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Abstract : We write X � Y if there is an injection from a set X into a set Y and
write X �∗ Y if X = ∅ or there is a surjection from Y onto X. For any sets X and
Y , X � Y implies X �∗ Y but the converse cannot be proved without the Axiom
of Choice (AC). The Trichotomy Principle, which states that for any sets X and
Y , X � Y or Y � X, is an equivalent form of AC. Surprisingly, the statement
is still equivalent to AC when � is replaced by �∗. Moreover, it has been shown
that the k-Trichotomy Principle, which states that every family of sets which is of
cardinality k contains two distinct sets X and Y such that X � Y , is equivalent
to AC when k is any natural number greater than 1. In this paper, we show that
the statement is also equivalent to AC when � is replaced by �∗.
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1 Introduction

We write X � Y if there is an injection from a set X into a set Y and write
X �∗ Y if X = ∅ or there is a surjection from Y onto X. For any sets X and Y ,
X � Y implies X �∗ Y but the converse cannot be proved without the Axiom of
Choice (AC) [1].

Since the cardinality or the size of a set is the number of all elements of a
set, if X � Y , then the size of X is smaller than or equal to the size of Y . The
Trichotomy Principle states that for any sets X and Y , X � Y or Y � X. It is
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an equivalent form of AC [2]. Thus, without AC, we may not compare the sizes of
arbitrary two sets. Obviously, the Trichotomy Principle implies that X �∗ Y or
Y �∗ X for any sets X and Y and this statement seems to be weaker. Surprisingly,
in fact, they are equivalent [3].

In [4], D. Feldman and M. Orhon extended the idea of the Trichotomy Principle
to the k-Trichotomy Principle. It states that every family of sets which is of
cardinality k contains two distinct sets X and Y such that X � Y . This statement
seems to be weaker than the Trichotomy Principle when k is a natural number
greater than 2. However, it has been shown in [4] that it is also equivalent to AC.
Thus it is natural to question that “is the statement still equivalent to AC when
� is replaced by �∗”. This paper gives an affirmative answer to the question. Our
result not only gives a surprise that the statement which appears to be weaker
than AC is in fact as strong as AC, it also provides an alternative form of AC
which will be useful for works concerning AC.

2 Preliminaries

This section gives some background on set theory. All basic notions and nota-
tions are used in the ordinary way. We use English capital letters (sometimes with
subscripts) for sets. We write P(X) for the power set of X and f [X] and f−1[X]
for the image and the inverse image, respectively, of X under a function f .

All concepts and theorems in Sections 2.1 and 2.2 are standard in Zermelo-
Fraenkel set theory (ZF). More details can be found in any set theory textbooks,
for example [5].

2.1 Cardinal Numbers

Intuitively, the cardinality of a set is the number of all elements of a set. Its
exact definition for an arbitrary set is not needed here. We only need to know that
it is defined so that any two sets have the same cardinality if and only if there is
a bijection between them. We say X is equinumerous to Y , denoted by X ≈ Y ,
if there is a bijection from X onto Y . We denote the cardinality of X by |X| and
call |X| a cardinal (number). Therefore for any sets X and Y ,

|X| = |Y | if and only if X ≈ Y .

Each natural number is constructed so that it is the set of all smaller natural
numbers, namely, 0 = ∅, 1 = {0}, 2 = {0, 1}, 3 = {0, 1, 2}, . . . and so on. Let ω
denote the set of all natural numbers. We shall use k, l, m, and n for natural
numbers.

A set is finite if it is equinumerous to a (unique) natural number. Otherwise,
it is infinite.

For any sets X and Y , there are disjoint sets X ′ and Y ′ such that X ≈ X ′

and Y ≈ Y ′ (for example, X ′ = X ×{0} and Y ′ = Y ×{1}). Thus, we will simply
write X∪̇Y for the union of some disjoint sets X ′ and Y ′ which are equinumerous
to X and Y respectively and write lX for the disjoint union of l copies of X.
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For any sets X and Y , we define |X|+ |Y | = |X∪̇Y | and |X| · |Y | = |X × Y |.
The operations + and · on cardinal numbers are commutative and associative

and · has distributive property over +.

We write X � Y , if there is an injection from X into Y , and write X �∗ Y
if X = ∅ or there is a surjection from Y onto X. We write X ≺ Y if X � Y but
X 6≈ Y , and X ≺∗ Y if X �∗ Y but X 6≈ Y .

For any sets X and Y , if X � Y , then X �∗ Y . The converse cannot be
proved in ZF.

Two well-known theorems below will be needed later.

Theorem 2.1 (Cantor-Bernstein Theorem). For any sets X and Y , if X � Y
and Y � X, then X ≈ Y .

Theorem 2.2 (Cantor’s Theorem). For any set X, X ≺ P(X).

Some other facts needed for our work are listed below.
For any sets X and Y ,

1. if X �∗ Y , then P(X) � P(Y ).

2. P(X∪̇Y ) ≈ P(X)× P(Y ) and so P(lX) ≈ P(X)× . . .× P(X)︸ ︷︷ ︸
l copies

.

3. if X and Y have at least two elements, then X ∪ Y � X × Y .

