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Abstract : In this work, we investigate strong convergence of the sequences
generated by the forward-backward algorithms using hybrid projection method
and shrinking projection method for solving the minimization problem. The main
advantage of our algorithms is that the Lipschitz constants of the gradient of func-
tions do not require in computation. Finally, we present numerical experiments of
our algorithms which are defined by two kinds of projection methods to show the
efficiency and the implementation for LASSO problem in signal recovery.
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1 Introduction

This paper is interested in solving the convex minimization problem of the
form:

min
x∈H

f(x) + g(x), (1.1)

where f : H → R ∪ {+∞} and g : H → R ∪ {+∞} are two proper, lower-
semicontinuous and convex functions. Problem (1.1) includes many optimization
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problems arising from applied areas such as signal processing, image recovery,
system identification and machine learning [1–4].

Using the fixed point terminology, we know that the problem (1.1) is equivalent
to solve the fixed point equation x = proxαg(x−α∇f(x)) where α is a positive real
number and proxg is the proximal operator of g defined by proxg = (I + ∂g)−1.
The forward-backward algorithm is a classical method for solving problem (1.1).
It is generated by the following manner:

xk+1 = proxαkg︸ ︷︷ ︸
backward step

(xk − αk∇f(xk))︸ ︷︷ ︸
forward step

, (1.2)

where αk is a suitable stepsize. This method includes, in particular, the proximal
point algorithm [4–7] and the gradient method [8–11]. Due to its wide applications,
there have been modifications of (1.2) invented in the literature (see [12–17]).

In 2003, Nakajo and Takahashi [18] introduced the following hybrid projection
method and prove its strong convergence for finding a fixed point of a nonexpansive
mapping T . Let C be a nonempty closed convex subset of a real Hilbert spaces
H. They investigated the sequence (xk) generated by: x0 ∈ C and

yk = αkx
k + (1− αk)Txk,

Ck = {z ∈ C : ‖yk − z‖ ≤ ‖xk − z‖},
Qk = {z ∈ C : 〈z − xk, x0 − xk〉 ≤ 0},
xk+1 = PCk∩Qk

(x0),

(1.3)

for every k ∈ N ∪ {0}, where (αk) ⊂ [0, a] for some a ∈ [0, 1). They proved that
(xk) converges strongly to a fixed point of T . Furthermore, Takahashi et al. [19]
proposed the shrinking projection method which is defined by: x0 ∈ C, C1 = C,
x1 = PC1

(x0) and
yk = αkx

k + (1− αk)Txk,

Ck+1 = {z ∈ Ck : ‖yk − z‖ ≤ ‖xk − z‖},
xk+1 = PCk+1

(x0),

(1.4)

where 0 ≤ (αk) < a < 1 for all k ∈ N. It was proved that the sequence (xk)
generated by (1.4) converges strongly to a fixed point of a nonexpansive mapping
T .

In 2012, Lin and Takahashi [20] introduced the following forward-backward
algorithm using the viscosity approximation method.

Algorithm 1.1. :
Initialization Step. Take x0 ∈ H
Iterative Step. Give xk and set

xk+1 = akh(xk) + (1− ak)proxαkg
(xk − αk∇f(xk)),



Hybrid Forward-Backward Algorithms Using Linesearch Rule ... 609

where h : H → H is a ρ−contraction for some ρ ∈ [0, 1), i.e. ‖h(x) − h(y)‖ ≤
ρ‖x− y‖ for all x, y ∈ H and ∇f is a ν−inverse strongly monotone with the fol-
lowing conditions:

lim
n→∞

ak = 0,

∞∑
k=1

ak =∞,
∞∑
k=1

|ak − ak+1| <∞;

∞∑
k=1

|αk − αk+1| <∞, 0 < b ≤ αk ≤ 2ν

Stop Criteria. If xk+1 = xk, then stop.

