Thai Journal of Mathematics Volume 17 (2019) Number 3 : 639–648

http://thaijmath.in.cmu.ac.th ISSN 1686-0209

A Fixed Point Theorem for Generalized Lipschitzian Semigroups in Hilbert Spaces

Muhamad Najibufahmi †,1 and Atok Zulijanto ‡

[†]Department of Mathematics Education, Universitas Pekalongan Pekalongan 51119, Indonesia e-mail : muhamadnajibufahmi@yahoo.com [‡]Department of Mathematics, Universitas Gadjah Mada Sekip Utara, Yogyakarta 55281, Indonesia e-mail : atokzulijanto@ugm.ac.id

Abstract : In this work, we use the concept of a generalized Lipschitzian type condition for a semigroup of self mappings as employed in [1] to provide an existence theorem of a common fixed point for a left reversible semitopological semigroup of continuous generalized Lipschitzian mappings in a Hilbert space defined on a nonconvex domain. This result extends and improves a result of Downing and Ray in [2].

Keywords : common fixed point; generalized Lipschitzian mapping; left reversible semitopological semigroup; Hilbert space.

2010 Mathematics Subject Classification : 47H10; 47H20.

1 Introduction

Let E be a Banach space with norm $\|.\|$ and U be a nonempty bounded subset of E. A mapping $T : U \to U$ is said to be a Lipschitzian mapping if for each $n \in \mathbb{N}$, there exists $k_n > 0$ such that

$$|T^n x - T^n y|| \le k_n ||x - y||$$

for all $x, y \in U$. A lipschitzian mapping T is said to be uniformly k-Lipschitzian if $k_n = k$ for all $n \in \mathbb{N}$, and asymptotically nonexpansive if $\lim_n k_n = 1$, respectively.

¹Corresponding author.

Copyright 2019 by the Mathematical Association of Thailand. All rights reserved.

These mappings were first studied by Goebel and Kirk in [3] and [4]. They proved that such mappings have a fixed point in a uniformly convex Banach space for the case of convex domain. Especially for a uniformly k-Lipschitzian mapping, the constant k should have value less than k_0 for some $k_0 > 1$. (In a Hilbert space, $k_0 = \sqrt{5}/2$, see [4]). In [5], Lifschitz proved that a uniformly k-Lipschitzian mapping in a Hilbert space with $k < \sqrt{2}$ has a fixed point. For the others existence theorems of a fixed point for Lipschitzian mappings in a larger space than a uniformly convex Banach space, we refer the readers to see [6], [7], and [8]. Especially in [8], Lim and Xu proved the existence theorem of a uniformly k-Lipschitzian mapping defined on a nonconvex domain by using the concept of the property (P).

Let S be a semitopological semigroup, i.e., S is a semigroup with a Hausdorff topology such that for each $a \in S$, the mappings $s \to a \cdot s$ and $s \to s \cdot a$ from S to S are continuous. A semitopological semigroup S is left reversible if any two closed right ideals of S have a nonvoid intersection. In this case, (S, \geq) is a directed system when the binary relation " \geq "on S is defined by $b \geq a$ if and only if $b \cup \overline{bS} \subseteq a \cup \overline{aS}$. Left reversible semitopological semigroups include all commutative semigroups (e.g., $[0, \infty)$) and all semitopological semigroups which are left amenable as discrete semigroups, see [9].

In 1982, Downing and Ray [2] proved that a discrete semigroup of uniformly k-Lipschitzian mappings in a Hilbert space defined on a convex domain with $k < \sqrt{2}$ has a common fixed point. Later, this result was extended to a left reversible semitopological semigroup of uniformly k-Lipschitzian mappings by Ishihara and Takahashi [10]. Also, Ishihara [11] extended and improved the result of Ishihara and Takahashi [10] to the case of a left reversible semitopological semigroup of Lipschitzian mappings defined on a nonconvex domain. In 1990, Xu [12] extended the result of Ishihara and Takahashi [10] to a p-uniformly convex Banach space. We also note that the result of Ishihara and Takahashi [10] has been extended and improved by Gornicki [13], by investigating the structure of a common fixed point set of the semigroup in a p-uniformly convex Banach space.

