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Abstract : The groundwater management is required to solve the problem of
lack water resources in many drought areas for agricultural usage. In this study,
we propose a groundwater flow model and a groundwater management model that
provide the pumping rates and the injection rates respectively. The groundwater
model is providing the hydraulic head that gives the groundwater level. The
implicit finite difference method is used to approximate the groundwater flow
directions. The objective of groundwater flow management model is the minimum
cost of injection rates. These are then subjected to optimal management of the
water injection stations to achieve minimum cost. The numerical experiments are
also given.
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1 Introduction

Groundwater modeling is a powerful tool for water resources management,
groundwater protection and remediation. The models are decided by maker to
predict the behavior of a groundwater system prior to implementation of a remedi-
ation plan. The significance of the utilization of water resources continues to grow
due to the increasing require of water for irrigation as well as drinking, agricul-
ture, commercial and industrial proposes. Although, the amount of groundwater
resources have been decaying due population growth, uncontrolled and unplanned
urbanization, industrialization, and agricultural activities. Hence, the sustain-
able management planning must be developed for the groundwater systems. The
management planning have to limited in the case of legal well drilling and limited-
pumpings. On the other hand, the partial differential equations governing the
system is solved by model. The groundwater model are solved by analytical and
numerical solution techniques. Analytical methods is not suitable application to
require much data and their application is limited to simple problem. Numerical
methods can solve more complex problem than analytical solutions. Now, rapid
development of computer processors and increasing speed, numerical modeling has
become tools more effective an easy to use. The finite difference method and the
finite element are most tools used numerical modeling approaches. Each method
has its advantages and limitations. Selecting numerical modeling approach depend
on the problem of concern and the objectives of modeling. Most of groundwater
modeling has the aquifer systems with the heterogeneous structure. In the case
of the steady-state groundwater model solutions can be obtained by the simply
basic techniques. On the other hand, the case of transient ground water model
is solved by the advanced techniques due to the difficult in terms of time dimen-
sion in the governing equations. Theoretical solution of the governing equation of
groundwater model need general assumptions such as ideal solution domains and
homogeneous geometries.

Groundwater models can be simple, analytical solutions of one-dimensional is
like solutions of spreadsheet models [1], for very complicated three-dimensional
models. It is always introduced to start with a simple model, as long as the
model concept satisfies modeling objectives, and then the model complex can
be increased [2]. The finite difference [3–5] and finite elements [6–8] methods
are the most popular numerical solution techniques. A simulation/optimization
model is proposed for the identification of unknown groundwater well locations and
pumping rates for two-dimensions and model is combined with genetic algorithm
based optimization model [9]. A useful spreadsheet for two and three dimensional
steady-state and transient groundwater numerical simulation is proposed in [10].

In this research, the objective of groundwater flow management model is the
minimum cost of injection rates. These are then subjected to optimal manage-
ment of the water injection stations to achieve minimum cost. The numerical
experiments are also given.
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2 The Governing Equation of Groundwater
Steady-Flow Model

Mathematical models of groundwater flow are all based on the water bal-
ance principle. The combination between the mass balance equation and Darcy’s
law produce the governing equation for groundwater flow. The general equation
that governs two-dimensional groundwater steady-flow in isotropic, homogeneous
porous media and vetically average [11],

∂2H

∂x2
+

∂2H

∂y2
= 0, (2.1)

where H(x, y) is hydraulic head (metre). We will introduces the affected term
as sources and sinks due to the external inputs and outputs. Consequently, the
Eq.(2.1) becomes

∂2H

∂x2
+

∂2H

∂y2
+ W = 0, (2.2)

where W is sinks and/or sources (1/day). The boundary conditions are specified,
for all (x, y) ∈ [0, L]×[0,M ] where L and M are positive constants which represent
the dimension of the regtangular domain.

