700 0.7500 0.7500 0.7500 0.7500 0.7500
40 1.0000 1.0000 1.0000 1.0000 0.9992 0.8698 0.7504 0.7500 0.7500 0.7500 0.7500
50 1.0000 1.0000 1.0000 1.0000 0.9904 0.8698 0.7571 0.7500 0.7500 0.7500 0.7500

Table 2: The water velocity of water flow u(x, t)m/s where hl = 1m and
hl = 0.75m (Case A)

t(sec), x(m) 0 200 400 600 800 1000 1200 1400 1600 1800 2000
10 0.0000 0.0000 0.0000 0.0000 0.0000 0.3856 0.0000 0.0000 0.0000 0.0000 0.0000
20 0.0000 0.0000 0.0000 0.0000 0.0000 0.4134 0.0000 0.0000 0.0000 0.0000 0.0000
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.4185 0.0000 0.0000 0.0000 0.0000 0.0000
40 0.0000 0.0000 0.0000 0.0000 0.0026 0.4196 0.0013 0.0000 0.0000 0.0000 0.0000
50 0.0000 0.0000 0.0000 0.0000 0.0301 0.4198 0.0257 0.0000 0.0000 0.0000 0.0000
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Figure 3: (a) The water elevation h(x, t)(m) and (b) The water velocity
u(x, t)(m/sec) of case B (wet bed with depth ratio 0.5) at t = 50 sec

Table 3: The water elevation of water flow h(x, t)m where hl = 1m and
hr = 0.5m (Case B)

t(sec), x(m) 0 200 400 600 800 1000 1200 1400 1600 1800 2000
10 1.0000 1.0000 1.0000 1.0000 1.0000 0.7491 0.5000 0.5000 0.5000 0.5000 0.5000
20 1.0000 1.0000 1.0000 1.0000 1.0000 0.7353 0.5000 0.5000 0.5000 0.5000 0.5000
30 1.0000 1.0000 1.0000 1.0000 0.9999 0.7294 0.5000 0.5000 0.5000 0.5000 0.5000
40 1.0000 1.0000 1.0000 1.0000 0.9986 0.7269 0.5001 0.5000 0.5000 0.5000 0.5000
50 1.0000 1.0000 1.0000 1.0000 0.9852 0.7259 0.5047 0.5000 0.5000 0.5000 0.5000

Table 4: The water velocity of water flow u(x, t)m/s where hl = 1m and
hr = 0.5m (Case B)

t(sec), x(m) 0 200 400 600 800 1000 1200 1400 1600 1800 2000
10 0.0000 0.0000 0.0000 0.0000 0.0000 0.7945 0.0000 0.0000 0.0000 0.0000 0.0000
20 0.0000 0.0000 0.0000 0.0000 0.0000 0.8762 0.0000 0.0000 0.0000 0.0000 0.0000
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.9027 0.0000 0.0000 0.0000 0.0000 0.0000
40 0.0000 0.0000 0.0000 0.0000 0.0044 0.9138 0.0006 0.0000 0.0000 0.0000 0.0000
50 0.0000 0.0000 0.0000 0.0000 0.0465 0.9189 0.0207 0.0000 0.0000 0.0000 0.0000
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Figure 4: (a) The water elevation h(x, t)(m) and (b) The water velocity
u(x, t)(m/sec) of case C (wet bed with depth ratio 0.25) at t = 50 sec

Table 5: The water elevation of water flow h(x, t)m where hl = 1m and
hr = 0.25m (Case C)

t(sec), x(m) 0 200 400 600 800 1000 1200 1400 1600 1800 2000
10 1.0000 1.0000 1.0000 1.0000 1.0000 0.6307 0.2500 0.2500 0.2500 0.2500 0.2500
20 1.0000 1.0000 1.0000 1.0000 1.0000 0.6049 0.2500 0.2500 0.2500 0.2500 0.2500
30 1.0000 1.0000 1.0000 1.0000 1.0000 0.5901 0.2500 0.2500 0.2500 0.2500 0.2500
40 1.0000 1.0000 1.0000 1.0000 0.9982 0.5808 0.2500 0.2500 0.2500 0.2500 0.2500
50 1.0000 1.0000 1.0000 1.0000 0.9821 0.5744 0.2512 0.2500 0.2500 0.2500 0.2500

Table 6: The water velocity of water flow u(x, t)m/s where hl = 1m and
hr = 0.25m (Case C)

t(sec), x(m) 0 200 400 600 800 1000 1200 1400 1600 1800 2000
10 0.0000 0.0000 0.0000 0.0000 0.0000 1.1995 0.0000 0.0000 0.0000 0.0000 0.0000
20 0.0000 0.0000 0.0000 0.0000 0.0000 1.3517 0.0000 0.0000 0.0000 0.0000 0.0000
30 0.0000 0.0000 0.0000 0.0000 0.0000 1.4222 0.0000 0.0000 0.0000 0.0000 0.0000
40 0.0000 0.0000 0.0000 0.0000 0.0055 1.4655 0.0001 0.0000 0.0000 0.0000 0.0000
50 0.0000 0.0000 0.0000 0.0000 0.0561 1.4952 0.0076 0.0000 0.0000 0.0000 0.0000