Recently, Cruz and Nghia [21] proposed the proximal gradient algorithm using
linesearch technique for solving the convex minimization problem in Hilbert spaces.
The main advantage of the proposed method is that the Lipschitz condition on
the gradient of functions is dropped in computing. The linesearch is defined as
follows:

Linesearch 1.1. Given x, σ > 0, θ ∈ (0, 1) and δ ∈ (0, 1
2 ).

Input. Set α = σ and J(x, α) := proxαg(x− α∇f(x)) with x ∈ domg
While α‖∇f(J(x, α))−∇f(x)‖ > δ‖J(x, α)− x‖

do α = θα.
End While

Output.α.

It was proved that Linesearch 1.1 is well-defined, i.e., this linesearch stops after
finitely many steps. They defined the following algorithm:

Algorithm 1.2. :
Initialization Step. Take x0 ∈ domg, σ > 0, θ ∈ (0, 1) and δ ∈ (0, 1

2 )
Iterative Step. Give xk and set

xk+1 = proxαkg
(xk − αk∇f(xk)),

with αk := Linesearch 1.1(xk, σ, θ, δ).
Stop Criteria. If xk+1 = xk, then stop.

It was shown that the sequence generated by Algorithm 1.2 converges weakly to
minimizers of f +g. Moreover, if the gradient of f is globally Lipschitz continuous
on domg with a constant L > 0, then αk ≥ min{σ, δθ/L} for all k ∈ N. However,
their algorithms have only weak convergence in real Hilbert spaces. As pointed
out, for example, by Bauschke and Combettes [22], the weak convergence of an
iterative scheme is an unsatisfactory property in an infinite dimensional setting.
Moreover, it is our academic interests to analyze the strong convergence using the
linesearch technique.

In this paper, based on Algorithm 1.2, hybrid projection method (1.3) and
shrinking projection method (1.4), we introduce new hybrid projection algorithms
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for solving the convex minimization problem. We then prove the strong conver-
gence theorems of the proposed methods using the linesearch technique. Finally,
some numerical experiments in signal recovery are provided to show the efficiency
and the implementation of our algorithms.

The rest of this paper is organized as follows: In Sect. 2, we give some defini-
tions and lemmas used for our proof. In Sect. 3, we establish the strong conver-
gence of the proposed algorithms. Finally, in Sect. 4, we show numerical examples
to support the convergence of our algorithms. In Sect. 5, we give the conclusions
of this paper.

2 Preliminaries

This section contains some definitions and lemmas that play an essential role
in our analysis. Let C be a nonempty, closed and convex subset of a real Hilbert
space H with inner product 〈·, ·〉 and norm ‖ · ‖. The strong (weak) convergence
of a sequence (xk)k∈N to x is denoted by xk → x (xk ⇀ x), respectively.

Definition 2.1. A mapping T : C → C is said to be nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖,∀x, y ∈ C.

In a real Hilbert space, we know that for any point x ∈ H, there exists a unique
point PCx ∈ C such that

‖x− PCx‖ ≤ ‖x− y‖,∀y ∈ C.

Here PC is called the metric projection of H onto C. We know that PC is a
nonexpansive mapping of H onto C. It is also known that PC satisfies

〈x− y, PCx− PCy〉 ≥ ‖PCx− PCy‖2, (2.1)

for all x, y ∈ H. Furthermore, PCx is characterized by the property

〈x− PCx, PCx− y〉 ≥ 0, (2.2)

for all y ∈ C. Moreover, we know that

‖y − PCx‖2 + ‖x− PCx‖2 ≤ ‖x− y‖2, ∀x, y ∈ H. (2.3)

We also know that all Hilbert space has the Kadec-Klee property, that is, (xk)
converges weakly to x and ‖xk‖ → ‖x‖ imply (xk) converges strongly to x.

Definition 2.2. The subdifferential of a function h at x is defined by

∂h(x) = {v ∈ H : 〈v, y − x〉 ≤ h(y)− h(x), y ∈ H}.