∂H

∂n
= BN for all 0 ≤ x ≤ L and y = M, (2.3)

∂H

∂n
= BS for all 0 ≤ x ≤ L and y = 0, (2.4)

H = BW for all x = 0 and 0 ≤ x ≤M, (2.5)

H = BE for all x = L and 0 ≤ x ≤M. (2.6)

and the source terms W that represented by the rate of pumping well in each
point,

W (xs, ys) = Q (xs, ys) = Qs for all s = 1, 2, 3, ..., p, (2.7)

where s is a number of pumping wells.

3 Numerical Techniques

Due to the groundwater steady-flow model is independent of time, the implicit
finite difference method is used to solve the groundwater flow model. The method
is suitable for the model due to the linear systems of equations will be constructed.
It is possible to implement with the groundwater management model. Taking the
central difference scheme in space into terms of equation (2.2), then

∂2H

∂x2
≈ Hi−1,j − 2Hi,j + Hi+1,j

(∆x)
2 , (3.1)
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∂2H

∂y2
≈ Hi,j−1 − 2Hi,j + Hi,j+1

(∆y)
2 , (3.2)

Wi,j = ± Qi,j

∆x∆yHi,j
. (3.3)

Substituting Eq.(3.1) - (3.3) into Eq.(2.2), for 1 < i < I − 1 and 1 < j < J − 1,

− (2a + 2b)Hi,j + aHi−1,j + aHi+1,j + bHi,j−1 + bHi,j+1 = −Wi,j , (3.4)

where a = 1
(∆x)2

and b = 1
(∆y)2

. For i = 1 and j = 1, substituting the unknown

value on the south boundary by forward difference approximation, H1,0 = H1,1,
into Eq.(3.4), we obtain

− (2a + b)H1,1 + aH2,1 + bH1,2 = −W1,1 − aBW . (3.5)

For 1 < i < I−1 and j = 1, substituting the unknown value on the south boundary
by forward difference approximation, Hi,0 = Hi,1, into Eq.(3.4), we obtain

− (2a + b)Hi,1 + aHi−1,1 + aHi+1,1 + bHi,2 = −Wi,1. (3.6)

For i = I − 1 and j = 1, substituting the unknown value on the south boundary
by forward difference approximation,HI−1,0 = HI−1,1, into Eq.(3.4), we obtain

− (2a + b)HI−1,1 + aHI−2,1 + bHI−1,2 = −WI−1,1 − aBE . (3.7)

For i = 1 and j = J − 1, substituting the unknown value on the north boundary
by backward difference approximation, H1,J = H1,J−1, into Eq.(3.4), we obtain

− (2a + b)H1,J−1 + aH2,J−1 + bH1,J−2 = −W1,J−1 − aBW . (3.8)

For 1 < i < I − 1 and j = J − 1, substituting the unknown value on the north
boundary by backward difference approximation, Hi,J = Hi,J−1, into Eq.(3.4), we
obtain

− (2a + b)Hi,J−1 + aHi−1,J−1 + aHi+1,J−1 + bHi,J−2 = −Wi,J−1. (3.9)

For i = I − 1 and j = J − 1, substituting the unknown value on the north bound-
ary by backward difference approximation, HI−1,J = HI−1,J−1, into Eq.(3.4), we
obtain

− (2a + b)HI−1,J−1 + aHI−2,J−1 + bHI−1,J−2 = −WI−1,J−1 − aBE . (3.10)

The equations (3.4) - (3.10) can be written in matrix form as follow,

AH = B, (3.11)

where

A =


A1 A3

A3 A2 A3

. . .
. . .

. . .

A3 A2 A3

A3 A1

 ,
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A1 =


− (2a + b) a

a − (2a + b) a
. . .

. . .
. . .

a − (2a + b) a
a − (2a + b)

 ,

A2 =


− (2a + 2b) a

a − (2a + 2b) a
. . .