Imdad *et al.* [14] used the notion of generalized Lipschitzian as employed in [1], to establish the concept of a left reversible semitopological semigroup of continuous generalized Lipschitzian mappings. Let U be a nonempty bounded subset of a Banach space E and S be a left reversible semitopological semigroup. A family $\mathcal{T} = \{T_s : s \in S\}$ of self mappings defined on U is said to be a semigroup on U if \mathcal{T} satisfies the following properties:

- (1) $T_{st}x = T_sT_tx$ for all $s, t \in S$ and $x \in U$;
- (2) the mapping $(s, x) \to T_s x$ from $S \times U$ into U is continuous when $S \times U$ has the product topology.

Moreover, the semigroup \mathcal{T} is said to be a generalized Lipschitzian semigroup on U if \mathcal{T} also satisfies the following property:

A Fixed Point Theorem for Generalized Lipschitzian Semigroups ...

(3) for each $s \in S$, there exists $k_s > 0$ such that

$$\|T_s x - T_s y\| \le k_s \max\left\{ \|x - y\|, \frac{1}{2} \|x - T_s x\|, \frac{1}{2} \|y - T_s y\|, \frac{1}{2} \|x - T_s y\|, \frac{1}{2} \|y - T_s x\| \right\}$$

for all $x, y \in U$.

By using Example 5.3 in [15], we show that the class of generalized Lipschitzian semigroups properly includes the class of Lipschitzian semigroups.

Example 1.1. Let *E* be the real line \mathbb{R} and *S* be a discrete space $[0, \infty)$. Let $U = [0, 1], b \in (0, 1)$ and $\mathcal{T} = \{T_s : s \in S\}$ be a semigroup on *U* defined by; for s > 0,

$$T_s x = \begin{cases} b^s x, & \text{if } x \in [0, \frac{1}{2}] \\ 0, & \text{if } x \in (\frac{1}{2}, 1] \end{cases}$$

and

$$T_0 x = x, \quad x \in U$$

Since for each s > 0, T_s is discontinuous at $x = \frac{1}{2}$, then \mathcal{T} is not a Lipschitzian semigroup. However, \mathcal{T} is a generalized Lipschitzian semigroup. Indeed, for s > 0 we have

$$T_s x - T_s y| = b^s |x - y| \le 2b^s |x - y|$$

for all $x, y \in [0, \frac{1}{2}]$ and

$$|T_s x - T_s y| = 0 \le 2b^s |x - y|$$

for all $x, y \in (\frac{1}{2}, 1]$. For $x \in [0, \frac{1}{2}]$ and $y \in (\frac{1}{2}, 1]$,

$$|T_s x - T_s y| = |b^s x - 0| = 2b^s \left(\frac{1}{2}|x - T_s y|\right).$$

Therefore, $\mathcal{T} = \{T_s : s \in S\}$ is a generalized Lipschitzian semigroup on U with the constants k_s are $2b^s$.

In [14], Imdad *et al.* proved the existence theorem of a common fixed point for a left reversible semitopological semigroup of continuous generalized Lipschitzian mappings in a *p*-uniformly convex Banach space defined on a nonconvex domain. But, we see from Remark 12 in [16] that the proof of Theorem 3.1 in [14] is unfortunately not correct because the inequality

$$\inf_{\lambda} \sup \{ \|x_{\iota} - x_{\kappa}\| : \iota, \kappa \ge \lambda \} \le \limsup_{\lambda} \limsup_{\kappa} \sup_{\kappa} \|x_{\kappa} - x_{\lambda}\|$$

is false.

Motivated by the above results, in this work, we use the concept of the property (P) in the setting of a net and we employ a different technique than in the proof of Theorem 3.1 in [14], for showing existence theorem of a common fixed point for a left reversible semitopological semigroup of continuous generalized Lipschitzian mappings in a Hilbert space defined on a nonconvex domain. This result extends and improves Theorem 1 of Downing and Ray [2].

