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Abstract : In this paper, we develop a generalized scheme based on exponential
quartic spline for solving third-order self adjoint singularly perturbed boundary
value problems(SPBVP). The method is proved to be second-order convergent.
We have shown that the proposed method is better than existing spline methods.
Numerical illustrations are carried out to confirm the applicability and efficiency
of the method.
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1 Introduction

Third-order self-adjoint singularly perturbed boundary value problem (SP-
BVP) of the form:

Lz(t) ≡ −εz′′′(t) + p(t)z(t) = q(t), p(t) ≥ 0, t ∈ [a, b],
z(a) = α0, z(b) = α1, z′(a) = α2,

}
(1.1)

where α0, α1, α2 are constants, ε is a small positive parameter (0 < ε < 1) and
p(t), q(t) are sufficiently smooth functions is considered. Various methods for ap-
proximating the solution of (1.1) have been developed such as [1–5].
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The problems of type (1.1) occurs in engineering and applied mathematics such
as fluid mechanics, chemical reactor theory, convection-diffusion processes etc.
There are many applications which include boundary layer problems, the mod-
elling of steady and unsteady viscous flow problems with large Reynolds number
and convective-heat transport problems with large Peclet number. Since the past
two decades, many researchers are working in this field but they mostly confined
to second-order problems [6–9]. Few authors have also discussed higher order
problems such as [1–5].

Details of SPPs are given in O’Malley [10], Miller et al. [11], Roos et al. [12].
Valamarthi and Ramanujam [4] used boundary value technique for the solution of
third-order SP ODEs. The analytical solution of third-order nonlinear SPPs were
derived by Zaho [5]. Al-Said et al. [13] and Noor et al. [14] used cubic splines and
quartic splines respectively for solving third-order obstacle problems. Akram [1]
used quartic splines while Saini and Mishra [3] used quartic B-splines to solve
third-order self-adjoint SPBVPs.

This paper proposes a new approach based on exponential quartic spline. Here,
we construct spline that has an exponential and polynomial part . The advantage
is that it is not only provide continuous approximations to z(t), but also for its
derivatives at every point of the range of integration. The proposed exponential
spline function has the form:

T4 = span
{

1, t, t2, eτt, e−τt
}
,

where τ can be real or pure imaginary parmeter. Thus in each subinterval ti ≤
t ≤ ti+1, we have

span
{

1, t, t2, eτt, e−τt
}
,

or
span

{
1, t, t2, t3, t4,

}
, when τ → 0.

We organised the paper into six sections. In Section 2, we describe exponential
quartic spline for solving (1.1). In Section 3, we describe the method. Truncation
error is carried out in section 4. Section 5 outlines the convergence analysis of
exponential quartic spline. Finally, we concluded the numerical results of the
proposed method alongwith comparison in Section 6.

2 Exponential Quartic Spline

To obtain the spline approximation of the third-order SPBVP (1.1), we divided
the interval [a, b] into n equal subintervals using the grid ti = a + ih, 0 ≤ i ≤ n,
where h = (b − a)/n. The method is developed by using the exponential quartic
spline of the form:

Ei(t) = a0ie
τ(t−ti) + a1ie

−τ(t−ti) + a2i(t− ti)2 + a3i(t− ti) + a4i, (2.1)

where a0i, a1i, a2i, a3i, a4i are real finite constants and τ is a free parameter which
will be used to raise the accuracy of the method. If τ → 0, then Ei(t) reduces to
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quartic polynomial spline.
To obtain the coefficients of equation (2.1) in terms of zi, Mi, Di and Ti, we define

Ei(ti) = zi, E′i(ti) = Di,

E′′i (ti) = Mi, E′′′i (ti) = Ti.

 (2.2)

We obtain the following expressions via simple calculation:

a0i =
Ti+1 − Tie−θ

τ3(eθ − e−θ)
,

a1i =
Ti+1 − Tieθ

τ3(eθ − e−θ)
,

a2i =
Mi − a0iτ2 − a1iτ2

2
,

a3i =
(zi+1 − zi)− a0i(eθ − θ2

2 − 1)− a1i(e−θ − θ2

2 − 1)− h2Mi

2

h
,

a4i = zi − a0i − a1i, θ = τh and 0 ≤ i ≤ n− 1.

Using the continuity of first and second derivatives at (ti, zi), that is, E
(k)
i−1(ti) =

E
(k)
i (ti); k = 1, 2 we obtain the following result for 1 ≤ i ≤ n− 1:

Mi +Mi+1

2
=

(zi+1 − 2zi + zi−1)

h2
+ h(ATi+1 +BTi + CTi−1), (2.3)

Mi −Mi−1

2
=

(zi+1 − 2zi + zi−1)

h2
+ h(DTi +DTi−1), (2.4)

where

A =
−η + θ2 + 2

θ3ξ
,

B =
−θ2η + 2θ2

2θ3ξ
,

C =
2ξ − θ2η − 4

2θ3ξ
,

D =
η − 2

θξ

and η = eθ + e−θ

ξ = eθ − e−θ
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From above equations, we get the following relation:

−zi−2 + 3zi−1 − 3zi + zi+1 = h3(µ Ti−2 + ν Ti−1 + ν Ti + µ Ti+1),

i = 2, 3, · · · , n−1, (2.5)
where

µ =
η − θ2 − 2

θ3ξ
,

ν =
θ2η − η − θ2 − 2

θ3ξ
.