. . .
. . .

a − (2a + 2b) a
a − (2a + 2b)

 ,

A3 =


b

b
. . .

b
b

 ,

H =


H1,1

H2,1

...
HI−2,J−1

HI−1,J−1

 ,

and

B =



−W1,1 − aBW

−W2,1

...
−WI−2,1

−WI−1,1 − aBW

−W1,2 − aBW

...
−Wi,j

...
−WI−1,J−2 − aBE

−W1,J−1 − aBW

−W2,J−1

...
−WI−2,J−1

−WI−1,J−1 − aBE



.
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4 A Groundwater Management Model

The objective function is the total cost of all pump injection in the considered
system,

C =

m∑
s=1

WsQs, (4.1)

where s is the number of pumping wells, Ws is the cost of water pumping for
each well s (Baht/m3) and Qs is the injection rate for each well s (m3/day). The
constraint are

Hs ≤ HSTs
, (4.2)

where Hs are the hydraulic head at monitoring point that measuring water re-
quirement for each zone s and HSTs are the standard water requirement for each
zone s. The upper bound of the injection rate for each pumping well are,

Qs ≤ Qmaxs
, (4.3)

the lower bound of the injection rate for each pumping well are,

Qs ≥ Qmins
, (4.4)

and the hydraulic head at monitoring point s and the injection rate at pumping
wells are non-negative, that are

Hs, Qs ≥ 0, (4.5)

where Qmins
and Qmaxs

are the lower and upper bounds of the water injection
rate for each point s, respectively. The optimal cost of them is solved by using the
simplex method.

5 Numerical Experiments

We consider the area width 2400 m and length 2400 m which is between a pair
of two rivers. The area is meshed by 100 grids points with grid space is 240 m.
The boundary conditions of the area are specified Eqs.(2.3) - (2.6) where BN = 0,
BS = 0, BW = 20 and BE = 19. The four injection wells are injecting the water to
the underground. The injection wells have the difference lower bound of injection
rates, difference upper bound of injection rates and the difference cost of injection
wells for each zone as Table 1. There are 8 monitoring point for measuring water
requirement. The hydraulic head at monitoring point have the difference standard
water requirement each point as Table 2.
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Table 1: The injection rates and the cost of each pumping wells.

Position coordinate (x, y) Q(1440m, 480m) Q(480m, 720m)
Lower (m3/day) 165 175
Upper (m3/day) 250 230
Cost (Bath/m3) 1.5 1.9

Position coordinate (x, y) Q(1680m, 1440m) Q(720m, 1680m)
Lower (m3/day) 180 190
Upper (m3/day) 300 270
Cost (Bath/m3) 1.8 1.6

Table 2: The standard water requirement (SWR) for each monitoring
points.

Position
coordinate (x, y) (240,240) (960,480) (1920,720) (720,1200)

(m,m)
SWR (m) 22 23 24 24
Position

coordinate (x, y) (1200,1200) (240,1440) (1200,1920) (1920,1920)
(m,m)

SWR (m) 25 23 25 24

Figure 1: Simulation of groundwater management.
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Figure 2: The surface graph before optimal control of cost.

Figure 3: The surface graph after optimal control of cost.
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Figure 4: The contour graph and direction flow before optimal control of
cost.

Figure 5: The contour graph and direction flow after optimal control of
cost.
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Table 3: Table of the hydraulic head before optimal control of cost.

y, x 0 240 480 720 960 1200
0 20.0000 19.9000 19.8000 19.7000 19.6000 19.5000

240 20.0000 19.9000 19.8000 19.7000 19.6000 19.5000
480 20.0000 19.9000 19.8000 19.7000 19.6000 19.5000
720 20.0000 19.9000 19.8000 19.7000 19.6000 19.5000
960 20.0000 19.9000 19.8000 19.7000 19.6000 19.5000
1200 20.0000 19.9000 19.8000 19.7000 19.6000 19.5000
1440 20.0000 19.9000 19.8000 19.7000 19.6000 19.5000
1680 20.0000 19.9000 19.8000 19.7000 19.6000 19.5000
1920 20.0000 19.9000 19.8000 19.7000 19.6000 19.5000
2160 20.0000 19.9000 19.8000 19.7000 19.6000 19.5000
2400 20.0000 19.9000 19.8000 19.7000 19.6000 19.5000
y, x 1440 1680 1920 2160 2400
0 19.4000 19.3000 19.2000 19.1000 19.0000