2 Preliminaries

Recall the concept and the notion of asymptotic center due to Edelstein [17]. Let U be a nonempty subset of a Banach space E, Λ be a directed set, and $\{x_{\lambda}\}_{\lambda \in \Lambda}$ be a bounded net in E. The asymptotic center of $\{x_{\lambda}\}$ with respect to U is defined as the set

$$\mathcal{A}(\{x_{\lambda}\}, U) = \left\{ x \in U : \limsup_{\lambda} \|x_{\lambda} - x\| = \inf_{y \in U} \limsup_{\lambda} \|x_{\lambda} - y\| \right\}.$$

It is easily seen that if E is reflexive and U is closed convex, then $\mathcal{A}(\{x_{\lambda}\}, U)$ is nonempty. Moreover, it will be a singleton if E is a Hilbert space.

In order to prove our main result, we need the following technical lemma.

Lemma 2.1. Let n > 1 be any integer. Let us set $\{x_{1_{\lambda}}\}_{\lambda \in \Lambda}$, $\{x_{2_{\lambda}}\}_{\lambda \in \Lambda}$, \cdots , $\{x_{n_{\lambda}}\}_{\lambda \in \Lambda}$ as bounded nets of real numbers. Then

$$\limsup_{\lambda} \max \left\{ x_{1_{\lambda}}, x_{2_{\lambda}}, \cdots, x_{n_{\lambda}} \right\} = \max \left\{ \limsup_{\lambda} x_{1_{\lambda}}, \limsup_{\lambda} x_{2_{\lambda}}, \cdots, \limsup_{\lambda} x_{n_{\lambda}} \right\}$$

Proof. Let $y_{\lambda} = \max\{x_{1_{\lambda}}, x_{2_{\lambda}}, \cdots, x_{n_{\lambda}}\}$ for all $\lambda \in \Lambda$. Then,

$$\limsup_{\lambda} y_{\lambda} \ge \max \Big\{ \limsup_{\lambda} x_{1_{\lambda}}, \limsup_{\lambda} x_{2_{\lambda}}, \cdots, \limsup_{\lambda} x_{n_{\lambda}} \Big\}.$$

On the other hand, without loss of generality, we may assume that

$$a_1 = \limsup_{\lambda} x_{1_{\lambda}} \ge a_2 = \limsup_{\lambda} x_{2_{\lambda}} \ge \cdots \ge a_n = \limsup_{\lambda} x_{n_{\lambda}}.$$

Case 1 There exists $n_0 \in \{1, 2, \dots, n-1\}$ such that $a_{n_0} > a_{n_0+1}$. Let

$$m_0 = \min\{n_0 \in \{1, 2, \cdots, n-1\} : a_{n_0} > a_{n_0+1}\}$$

Then, we can find $\lambda_1 \in \Lambda$ such that

$$\max\left\{\sup_{\lambda \ge \lambda_1} x_{i_{\lambda}} : i \in \{m_0 + 1, m_0 + 2, \cdots, n\}\right\} < \frac{a_{m_0} + a_{m_0 + 1}}{2}.$$
 (2.1)

If $m_0 > 1$, let $\varepsilon > 0$ be fixed. Then, there exists $\lambda_2 \in \Lambda$ such that

$$\sup_{\lambda \ge \lambda_2} x_{i_{\lambda}} < a_1 + \varepsilon \quad \text{for all } i \in \{1, 2, \cdots, m_0\}.$$
(2.2)

Let $\lambda_0 \geq \max{\{\lambda_1, \lambda_2\}}$. From (2.1) and (2.2) we easily have

$$\limsup_{\lambda} y_{\lambda} \le \sup_{\lambda \ge \lambda_0} y_{\lambda} < a_1 + \varepsilon.$$
(2.3)

Letting $\varepsilon \to 0$ into (2.3), we get the result.

A Fixed Point Theorem for Generalized Lipschitzian Semigroups ...