Fact 2.1. [22, Proposition 17.2] Let h : H → R ∪ {+∞} be a proper, lower-
semicontinuous and convex function. Then, for x ∈ domh and y ∈ H,

h′(x; y − x) + h(x) ≤ h(y).
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Lemma 2.3. [23] The subdifferential operator ∂h is maximal monotone. More-
over, the graph of ∂h, Gph(∂h) = {(x, v) ∈ H × H : v ∈ ∂h(x)} is demiclosed,
i.e., if the sequence (xk, vk) ⊂ Gph(∂h) satisfies that (xk)k∈N converges weakly to
x and (vk)k∈N converges strongly to v, then (x, v) ∈ Gph(∂h).

Let us recall the proximal operator proxg : H → domg with proxg(z) =
(I + ∂g)−1(z), z ∈ H. Here I denotes the identity operator. It is well-known that
the proximal operator is single-valued with full domain. It is also known that

z − proxαg(z)

α
∈ ∂g(proxαg(z)) for all z ∈ H, α > 0. (2.4)

3 Main Results

In this section, we propose the forward-backward splitting algorithm using the
projection algorithm and prove the strong convergence theorem.

Following [21], we assume that two below conditions hold:
(A1) f, g : H → R ∪ {+∞} are two proper, lower-semicontinuous and convex
functions with domg ⊆ domf and domg is nonempty, closed and convex.
(A2) The function f is Fréchet differentiable on an open set containing domg. The
gradient ∇f is uniformly continuous on any bounded subset of domg and maps
any bounded subset of domg to a bounded set in H.

Algorithm 3.1. (step 0) Choose x0 ∈ domg, take δ ∈ (0, 1
2 ), σ > 0 and θ ∈ (0, 1).

(step 1) Set αk = σθmk and mk is the smallest nonnegative integer such that

αk‖∇f(proxαkg
(xk − αk∇f(xk)))−∇f(xk)‖

≤ δ‖proxαkg
(xk − αk∇f(xk))− xk‖. (3.1)

(step 2) Set

yk = proxαkg
(xk − αk∇f(xk)). (3.2)

(step 3) Compute

Ck = {x∗ ∈ domg : ‖yk − x∗‖ ≤ ‖xk − x∗‖}

and

Qk = {x∗ ∈ domg : 〈x∗ − xk, x0 − xk〉 ≤ 0}. (3.3)

(step 4) Compute

xk+1 = PCk∩Qk
(x0). (3.4)

(step 5) Set k ← k + 1, and go to (step 1).
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Throughout this paper, we denote Ω by the solution set of (1.1) and assume
that Ω is nonempty.

Theorem 3.1. Let H be a real Hilbert space. Assume that there exists α > 0 such
that αk ≥ α > 0. Then the sequence (xk)∞k=0 generated by Algorithm 3.1 converges
strongly to x̄ = PΩ(x0).

Proof. We divide our proof into four steps.
Step 1 Show that (xk)∞k=0 is well-defined and Ω ⊂ Ck ∩ Qk,∀k ≥ 0. For each
x ∈ domg, we see that

‖yk − x‖ ≤ ‖xk − x‖ ↔ ‖yk‖2 − 2〈x, yk〉 ≤ ‖xk‖2 − 2〈x, xk〉
↔ 2〈x, xk − yk〉 ≤ ‖xk‖2 − ‖yk‖2

↔ 〈x, xk − yk〉 ≤ 1

2
[‖xk‖2 − ‖yk‖2].

(3.5)

Therefore Ck is closed and convex for all k ≥ 0. Moreover, it is easy to see that
Qk is closed and convex for all k ≥ 0. Therefore, Ck ∩Qk is closed and convex for
all k ≥ 0. Using (2.4) and (3.2), we observe that

xk − yk

αk
−∇f(xk) =

xk − proxαkg
(xk − αk∇f(xk))

αk
−∇f(xk) ∈ ∂g(yk).