240 19.4000 19.3000 19.2000 19.1000 19.0000
480 19.4000 19.3000 19.2000 19.1000 19.0000
720 19.4000 19.3000 19.2000 19.1000 19.0000
960 19.4000 19.3000 19.2000 19.1000 19.0000
1200 19.4000 19.3000 19.2000 19.1000 19.0000
1440 19.4000 19.3000 19.2000 19.1000 19.0000
1680 19.4000 19.3000 19.2000 19.1000 19.0000
1920 19.4000 19.3000 19.2000 19.1000 19.0000
2160 19.4000 19.3000 19.2000 19.1000 19.0000
2400 19.4000 19.3000 19.2000 19.1000 19.0000

Table 4: Table of the hydraulic head after optimal control of cost.

y, x 0 240 480 720 960 1200
0 20.0000 22.4668 24.6064 25.9931 26.9362 27.5723

240 20.0000 22.4668 24.6064 25.9931 26.9362 27.5723
480 20.0000 22.7940 25.3593 26.4366 27.2432 28.0755
720 20.0000 23.3498 27.6001 27.1510 27.5245 27.9041
960 20.0000 23.0050 25.7905 27.0426 27.7999 28.1345
1200 20.0000 22.8798 25.5142 27.4292 28.4979 29.0074
1440 20.0000 23.0000 25.9574 28.6619 29.7552 30.6658
1680 20.0000 23.1628 26.6534 31.5058 31.1952 33.6724
1920 20.0000 22.9979 25.9875 28.7726 29.8473 30.4711
2160 20.0000 22.8414 25.5262 27.7496 28.9502 29.2537
2400 20.0000 22.8414 25.5262 27.7496 28.9502 29.2537
y, x 1440 1680 1920 2160 2400
0 27.7052 25.9609 23.7603 21.4090 19.0000

240 27.7052 25.9609 23.7603 21.4090 19.0000
480 29.5824 26.4172 23.9110 21.4667 19.0000
720 27.8818 26.2143 24.0000 21.5467 19.0000
960 27.8265 26.5582 24.3280 21.7200 19.0000
1200 28.7315 27.8639 25.0340 22.0051 19.0000
1440 30.2281 31.1318 25.9390 22.2665 19.0000
1680 30.3834 28.5222 25.3236 22.1220 19.0000
1920 29.1111 27.2499 24.7114 21.8977 19.0000
2160 28.3398 26.6547 24.3745 21.7574 19.0000
2400 28.3398 26.6547 24.3745 21.7574 19.0000
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Table 5: The optimal injection rates of minimum cost in the systems.

Position Coordinate (x, y) Injection Rate (m3/day)
Q(1440m, 480m) 165
Q(480m, 720m) 175
Q(1680m, 1440m) 239.48
Q(720m, 1680m) 214.81

6 Discussion

The injective point and monitoring point are locate in the considered area as
show in Figure 1. The monitored hydraulic head without and within controlled cost
are shown in Figure 2 and Figure3 respectively. The vector fields of groundwater
flow velocity between both case are are shown in Figure 4 and Figure 5 respectively.
The hydraulic head before and after control of cost are shown in Table 3 and
Table 4 respectively. The optimum injection rate at minimum cost of groundwater
control is shown in Table 5.

7 Conclusion

We have established the groundwater management model, First, we will mea-
sure hydraulic head from the groundwater steady-flow model by using an implicit
finite difference method. It will turn out that the system of linear equations is
generated. We employ the system of linear equations to construct the groundwa-
ter management model to investigate the optimal least cost of the water injections
in the system under the limitation conditions were required. Although, the water
requirement and the injection cost of each monitoring points are unequal among
injective stations. These are then subjected to the optimal presure of the ground-
water injection station to achieve minimum cost. We have established a simulation
process by means of which hydraulic head levels can be increase to agreed require-
ment levels at least cost.
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