We now prove for the case $m_0 = 1$. We note that for each $\lambda_2 \in \Lambda$,

$$\sup_{\lambda > \lambda_2} x_{1_\lambda} > \frac{a_1 + a_2}{2}.$$

So, by letting $\lambda_0 \geq \max{\{\lambda_1, \lambda_2\}}$ and next, by (2.1) we have

$$\limsup_{\lambda} y_{\lambda} \le \sup_{\lambda \ge \lambda_0} y_{\lambda} \le \sup_{\lambda \ge \lambda_2} x_{1_{\lambda}}.$$

It follows that

$$\limsup y_{\lambda} \le a_1.$$

Case 2 $a_1 = a_2 = \cdots = a_n$. Let $\varepsilon > 0$ be fixed. Then, we can find $\lambda_3 \in \Lambda$ such that

$$\sup_{\lambda \ge \lambda_3} x_{i_{\lambda}} < a_1 + \varepsilon \quad \text{for all } i \in \{1, 2, \dots, n\}.$$

It follows that

$$\limsup_{\lambda} y_{\lambda} \le \sup_{\lambda \ge \lambda_3} y_{\lambda} < a_1 + \varepsilon.$$
(2.4)

Thus, by letting $\varepsilon \to 0$ into (2.4), we get the result.

We also need the following lemmas which were proved in [10] and [11], respectively.

Lemma 2.2. [10, Lemma] Let C be a nonempty closed convex subset of a Hilbert space H. Let $\{x_{\lambda}\}_{\lambda \in \Lambda}$ be a bounded net in H and $\{a\} = \mathcal{A}(\{x_{\lambda}\}, C)$. Then

$$\inf_{y \in C} \limsup_{\lambda} \|x_{\lambda} - y\|^2 + \|a - x\|^2 \le \limsup_{\lambda} \|x_{\lambda} - x\|^2$$

for all $x \in C$.

Lemma 2.3. [11, Lemma 2] Let C be a nonempty closed convex subset of a Hilbert space H and $\{x_{\lambda}\}_{\lambda \in \Lambda}$ be a bounded net in C. Then

$$\mathcal{A}(\{x_{\lambda}\}, C) \subseteq \bigcap_{\lambda} \overline{co}\{x_{\kappa} : \kappa \ge \lambda\},\$$

where \overline{co} is the closed convex hull.

We end this section by giving the following lemma.

Lemma 2.4. Let U be a nonempty bounded subset of a Banach space E and S be a left reversible semitopological semigroup. Let $\mathcal{T} = \{T_s : s \in S\}$ be a semigroup of self mappings on U. Then

$$\limsup_{s} \limsup_{t} \limsup_{t} \|T_s T_t x - y\| \le \limsup_{s} \|T_s x - y\|$$

for all $x, y \in U$.

643

Proof. We denote $r = \limsup_{s} ||T_s x - y||$. Let $\varepsilon > 0$ be fixed. Then, we choose $s_0 \in S$ such that

$$\sup\{\|T_s x - y\| : s \ge s_0\} < r + \varepsilon.$$

$$(2.5)$$

Let $u \ge s_0$ be fixed. Then,

$$\limsup_{t} \|T_{u}T_{t}x - y\| = \inf_{q} \sup\{\|a - y\| : a \in \overline{\{T_{u}T_{t}x : t \ge q\}}\}$$
$$= \inf_{q} \sup\{\|a - y\| : a \in \overline{\{T_{s}x : s \ge uq\}}\}$$
$$\leq \sup\{\|a - y\| : a \in \{T_{s}x : s \ge u\}\}.$$
(2.6)

From (2.5) and (2.6) we get

$$\limsup_{s} \limsup_{t} \sup_{t} \|T_s T_t x - y\| < r + \varepsilon.$$
(2.7)

So, by letting $\varepsilon \to 0$ into (2.7), we obtain the result.

3 The Fixed Point Theorem

We now present the main result of this work.