The convexity of g gives

g(x)− g(yk) ≥ 〈x
k − yk

αk
−∇f(xk), x− yk〉,∀x ∈ domg. (3.6)

The convexity of f also implies

f(x)− f(y) ≥ 〈∇f(y), x− y〉,∀x ∈ domf, y ∈ domg. (3.7)

From (3.6) and (3.7) with any x ∈ domg ⊆ domf and y = xk ∈ domg, we have

(f + g)(x) ≥ f(xk) + g(yk) + 〈x
k − yk

αk
−∇f(xk), x− yk〉

+〈∇f(xk), x− xk〉

= f(xk) + g(yk) +
1

αk
〈xk − yk, x− yk〉

+〈∇f(xk)−∇f(yk), yk − xk〉+ 〈∇f(yk), yk − xk〉

≥ f(xk) + g(yk) +
1

αk
〈xk − yk, x− yk〉

−‖∇f(xk)−∇f(yk)‖‖yk − xk‖+ 〈∇f(yk), yk − xk〉

≥ f(xk) + g(yk) +
1

αk
〈xk − yk, x− yk〉 − δ

αk
‖xk − yk‖2

+〈∇f(yk), yk − xk〉,
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where the last inequality follows from the linesearch (3.1). Hence we obtain

〈xk − yk, yk − x〉 ≥ αk[f(xk) + g(yk)− (f + g)(x) + 〈∇f(yk), yk − xk〉]
−δ‖xk − yk‖2. (3.8)

Replacing x = xk and y = yk in (3.7), we have f(xk)− f(yk) ≥ 〈∇f(yk), xk− yk〉.
From (3.8), we get

〈xk − yk, yk − x〉 ≥ αk[(f + g)(yk)− (f + g)(x)]− δ‖xk − yk‖2. (3.9)

Since 2〈xk − yk, yk − x〉 = ‖xk − x‖2 −‖xk − yk‖2 −‖yk − x‖2, by (3.9), it follows
that

‖yk − x‖2 ≤ ‖xk − x‖2 − 2αk[(f + g)(yk)− (f + g)(x)]

−(1− 2δ)‖xk − yk‖2. (3.10)

Let x∗ ∈ Ω and set x = x∗ in (3.10). Hence we have

‖yk − x∗‖ ≤ ‖xk − x∗‖. (3.11)

Thus x∗ ∈ Ck,∀k ≥ 0. Therefore, Ω ⊂ Ck,∀k ≥ 0. For k = 0, we have that
x0 ∈ domg and Q0 = domg and hence Ω ⊂ C0 ∩Q0. Assume that xn is given and
Ω ⊂ Cn∩Qn for some n ∈ {0, 1, 2, ...}. Since Ω is nonempty, Cn∩Qn is nonempty,
closed and convex. So there exists a unique element xn+1 ∈ Cn ∩ Qn such that
xn+1 = PCn∩Qn(x0). This gives

〈x∗ − xn+1, x0 − xn+1〉 ≤ 0, ∀x∗ ∈ Cn ∩Qn. (3.12)

Since Ω ⊂ Cn ∩Qn, in particular, we obtain

〈x∗ − xn+1, x0 − xn+1〉 ≤ 0, ∀x∗ ∈ Ω. (3.13)

This implies that Ω ⊂ Qn+1. By induction we conclude that, Ω ⊂ Ck ∩Qk,∀k ≥ 0
and thus (xk)∞k=0 is well-defined.
Step 2 Show that (xk)∞k=0 is bounded. From (3.3), we see that

〈x∗ − xk, x0 − xk〉 ≤ 0,∀x∗ ∈ Qk.

This implies that xk = PQk
(x0). Then we have

‖xk − x0‖ ≤ ‖x0 − x∗‖,∀x∗ ∈ Qk.