Table 7: The pollutant concentration C(x, t)(Kg/m3) by Modified
Siemieniuch-Gladwell schemes (Case A)

t(sec), x(m) 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000
300 0.6411 0.6838 0.1012 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000
600 0.3663 0.4924 0.6715 0.1630 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000
900 0.1741 0.2734 0.4426 0.6334 0.3129 0.1017 0.1000 0.1000 0.1000 0.1000 0.1000
1200 0.0565 0.1236 0.2382 0.3958 0.5863 0.4518 0.1188 0.1000 0.1000 0.1000 0.1000
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Table 8: The pollutant concentration C(x, t)(Kg/m3) by BTCS schemes
(Case A)

t(sec), x(m) 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000
300 0.6411 0.3926 0.1006 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000
600 0.3663 0.2795 0.3832 0.1320 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000
900 0.1741 0.1552 0.2513 0.3606 0.2069 0.1009 0.1000 0.1000 0.1000 0.1000 0.1000
1200 0.0565 0.0702 0.1352 0.2247 0.3334 0.2755 0.1096 0.1000 0.1000 0.1000 0.1000

Table 9: The pollutant concentration C(x, t)(Kg/m3) by Upwind implicit
schemes (Case A)

t(sec), x(m) 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000
300 0.6411 0.7330 0.1056 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000
600 0.3663 0.5540 0.7232 0.2052 0.1002 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000
900 0.1741 0.3079 0.4984 0.6885 0.3632 0.1072 0.1000 0.1000 0.1000 0.1000 0.1000
1200 0.0565 0.1394 0.2688 0.4463 0.6430 0.4899 0.1422 0.1004 0.1000 0.1000 0.1000

Table 10: The pollutant concentration C(x, t)(Kg/m3) by Crank-Nicolson
schemes (Case A)

t(sec), x(m) 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000
300 0.6411 0.5044 0.1008 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000
600 0.3663 0.3613 0.4940 0.1435 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000
900 0.1741 0.2007 0.3248 0.4655 0.2472 0.1011 0.1000 0.1000 0.1000 0.1000 0.1000
1200 0.0565 0.0907 0.1748 0.2904 0.4306 0.3430 0.1130 0.1000 0.1000 0.1000 0.1000

Table 11: The pollutant concentration C(x, t)(Kg/m3) by FTCS schemes
(Case A)

t(sec), x(m) 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000
300 0.6461 0.7907 0.1010 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000
600 0.3701 0.5836 0.7877 0.1672 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000
900 0.1766 0.3249 0.5248 0.7469 0.3418 0.1016 0.1000 0.1000 0.1000 0.1000 0.1000
1200 0.0579 0.1475 0.2832 0.4695 0.6930 0.5115 0.1200 0.1000 0.1000 0.1000 0.1000

Table 12: The pollutant concentration C(x, t)(Kg/m3) by Upwind explicit
schemes (Case A)

t(sec), x(m) 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000
300 0.6461 0.7571 0.1046 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000
600 0.3701 0.5841 0.7553 0.2018 0.1001 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000
900 0.1766 0.3254 0.5257 0.7220 0.3665 0.1065 0.1000 0.1000 0.1000 0.1000 0.1000
1200 0.0579 0.1480 0.2842 0.4709 0.6757 0.5027 0.1407 0.1003 0.1000 0.1000 0.1000

Table 13: The pollutant concentration C(x, t)(Kg/m3) by Lax-wendroff
schemes (Case A)

t(sec), x(m) 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000
300 0.6461 0.7898 0.1011 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000
600 0.3701 0.5836 0.7870 0.1680 0.1001 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000
900 0.1766 0.3249 0.5248 0.7463 0.3424 0.1017 0.1000 0.1000 0.1000 0.1000 0.1000
1200 0.0579 0.1475 0.2832 0.4695 0.6926 0.5113 0.1204 0.1000 0.1000 0.1000 0.1000
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(a) case A (depth ratio 0.75)

(b) case B (depth ratio 0.5)

(c) case C (depth ratio 0.25)

Figure 5: The comparison of pollutant concentration for all cases with ∆x = 2,∆t = 0.1 at
difference time by explicit methods.
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5 Discussion

The elevation and velocity of water current are obtained by a revised Lax-
diffusive method. The case C of sandbag-dike failure gives the highest flow velocity.
The cases A-B of sandbag-dike failure give low velocity. The approximation of the
pollutant concentrations of the implicit and explicit methods are shown in Tables
7-13.

6 Conclusion

If the villagers have received flood for longtime, the water pollutant have
to be increase. The residents want to drain the water to the other areas by
destroying the sandbag-dike. The other villages that never encounter flood going
to receive a polluted water. We can see that the pollutant concentration level
on the flooding area is not to high with the passing of time. The real-world
problems require a small amount of time interval in obtaining accurate solutions.
Unfortunately, the analytical solutions of the dam-break model could not be found
over the entire domain. This also implies that the analytical solutions of dispersion
model could not work out at any point on the entire domain as well. We propose
a revised Lax-diffusive scheme by editing a simple modification to the traditional
Lax-diffusive scheme. The FTCS method is limited by restriction of the stability
condition. Then FTCS is not flexible in the real-world situation. The implicit
schemes shows excessive dispersion effects for large time and space step lengths,
significantly decreasing the efficiency of the implicit schemes. In addition implicit
methods still generate a lot of large systems of linear equations. The Upwind
explicit and Lax-wendroff schemes are economical to use. The proposed method
show a good agreement in accuracy, the implicit schemes becomes less efficient
than the explicit schemes. In this paper, the dispersion model and the dam-break
model can be compounded to approximate the pollutant concentration in a stream
when the current reflecting water in the stream is not uniform since the sandbag-
dike becomes failure. In this paper, the technique developed, the response of
the stream to the two different external inputs: the elevation of water and the
pollutant concentration at the discharge point, can be obtained. The both of the
implicit methods and the explicit methods can be used in the dispersion model
since the scheme is very simple to implement. By the explicit finite difference
formulations, we obtain that the proposed technique is applicable and economical
to be used in the real-world problem due to its simplicity to program and the
straight forwardness of the implementation. It is also possible to find tentative
better locations and better periods of time of the different discharge points to a
stream.
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