Theorem 3.1. Let U be a nonempty bounded subset of a Hilbert space H and S be a left reversible semitopological semigroup. Suppose that $\mathcal{T} = \{T_s : s \in S\}$ is a generalized Lipschitzian semigroup on U with $\limsup_s k_s < \sqrt{2}$ and T_s is continuous for all $s \in S$. Suppose also that there exists a nonempty bounded closed convex subset C of U with the following property (P):

$$(P) \quad x \in C \Longrightarrow \omega_w(x) \subseteq C,$$

where $\omega_w(x)$ is the weak ω -limit set of \mathcal{T} at x, i.e., the set

$$\omega_w(x) = \left\{ y \in H : y = weak - \lim_{\lambda} T_{s_{\lambda}} x \text{ for some subset } \{s_{\lambda}\} \text{ of } S \right\}.$$

Then there exists $z \in C$ such that $T_s z = z$ for all $s \in S$.

Proof. We denote $k = \limsup_{s} k_s$. Let $B_s(x) = \{T_t x : t \ge s\}$ for $s \in S$ and $x \in C$. Let $x_0 \in C$ be fixed and then, taking $\{x_1\} = \mathcal{A}(\{B_s(x_0)\}, \overline{co}U)$. By Lemma 2.3, we get $x_1 \in \bigcap_s \overline{co}B_s(x_0)$. On the other hand, by Hahn-Banach Separation Theorem (see, Theorem 1.15(a) in [18]), we see that $\bigcap_s \overline{co}B_s(x_0) = \overline{co}\omega_w(x_0)$. Therefore, by the assumption, we get $x_1 \in C$. We may repeat this step and obtain a sequence $\{x_n\}_{n\in\mathbb{N}}$ in C such that for every $n \in \mathbb{N}$,

$$\{x_n\} = \mathcal{A}(\{B_s(x_{n-1})\}, \overline{co}U) \subseteq \bigcap_s \overline{co}B_s(x_{n-1}).$$
(3.1)

A Fixed Point Theorem for Generalized Lipschitzian Semigroups ...

Let $d_m = \limsup_s ||T_s x_m - x_{m+1}||^2$ and $D_m = \limsup_s ||T_s x_m - x_m||^2$ for $m \ge 0$. Let $n \ge 0$ be fixed. We may assume that $D_{n+1} > 0$, since otherwise, nothing that

$$\limsup_{s} \|T_s x - y\| = \inf_{s} \sup_{t} \|T_s T_t x - y\|$$

for all $x, y \in U$, then by using the continuity of T_s at x_{n+1} , we see that x_{n+1} is a common fixed point of \mathcal{T} and hence the proof is finished.

We note that, by Lemma 2.1 and Lemma 2.4 we have

$$\begin{split} \limsup_{s} \lim_{t} \sup_{t} \lim_{t} \sup_{t} \|T_{t}x_{n} - T_{s}x_{n+1}\| &\leq \limsup_{s} \lim_{t} \sup_{t} \|T_{s}T_{t}x_{n} - T_{s}x_{n+1}\| \\ &\leq \limsup_{s} \lim_{t} \sup_{t} \sup_{t} x_{s} \max\left\{ \|T_{t}x_{n} - x_{n+1}\|, \frac{1}{2}\|T_{t}x_{n} - T_{s}T_{t}x_{n}\|, \frac{1}{2}\|x_{n+1} - T_{s}x_{n+1}\|, \\ &\frac{1}{2}\|T_{t}x_{n} - T_{s}x_{n+1}\|, \frac{1}{2}\|x_{n+1} - T_{s}T_{t}x_{n}\| \right\} \\ &\leq k \limsup_{s} \lim_{t} \sup_{t} \max\left\{ \|T_{t}x_{n} - x_{n+1}\|, \frac{1}{2}(\|T_{t}x_{n} - x_{n+1}\| + \|x_{n+1} - T_{s}T_{t}x_{n}\|), \\ &\frac{1}{2}\|x_{n+1} - T_{s}x_{n+1}\|, \frac{1}{2}\|T_{t}x_{n} - T_{s}x_{n+1}\|, \frac{1}{2}\|x_{n+1} - T_{s}T_{t}x_{n}\| \right\} \\ &\leq k \max\left\{ (d_{n})^{\frac{1}{2}}, (d_{n})^{\frac{1}{2}}, \frac{1}{2}(D_{n+1})^{\frac{1}{2}}, \frac{1}{2}\lim_{s} \sup_{t} \lim_{s} \sup_{t} \lim_{t} \sup_{t} \|T_{t}x_{n} - T_{s}x_{n+1}\|, \frac{1}{2}(d_{n})^{\frac{1}{2}} \right\} \\ &= k \max\left\{ (d_{n})^{\frac{1}{2}}, \frac{1}{2}(D_{n+1})^{\frac{1}{2}}, \frac{1}{2}(d_{n})^{\frac{1}{2}} \right\} . \end{split}$$