Since Ω ⊂ Qk, it follows that

‖xk − x0‖ ≤ ‖x0 − x∗‖,∀x∗ ∈ Ω. (3.14)

In particular, since xk+1 ∈ Qk,

‖xk − x0‖ ≤ ‖xk+1 − x0‖. (3.15)
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By (3.14) and (3.15), we obtain lim
k→∞

‖xk − x0‖ exists. Hence (xk)∞k=0 is bounded.

Step 3 Show that lim
k→∞

‖xk+1−xk‖ = 0. By (2.3) and the fact that xk = PQk
(x0),

we see that

‖xk+1 − xk‖2 ≤ ‖xk+1 − x0‖2 − ‖xk − x0‖2.
Since lim

k→∞
‖xk − x0‖ exists, it follows that lim

k→∞
‖xk+1 − xk‖ = 0.

Step 4 Show that lim
k→∞

xk = x̄, where x̄ = PΩ(x0). From (3.3), xk+1 ∈ Ck and

Step 3, we see that

‖yk − xk+1‖ ≤ ‖xk − xk+1‖ → 0, k →∞.
Hence we obtain

‖yk − xk‖ ≤ ‖yk − xk+1‖+ ‖xk+1 − xk‖
→ 0, k →∞. (3.16)

Since (xk)∞k=0 is bounded, the set of its weak accumulation point is nonempty.
Take any weak accumulation point ω of (xk). So there is a subsequence (xkn)∞n=0

of (xk)∞k=0 weakly converging to ω. We get from (3.16) and assumption (A2) that

lim
n→∞

‖∇f(ykn)−∇f(xkn)‖ = 0. (3.17)

Since ykn = proxαkng
(xkn − αkn∇f(xkn)), it follows from (2.4) that

xkn − αkn∇f(xkn)− ykn
αkn

∈ ∂g(ykn)

which implies that

xkn − ykn
αkn

+∇f(ykn)−∇f(xkn) ∈ ∇f(ykn) + ∂g(ykn) ⊆ ∂(f + g)(ykn). (3.18)

From (3.16), (3.17) and (3.18), we conclude that ω ∈ Ω by Lemma 2.3. If
x̄ = PΩ(x0), it then follows from (3.14), the fact that ω ∈ Ω and the lower
semicontinuity of the norm that,

‖x0 − x̄‖ ≤ ‖x0 − ω‖
≤ lim inf

n→∞
‖x0 − xkn‖

≤ lim sup
n→∞

‖x0 − xkn‖

≤ ‖x0 − x̄‖. (3.19)

Hence we obtain lim
n→∞

‖xkn − x0‖ = ‖x0 − ω‖ = ‖x0 − x̄‖. This yields xkn → ω =

x̄, n→∞. It follows that (xk) converges weakly to x̄. So we have

‖x0 − x̄‖ ≤ lim inf
n→∞

‖x0 − xk‖

≤ lim sup
n→∞

‖x0 − xk‖

≤ ‖x0 − x̄‖. (3.20)
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This shows that lim
n→∞

‖xk−x0‖ = ‖x0− x̄‖. From xk ⇀ x̄, we also have xk−x0 ⇀

x̄−x0. Since H satisfies the Kadec-Klee property, it follows that xk−x0 → x̄−x0.
Therefore xk → x̄ as k →∞. This completes the proof.

We next introduce another version of the forward-backward algorithm based
on the shrinking projection method.

Algorithm 3.2. (step 0) Set C0 = domg, choose x0 ∈ domg, take δ ∈ (0, 1
2 ),

σ > 0 and θ ∈ (0, 1).
(step 1) Set αk = σθmk and mk is the smallest nonnegative integer such that

αk‖∇f(yk)−∇f(xk)‖ ≤ δ‖yk − xk‖. (3.21)

(step 2) Set

yk = proxαkg
(xk − αk∇f(xk)). (3.22)

(step 3) Compute

Ck+1 = {x∗ ∈ Ck : ‖yk − x∗‖ ≤ ‖xk − x∗‖}. (3.23)

(step 4) Compute

xk+1 = PCk+1
(x0). (3.24)

(step 5) Set k ← k + 1, and go to (step 1).