If θ → 0, then (µ, ν)→ ( 1
24 ,

11
24 ), then spline relation (2.5) reduces to the ordinary

quartic spline relations.
The relation (2.5) gives (n− 2) equations in (n− 1) unknowns zi, i = 2(1)n− 1,
one more equation is required. The required boundary equation is:

3∑
k=0

ukzk+cεhz′0 +h3
3∑
k=0

vkz
′′′
k + t1 = 0, i = 1. (2.6)

where uk, c and vk are arbitrary parameters.

2.1 Boundary Equations

To find the second-order boundary equations we have

(u0, u1, u2, u3, c, v0,v1, v2, v3)

= (1/4, 247/4,−397/4, 149/4, 25, 1/4,−709/24,−391/24, 0)

and the truncation error is

ti = 4180h5z
(5)
i +O(h6), i = 1. (2.7)

3 The Method

At the grid point ti, the third-order SPBVP (1.1) can be discretized as

−εz′′′(ti) + p(ti)z(ti) = q(ti).

By using spline’s third derivative, we have

Ti =
pizi − qi

ε
,

Ti−2 =
pi−2zi−2 − qi−2

ε
, Ti−1 =

pi−1zi−1 − qi−1
ε

, Ti+1 =
pi+1zi+1 − qi+1

ε
,
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where pi = p(ti) and qi = q(ti).

Put the values of Tj(j = i, i± 1, i− 2) in equation (2.5), we get

(ε+ µh3pi−2)zi−2 + (−3ε+ νh3pi−1)zi−1 + (3ε+ νh3pi)zi + (−ε+ µh3pi+1)zi+1

= h3(µqi−2 + νqi−1 + νqi + µqi+1), i = 2(1)n− 1. (3.1)

4 Truncation Error

The local truncation error ti of the scheme (2.5)can be obtained by writing in
the form:

−zi−2 + 3zi−1 − 3zi + zi+1 = h3(µ z′′′i−2 + ν z′′′i−1 + ν z′′′i + µ z′′′i+1) + ti,

i = 2(1)n− 1. (4.1)

Expanded the terms z′′′i−2, z
′′′
i−1 etc using Taylor’s series about ti we get the ex-

pression for ti as

ti = [1− 2µ+ 2ν]εh3z′′′i +

(
−1

2
− µ+ ν

)
εh4z

(4)
i +

(
1

4
− 5µ+ ν

2

)
εh5z

(5)
i +O(h6).

(4.2)

For arbitrary choices of µ and ν we get second-order method.

5 Convergence Analysis

Let Z = z(ti) Z̄ = (zi), C = (ci), T = (ti), E = (ei) = Z−Z̄, i = 1(1)n−1 be
an exact column vectors, where Z and Z̄ are exact and approximate solution,
T and E are local truncation error and discretization error respectively.
Thus, the system (3.1) can be written as:

(M + h3BF )Z̄ = C, (5.1)

where

M =



u1ε u2ε u3ε
−3ε 3ε −ε
ε −3ε 3ε −ε

. . .

. . .

ε −3ε 3ε −ε
ε −3ε 3ε


, (5.2)
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B =



v1 v2 v3
ν ν µ
µ ν ν µ

. . .

. . .

µ ν ν µ
µ ν ν


, (5.3)

F =



p1
p2

. . .

. . .

pn−2
pn−1


(5.4)

and C = [c1, c2, · · · , cn−1]T

with

ci =



−u0α0ε− c1hεα2 − h3v0(p0α0 − q0) + h3(v1q1 + v2q2 + v3q3), i = 1,

−α0ε− h3µ(p0α0 − q0) + h3(νq1 + νq2 + µq3), i = 2,

h3(µqi−2 + νqi−1 + νqi + νqi+1), 3 ≤ i ≤ n−2,

α1ε− h3µ(pnα1 − qn) + h3(µqn−3 + νqn−2 + νqn−1), i = n− 1.

(5.5)

Consider the above system with exact solution Z = [z(t1), z(t2), · · · , z(tn−1)]T ,
we have

(M + h3BF )Z = T (h) + C, (5.6)

where
T (h) = [t1(h), t2(h), · · · , tn−1(h)]T defined as follows:

ti =


4180εh5z

(5)
i +O(h6), i = 1,

− 1
12εh

5z
(5)
i +O(h6), 2 ≤ i ≤ n− 1.