We define |X| ≤ |Y | if X � Y , |X| < |Y | if X ≺ Y , |X| ≤∗ |Y | if X �∗ Y ,
and |X| <∗ |Y | if X ≺∗ Y .

The relation ≤ partially orders the class of cardinals. It cannot be proved in
ZF that any two cardinals are comparable under ≤.

2.2 Well-Ordered Sets and Alephs

A relation R is a well ordering on a set X if R linearly orders X and every
nonempty subset of X has an R-least element. A set is well-ordered if there is a
well ordering on it.

We give some simple facts concerning well-ordered sets needed for later work
below.

1. A subset of a well-ordered set and a finite union of well-ordered sets are
well-ordered.

2. For any sets X and Y , if X �∗ Y and Y is well-ordered, then X � Y and
X can be well-ordered.

A set X is transitive if every member of X is also a subset of X.
An ordinal is a transitive set which is well-ordered by ∈. Natural numbers

and ω are ordinals. Note that every member of an ordinal is also an ordinal. We
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order ordinals by ∈. This ordering is a well ordering on the class of ordinals. We
denote the least uncountable ordinal by ω1 and let ω2 denote the least ordinal α
such that ω1 ≺ α.

An important fact concerning well-ordered sets is that every well-ordered set
is isomorphic to a unique ordinal. This guarantees that every well-ordered set is
equinumerous to some ordinals. Thus the cardinality of a well-ordered set can be
defined to be the least ordinal equinumerous to it.

For any well-ordered sets X and Y , |X| and |Y | are comparable and if X or Y
is infinite, then |X|+ |Y | = max{|X|, |Y |}. As a result, X ≈ 2X if X is an infinite
well-ordered set.

The cardinality of an infinite well-ordered set is called an aleph.
The following is an important theorem which can be proved in ZF.

Theorem 2.3 (Hartogs’ Theorem). For any set X, there is a least aleph ℵ such
that ℵ 6≤ |X|.

In an analogous way, for any set X, there exists a least aleph ℵ such that
ℵ 6≤∗ |X|. We denote such aleph by ℵ∗(X).

2.3 The Axiom of Choice

The Axiom of Choice (AC) is an important axiom in mathematics and is
independent from ZF. ZFC denotes ZF with AC. There are many equivalent forms
of AC. We state only the forms that will be used in this work below.

Well-Ordering Theorem: every set can be well-ordered.
Trichotomy Principle: for any sets X and Y , X � Y or Y � X.

Without AC, it cannot be proved that any two sets are comparable under
�. Moreover, for an infinite set X, we cannot guarantee whether ω � X or not.
Therefore, in the absence of AC, the following definitions are needed.

A set X is (weakly) Dedekind infinite if ω � X (ω �∗ X). Otherwise, X is
(weakly) Dedekind finite.

Since X � Y implies X �∗ Y for any sets X and Y , every Dedekind infinite
set is weakly Dedekind infinite. Equivalently, every weakly Dedekind finite set is
Dedekind finite. Without AC, a (weakly) Dedekind finite set needs not be finite.
If AC holds, all these concepts of infinity are the same.

Some important properties of these two kinds of infinite sets are the following.

Theorem 2.4. [6, Proposition 4.2] A set X is Dedekind infinite if and only if
X ≈ X ∪A for any finite set A.

Theorem 2.5. [6, Lemma 4.11] A set X is weakly Dedekind infinite if and only
if P(X) is Dedekind infinite.

Theorem 2.6. [7, Theorem 4.1] If there is a proper subset Y of X such that
X �∗ Y , then X is weakly Dedekind infinite.

For AC, see [6] and [8] for further details.
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3 Main Results

As mentioned earlier, the Trichotomy Principle, which states that for any sets
X and Y , X � Y or Y � X, is an equivalent form of AC. The following is another
form of the Trichotomy Principle which is also equivalent to AC.

Dual Trichotomy Principle: for any sets X and Y , X �∗ Y or Y �∗ X.

The equivalence of the Dual Trichotomy Principle and the Trichotomy Prin-
ciple is a surprise since for any sets X and Y , X � Y implies X �∗ Y but the
converse is not necessarily true. For example, ω1 �∗ R is provable in ZF but
ω1 � R is not [9, page 110]. Since “R can be well-ordered” is not provable in
ZF [9, pages 386-391], nor is R � ω1. Therefore, in ZF, ω1 and R are not compa-
rable under �.

In [4], a generalization of the Trichotomy Principle called the k-Trichotomy
Principle was introduced.

k-Trichotomy Principle: every family of sets which is of cardinality k contains
two distinct sets X and Y such that X � Y .

Notice that the 2-Trichotomy Principle and the Trichotomy Principle are the
same. It looks like when k becomes greater, the k-Trichotomy Principle becomes
weaker. However, it has been shown in [4] that for any natural number k > 2, the
k-Trichotomy Principle is also equivalent to AC.

We now extend the idea of the k-Trichotomy Principle to the k-Dual Tri-
chotomy Principle.

k-Dual Trichotomy Principle: every family of sets which is of cardinality k
contains two distinct sets X and Y such that X �∗ Y .