Theorem 3.2. Let H be a real Hilbert space. Assume that there exists α > 0 such
that αk ≥ α > 0. Then the sequence (xk)∞k=0 generated by Algorithm 3.2 converges
strongly to x̄ = PΩ(x0).

Proof. We divide our proof into five steps.
Step 1 Show that PCk+1

(x0) is well-defined and Ω ⊆ Ck+1,∀k ≥ 0. Similar to
Step 1 in Theorem 3.1, we can show that Ck+1 is closed and convex, ∀k ≥ 0. Also,
we can show that

‖xk − x0‖ ≤ ‖x0 − x∗‖,∀x∗ ∈ Ck.

Thus, if x∗ ∈ Ω, then we have x∗ ∈ Ck+1. So Ω ⊆ Ck+1 and PCk+1
(x0) is well-

defined.
Step 2 Show that lim

k→∞
‖xk − x0‖ exists. From xk = PCk

x0, Ck+1 ⊂ Ck and

xk+1 ∈ Ck, ∀k ≥ 1, we get

‖xk − x0‖ ≤ ‖xk+1 − x0‖,∀k ≥ 0. (3.25)

On the other hand, since Ω ⊂ Ck, we obtain

‖xk − x0‖ ≤ ‖x∗ − x0‖,∀x∗ ∈ Ω. (3.26)
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It follows that the sequence (xk) is bounded and nondecreasing. Therefore, lim
k→∞

‖xk−

x0‖ exists.
Step 3 Show that xk → x̄ as k → ∞. For l > k, by the definition of Ck, we see
that xl = PCl

(x0) ∈ Cl ⊂ Ck. So we obtain

‖xl − xk‖2 ≤ ‖xl − x0‖2 − ‖xk − x0‖2.

From Step 2, we have (xk)∞k=0 is a Cauchy sequence. Hence, xk → x̄ as k →∞.
Step 4 Show that x̄ ∈ Ω. From Step 3, we see that

lim
k→∞

‖xk+1 − xk‖ = 0.

Since xk+1 ∈ Ck+1 ⊂ Ck, we have

‖yk − xk+1‖ ≤ ‖xk − xk+1‖ → 0, k →∞.

It follows that

‖yk − xk‖ ≤ ‖yk − xk+1‖+ ‖xk+1 − xk‖
→ 0, k →∞. (3.27)

We get from (3.27) and assumption (A2) that

lim
k→∞

‖∇f(yk)−∇f(xk)‖ = 0. (3.28)

Since yk = proxαkg
(xk − αk∇f(xk)), it follows from (2.4) that

xk − αk∇f(xk)− yk

αk
∈ ∂g(yk)

which implies that

xk − yk

αk
+∇f(yk)−∇f(xk) ∈ ∇f(yk) + ∂g(yk) ⊆ ∂(f + g)(yk). (3.29)

From (3.27), (3.28) and (3.29), we have x̄ ∈ Ω. by Lemma 2.3
Step 5 Show that x̄ = PΩ(x0). Since xk = PCk

(x0) and Ω ⊂ Ck, we obtain

〈x0 − xk, xk − x∗〉 ≥ 0,∀x∗ ∈ Ω. (3.30)

By taking the limit in (3.30), we obtain

〈x0 − x̄, x̄− x∗〉 ≥ 0,∀x∗ ∈ Ω. (3.31)

This shows that x̄ = PΩ(x0). We thus complete the proof.
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4 Numerical Experiments

In this section, we present some numerical examples to the signal recovery. We
consider our first algorithm defined by projection method and provide a compari-
son among Algorithm 1.1, Algorithm 1.3 and Algorithm 3.1. In this case, we set
Txk = proxαkg