$$(3.2)$$

Therefore, from (3.1) and (3.2) we have

$$D_{n+1} = \limsup_{s} \|T_{s}x_{n+1} - x_{n+1}\|^{2}$$

$$\leq \limsup_{s} \sup_{t} \|T_{t}x_{n} - T_{s}x_{n+1}\|^{2}$$

$$\leq k^{2} \max_{s} \left\{ d_{n}, \frac{1}{4}D_{n+1} \right\}$$

$$= k^{2}d_{n}.$$
(3.3)

Now, by (3.1) and Lemma 2.2 we get for every $s \in S$,

$$||T_s x_{n+1} - x_{n+1}||^2 \le \limsup_t ||T_t x_n - T_s x_{n+1}||^2 - \limsup_t ||T_t x_n - x_{n+1}||^2.$$
(3.4)

Therefore, by taking the limit superior into (3.4), we have from (3.2) and (3.3)

that

$$D_{n+1} \leq \limsup_{s} \limsup_{t} \sup_{t} ||T_{t}x_{n} - T_{s}x_{n+1}||^{2} - d_{n}$$

$$\leq k^{2} \max\left\{d_{n}, \frac{1}{4}D_{n+1}\right\} - d_{n}$$

$$\leq k^{2} \max\left\{d_{n}, \frac{k^{2}}{4}d_{n}\right\} - d_{n}$$

$$= (k^{2} - 1)d_{n}.$$
(3.5)

Thus, from (3.1) and (3.5) we obtain

$$D_{n+1} \le (k^2 - 1)d_n = \eta d_n \le \eta D_n,$$

where $\eta = k^2 - 1 < 1$ by the assumption. Consequently,

$$D_n \le \eta D_{n-1} \le \dots \le \eta^n D_0. \tag{3.6}$$

For every $s \in S$, we have

$$||x_{n+1} - x_n||^2 \le (||x_{n+1} - T_s x_n|| + ||T_s x_n - x_n||)^2 \le 2(||T_s x_n - x_{n+1}||^2 + ||T_s x_n - x_n||^2).$$
(3.7)

Therefore by taking the limit superior into (3.7) and then, by (3.1) we have

$$||x_{n+1} - x_n||^2 \le 2(d_n + D_n) \le 2D_n$$

It follows from (3.6) that $\sum_{n=1}^{\infty} ||x_{n+1} - x_n|| < \infty$, and hence $\{x_n\}$ is a Cauchy sequence in C. Let $z = \lim_n x_n$. Now for each $s \in S$,

$$||z - T_s z||^2 \le (||z - T_t x_n|| + ||T_t x_n - T_s z||)^2 \le 2(||z - T_t x_n||^2 + ||T_t x_n - T_s z||^2).$$
(3.8)

Hence, by taking the limit superior into (3.8) we have

$$|z - T_s z||^2 \le 2 \left(\limsup_t ||T_t x_n - z||^2 + \limsup_t ||T_t x_n - T_s z||^2 \right) \le 2 \left(\limsup_t ||T_t x_n - z||^2 + \limsup_t ||T_s T_t x_n - T_s z||^2 \right).$$
(3.9)

Since

$$\limsup_{t} \|T_t x_n - z\|^2 \le 2(D_n + \|x_n - z\|^2),$$

then by (3.6), it yields

$$\limsup_{t} \|T_t x_n - z\|^2 \to 0 \text{ as } n \to \infty.$$

By the continuity of T_s at z we also get

$$\limsup_{t} \|T_s T_t x_n - T_s z\|^2 \to 0 \text{ as } n \to \infty.$$

Thus, from (3.9) we have $T_s z = z$ for all $s \in S$.