(5.7)

Subtracting equation (5.1) from (5.6), we obtain the error equation

(M + h3BF )(Z − Z̄) = T (h)
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or

M0E = T (h), (5.8)

where
M0 = (M + h3BF ) and E = Z − Z̄ = [e1, e2, · · · , en−1]T .

The row sums S1, S2, · · · , Sn−1 of M0 are

Si =



− 1
4ε+ h3(v1p1 + v2p2 + v3p3), i = 1,

ε+ h3(−νp1 − νp2 − µp3), i = 2,

h3(−µpi−2 − νpi−1 − νpi − µpi+1), 3 ≤ i ≤ n− 2,

− 1
4ε+ h3(−µpn−3 − νpn−2 − νpn−1), i = n− 1.

(5.9)

M0 becomes irreducible and monotone if h to be chosen as O(
√

(ε). Therefore
M−10 exists and its elements are non-negative. Hence from (5.8), we get

E = M−10 T (h) =⇒ ‖E‖ ≤ ‖M−10 ‖ · ‖T (h)‖. (5.10)

Let a−1k,i is the (k, i)
th

element of the matrix M−10 .

We define

‖a−1k,i‖ = max
1≤k≤n

n−1∑
i=1

|a−1k,i | (5.11)

and

‖T‖ = max
1≤k≤n

|tk|. (5.12)

Using the theory of matrices, we have

n−1∑
i=1

a−1k,iSi = 1, k = 1(1)n− 1. (5.13)

Therefore,

a−1k,i ≤
1

min1≤i≤n−1 Si
=

1

h3Qio
, (5.14)

where Qio = 1
h3 mini Si > 0, for some io between 1 to n− 1.

From equation (5.7), (5.10) and (5.11), we obtain

ei =

n−1∑
i=1

a−1k,iTi(h), k = 1(1)n− 1 (5.15)

and therefore
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|ei| ≤
Kh2

Qio
, i = 1(1)n− 1, (5.16)

where K is a constant independent of h. Therefore ‖E‖ = O(h2).

The above results can be summarized as follows:

Theorem 5.1. Let z(t) be the exact solution of third-order SPBVP(1.1) and let
zi be the numerical solution obtained by scheme (5.1). Then, for sufficiently small
h, (5.1) gives a second order convergent solution.

6 Numerical Examples

The developed method is tested on two SPBVPs and the results are compared
with the existing methods. Computations are carried out by using MATLAB.

Example 6.1. Consider the third-order SPBVP discussed in [1, 3]:

−εz′′′(t) + z(t) = q(t), t ∈ [0, 1],
with z(0) = 0, z(1) = 0, z′(0) = 0,

where

q(t) = 6ε(1− t)5t3 − 6ε2[6(1− t)5 − 90(1− t)4t+ 180(1− t)3t2 − 60(1− t)2t3].

The analytical solution is
z(t) = 6t3ε(1− t)5.

Example 6.2. Consider the third-order SPBVP [3]:

−εz′′′(t) + z(t) = 81ε2 cos 3t+ 3ε sin 3t, t ∈ [0, 1],
with z(0) = 0, z(1) = 3ε sin 3, z′(0) = 9ε.

The exact solution is
z(t) = 3ε sin 3t.

The observed maximum absolute errors (MAE) are given in Tables 1 and 2.

Conclusion

The method based on exponential quartic spline is developed for the solution
of third-order self-adjoint SPBVP. This method is second-order convergent and
computationally efficient. Two examples are carried out for numerical illustrations.
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Table 1: Observed MAE, Example 6.1.

ε ↓ n = 10 n = 20 n = 40

Our method
1/16 4.87× 10−4 1.86× 10−5 1.95× 10−5

1/32 1.95× 10−4 8.76× 10−6 8.63× 10−6

1/64 7.97× 10−5 4.00× 10−6 3.61× 10−6

Akram [1]
1/16 2.9× 10−3 1.2× 10−4 6.4× 10−6

1/32 9.2× 10−4 3.8× 10−5 2.1× 10−6

1/64 1.4× 10−4 6.8× 10−6 4.6× 10−7

Saini and Mishra [3]
1/16 4.7× 10−4 1.1× 10−4 2.6× 10−5

1/32 1.9× 10−4 4.7× 10−5 1.2× 10−5

1/64 8.0× 10−5 1.9× 10−5 4.8× 10−6

Table 2: Observed MAE, Example 6.2.

ε ↓ n = 10 n = 20 n = 40

Our method
1/16 2.32× 10−4 6.12× 10−5 1.52× 10−5

1/32 9.77× 10−5 2.59× 10−5 6.45× 10−6

1/64 3.78× 10−5 1.00× 10−6 2.50× 10−6

Saini and Mishra [3]
1/16 2.4× 10−4 6.1× 10−5 1.5× 10−5

1/32 1.0× 10−4 2.6× 10−5 6.4× 10−6

1/64 4.0× 10−5 1.0× 10−6 2.5× 10−6
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