(xk − αk∇f(xk)). It is known that T is a nonexpansive mapping

when αk ∈ (0,
2

L
) and L is the Lipschitz constant of ∇f . Compressed sensing can

be modeled as the following underdeterminated linear equation system:

y = Ax+ ε, (4.1)

where x ∈ RN is a vector with k nonzero components to be recovered, y ∈ RM
is the observed or measured data with noisy ε, and A : RN → RM (M < N) is a
bounded linear operator. It is known that to solve (4.1) can be seen as solving the
LASSO problem:

min
x∈RN

1

2
‖y −Ax‖22 + λ‖x‖1, (4.2)

where λ > 0. So we can apply our method for solving (4.2) in case f(x) =
1
2‖y −Ax‖

2
2 and g(x) = λ‖x‖1. It is noted that ∇f(x) = AT (Ax− y).

In our experiment, the sparse vector x ∈ RN is generated from uniform distri-
bution in the interval [-2,2] with k nonzero elements. The matrix A ∈ RM×N is
generated from a normal distribution with mean zero and invariance one. The
observation y is generated by with Gaussian noise white signal-to-noise ratio
SNR=40. The initial point x0 is picked randomly. The restoration accuracy is
measured by the mean squared error as follows:

MSE =
1

N
‖xk − x∗‖22 < 10−5,

where x∗ is an estimated signal of x.

In what follows, let σ = 5, θ = 0.4, and δ = 0.4 in both Algorithm 1.3 and
Algorithm 3.1 and let the step size αk in Algorithm 1.1 and Algorithm 1.3 be 1

‖A‖2 .

Let h(x) = x
5 be a contraction and choose ak = 1

100k in all algorithms. We denote
by CPU the time using in CPU and Iter the number of iterations. The numerical
results are reported by Table 1.

The data in Table 1 shows that, for a given tolerance, all algorithms can be
used to solve the LASSO problem in compressed sensing. To be more precise,
Algorithm 3.1 with a linesearch take significantly less number of iterations and
CPU time compared to Algorithm 1.1 of [20] and Algorithm 1.3 of [21].
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Table 1: Computational results for solving the LASSO problem

m-sparse signal Method
N=512, M=256 N=1024, M=512

CPU Iter CPU Iter

m=20 Algorithm 3.1 4.3612 673 35.2779 1258
Algorithm 1.3 41.5479 3645 265.4392 6851
Algorithm 1.1 9.7712 1742 65.0949 3249

m=30 Algorithm 3.1 6.0680 793 32.7622 1335
Algorithm 1.3 56.6697 4370 282.0070 7265
Algorithm 1.1 13.0234 2109 64.8357 3457

m=40 Algorithm 3.1 5.5765 790 35.2468 1391
Algorithm 1.3 57.1358 4495 324.6561 7639
Algorithm 1.1 14.2279 2175 71.0742 3649

m=50 Algorithm 3.1 7.8385 1024 41.1793 1416
Algorithm 1.3 96.3842 5901 357.4149 7818
Algorithm 1.1 24.7290 2873 88.7461 3731

m=60 Algorithm 3.1 16.6168 1486 52.7078 1534
Algorithm 1.3 155.5344 8933 287.6895 8668
Algorithm 1.1 36.4613 4381 70.8262 4164

We next provide some numerical experiments for two cases to illustrate the
convergence behavior of all algorithm in comparison. We plot the original signal,
observation data, recovered signal, the number of iterations versus MSE.

Figure 1: From top to bottom: original signal, observation data, recovered signal by
Algorithm 3.1, Algorithm 1.3 and Algorithm 1.1 withN = 512 andM = 256, respectively.
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Figure 2: The objective function value versus number of iterations in case
N=512, M=256.

Figure 3: From top to bottom: original signal, observation data, recovered
signal by Algorithm 3.1, Algorithm 1.3 and Algorithm 1.1 with N = 512
and M = 256, respectively.
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Figure 4: The objective function value versus number of iterations in case
N=512, M=256.