The following corollary extends and improves Theorem 1 in [2] to the case of a lipschitzian semigroup and it also has a nonconvex domain.

Corollary 3.2. Let U be a nonempty bounded subset of a Hilbert space H and S be a left reversible semitopological semigroup. Let $\mathcal{T} = \{T_s : s \in S\}$ be a Lipschitzian semigroup on U with $\limsup_s k_s < \sqrt{2}$. Suppose that there exists a nonempty bounded closed convex subset C of U with the property (P). Then there exists $z \in C$ such that $T_s z = z$ for all $s \in S$.

Acknowledgement : We would like to thank the referees for his/her comments on the manuscript.

References

- M. Imdad, H. Soliman, On uniformly generalized Lipschitzian mappings, Fixed Point Theory Appl. (2010) Article ID 692401.
- [2] D.J. Downing, W.O. Ray, Uniformly Lipschitzian semigroup in Hilbert spaces, Canad. Math. Bull. 25 (1982) 210-214.
- [3] K. Goebel, W.A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 35 (1972) 171-174.
- [4] K. Goebel, W.A. Kirk, A fixed point theorem for transformations whose iterates have uniform Lipschitz constant, Studia Math. 47 (1973) 135-140.
- [5] E.A. Lifschitz, Fixed point theorems for operators in strongly convex spaces, Voronez Gos. Univ. Trudy Math. Fak.16 (1975) 23-28.
- [6] E. Casini, E. Maluta, Fixed points of uniformly Lipschitzian mappings in spaces with uniformly normal structure, Nonlinear Anal. 9 (1985) 103-108.
- [7] T.H. Kim, H.K. Xu, Remarks on asymptotically nonexpansive mappings, Nonlinear Anal. 41 (2000) 405-415.
- [8] T.C. Lim, H.K. Xu, Fixed point theorems for asymptotically nonexpansive mappings, Nonlinear Anal. 22 (1994) 1345-1355.
- [9] R.D. Holmes, A.T. Lau, Non-expansive actions of topological semigroups and fixed points, J. Lon. Math. Soc. 5 (1972) 330-336.
- [10] H. Ishihara, W. Takahashi, Fixed point theorems for uniformly lipschitzian semigroups in Hilbert spaces, J. Math. Anal. Appl. 127 (1987) 206-210.
- [11] H. Ishihara, Fixed point theorems for lipschitzian semigroups, Canad. Math. Bull. 32 (1989) 90-97.
- [12] H.K. Xu, Fixed point theorems for uniformly Lipschitzian semigroups in uniformly convex spaces, J. Math. Anal. Appl. 152 (1990) 391-398.

- [13] J. Gornicki, The structure of fixed-point sets of uniformly Lipschitzian semigroups, Collect. Math. 63 (2012) 333-344.
- [14] M. Imdad, H. Soliman, M.A. Barakat, On generalized Lipschitzian semitopological semigroup of self-mappings with applications, Sarajevo J. Math. 8 (2012) 133-142.
- [15] D.R. Sahu, R.P. Agarwal, D. O'Regan, The structure of fixed-point sets of Lipschitzian type semigroups, Fixed Point Theory Appl. (2012) Article ID 163.
- [16] J. Gornicki, Structure of the fixed point set of asymptotically regular mappings in uniformly convex Banach spaces, Taiwanese J. Math. (2011) 1007-1020.
- [17] M. Edelstein, The construction of an asymptotic center with a fixed-point property, Bull. Amer. Math. Soc. 78 (1972) 206-208.
- [18] S. Reich, D. Shoikhet, Nonlinear semigroups, fixed point, and geometry of domains in Banach spaces, Imperial College Press, London, 2005.

(Received 4 April 2015) (Accepted 28 October 2015)

 $\mathbf{T}\mathrm{HAI}\ \mathbf{J.}\ \mathbf{M}\mathrm{ATH}.$ Online @ http://thaijmath.in.cmu.ac.th