Next, we discuss our forward-backward algorithm defined by the shrinking
projection method. We provide a comparison among Algorithm 1.1, Algorithm
1.4 and Algorithm 3.2. For convenience, we set all condition as in the previous
example.

Table 2: Computational results for solving the LASSO problem

m-sparse signal Method
N=512, M=256 N=1024, M=512

CPU Iter CPU Iter

m=20 Algorithm 3.2 5.2158 660 40.9654 1247
Algorithm 1.4 29.0458 3548 183.4528 6789
Algorithm 1.1 5.8716 1696 46.3793 3222

m=30 Algorithm 3.2 8.7975 865 45.0510 1369
Algorithm 1.4 42.1279 4820 236.4308 7648
Algorithm 1.1 9.8976 2325 62.7609 3645

m=40 Algorithm 3.2 7.4329 926 42.7707 1369
Algorithm 1.4 53.7019 5079 224.0050 7551
Algorithm 1.1 12.2709 2461 54.1403 3608

m=50 Algorithm 3.2 8.6868 1099 56.2084 1508
Algorithm 1.4 107.2563 6309 308.9143 8439
Algorithm 1.1 20.1471 3085 67.8876 4053

m=60 Algorithm 3.2 13.3035 1223 40.4446 1439
Algorithm 1.4 90.2037 7025 233.2904 8016
Algorithm 1.1 24.5405 3447 57.9466 3838

The data in Table 2 shows that, for a given tolerance, all algorithms can be
used to solve the LASSO problem in compressed sensing. To be more precise,
Algorithm 3.2 with a linesearch take significantly less number of iterations and
CPU time compared to Algorithm 1.1 of [20] and Algorithm 1.4 of [18].
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We plot the original signal, observation data, recovered signal, the number of
iterations versus MSE.

Figure 5: From top to bottom: original signal, observation data, recovered
signal by Algorithm 3.2, Algorithm 1.4 and Algorithm 1.1 with N = 512
and M = 256, respectively.

Figure 6: The objective function value versus number of iterations in case
N=512, M=256.
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Figure 7: From top to bottom: original signal, observation data, recovered
signal by Algorithm 3.2, Algorithm 1.4 and Algorithm 1.1 with N = 512
and M = 256, respectively.

Figure 8: The objective function value versus number of iterations in case
N=512, M=256.
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5 Conclusions

In this work, we discuss the modified forward-backward splitting method in-
volving linesearches for solving minimization problems of two convex functions.
We prove strong convergence theorems by using projection method and shrinking
projection method. All the results are compared, in compressed sensing, with
different kinds of forward-backward methods. It is found that algorithm using
linesearch has a better convergence behavior than other methods through exper-
iments. Our algorithms do not require to compute the Lipschitz constant of the
gradient of functions. This advantage is very useful and convenient in practice.

Acknowledgements : This research was supported by Thailand Research Fund
and University of Phayao under the project RSA6180084 and UOE62001. This
work was partially supported by Thailand Science Research and Innovation under
the project IRN62W0007.

References

[1] P.L. Combettes, J.C. Pesquet, Proximal splitting methods in signal process-
ing, in Fixed-Point Algorithms for Inverse Problems in Science and Engineer-
ing, Springer, New York (2011) 185-212.

[2] P.L. Combettes, V.R. Wajs, Signal recovery by proximal forward-backward
splitting, Multiscale Modeling Simulation 4 (4) (2005) 1168-1200.

[3] K. Kankam, N. Pholasa, P. Cholamjiak, On convergence and complexity of
the modified forward backward method involving new linesearches for convex
minimization, Mathematical Methods in the Applied Sciences 42 (5) (2019)
1352-1362.

[4] N. Parikh, S. Boyd, Proximal algorithms, Foundations and Trends in Opti-
mization 1 (3) (2014) 127-239.

[5] O. Guler, On the convergence of the proximal point algorithm for convex
minimization, SIAM Journal on Control and Optimization 29 (2) (1991) 403-
419.
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