As discussed above, without AC, there are more pairs of sets which can be
compared by �∗ than those by �. Thus the k-Dual Trichotomy Principle seems
to be weaker than the k-Trichotomy Principle. Also, the principle when k > 2
appears to be weaker than the Dual Trichotomy Principle since there are sets that
cannot be compared by �∗ in ZF. For example, ω2 and R. If R �∗ ω2, then R can
be well-ordered which is not provable in ZF. If ω2 �∗ R is provable in ZF, then
ω ≺ ω1 ≺ ω2 � R will be provable in ZFC. This contradicts the consistency of
the Continuum Hypothesis with ZFC (a famous work by K. Gödel [10–12]). Thus
{ω1, ω2,R} contains two elements that are comparable under �∗, while {ω2,R}
does not. However, when we consider all families of the same cardinality k, things
turn out to be different from what it seems to be. We shall show that, in fact,
these principles are equivalent.

Our goal is to show that for any natural number k > 1, the k-Dual Trichotomy
Principle is equivalent to AC. Throughout this work, we fix k as a natural number
greater than 1. In [4], they showed that the k-Trichotomy Principle implies that
every infinite set is Dedekind infinite. Analogously, we first show that the k-Dual
Trichotomy Principle implies that every infinite set is weakly Dedekind infinite.
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Lemma 3.1. Assume the k-Dual Trichotomy Principle and let A1, A2, . . . , Ak be
sets such that A1 � A2 � · · · � Ak. Then there exist m,n ≤ k where n < m and
a well-ordered set W such that W � Am �∗ An∪̇W .

Proof. Define µk = ℵ∗(Ak) and µj = ℵ∗(µj+1) for all 1 ≤ j < k. Then µ1 > µ2 >
· · · > µk.

Consider the family {Ai∪̇µi}ki=1 and apply the k-Dual Trichotomy Principle,
we obtain m 6= n and Am∪̇µm �∗ An∪̇µn, i.e. there exists a surjective map
f : An∪̇µn → Am∪̇µm.

Let M = f−1[µm] ∩ µn and A = f−1[µm \ f [M ]]. Then f [M ] ∪ f [A] = µm.
Since A ⊆ An � Ak and ℵ∗(Ak) = µk ≤ µm, µm 6�∗ A. Hence f [A] 6≈ µm and
so |f [A]| < µm. Therefore |f [M ]| = µm and thus µm ≤∗ |M | ≤ µn. This implies
that n < m.

Let N = f−1[Am] ∩ µn. Since N is well-ordered, there is W ⊆ N such that
W ≈ f [N ] ⊆ Am. Thus W � Am �∗ An∪̇W where W is well-ordered.

Lemma 3.2. If X is a weakly Dedekind finite set, then so is lX for all l ∈ ω.

Proof. Let X be a weakly Dedekind finite set. The proof proceeds by induction.
Assume that lX is weakly Dedekind finite but (l+1)X is weakly Dedekind infinite.
Then ω �∗ (l + 1)X ≈ lX∪̇X, so there is a surjection f : lX∪̇X → ω. Since
ω 6�∗ lX and every infinite subset of ω is equinumerous to ω, f [lX] is finite. Since
f is a surjection, f [X] must be infinite. Thus ω ≈ f [X] �∗ X but X is weakly
Dedekind finite, a contradiction.

Lemma 3.3. The k-Dual Trichotomy Principle implies that every infinite set is
weakly Dedekind infinite.

Proof. Assume the k-Dual Trichotomy Principle. Suppose there is an infinite
weakly Dedekind finite set A. Since A � 2A � · · · � kA, by Lemma 3.1, W �
mA �∗ nA∪̇W for some n < m and some well-ordered set W . By Lemma 3.2, mA
is weakly Dedekind finite and so W must be finite (since W � mA where W is
well-ordered). Since A is infinite and n < m, nA∪̇W ≈ X for some X ( mA but
mA �∗ nA∪̇W where mA is weakly Dedekind finite. This contradicts Theorem
2.6.

Next, we will show that the k-Dual Trichotomy Principle implies that every
Dedekind infinite set can be well-ordered.

Lemma 3.4. Let A be an infinite set, W an infinite well-ordered set, and n > 0.
If W � nA, then W � A.

Proof. Assume the statement holds for m and W � (m + 1)A. Then there is an
injection f : W → mA∪̇A. Let X = f [W ] ∩mA and Y = f [W ] ∩ A. Since W is
an infinite well-ordered set and f is injective,

|W | = |f [W ]| = |X∪̇Y | = |X|+ |Y | = max{|X|, |Y |}.
Hence W ≈ X ⊆ mA or W ≈ Y ⊆ A. Thus W � mA or W � A. By the

induction hypothesis, we can conclude that W � A.
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Lemma 3.5. Assume the k-Dual Trichotomy Principle.

If A is a Dedekind infinite set, then P(lA) ≈ 2P(lA) ≈ P(2lA) for some l > 0.

Proof. Let A be a Dedekind infinite set. Since A � 2A � · · · � kA, by Lemma
3.1, there exist m,n ≤ k and a well-ordered set W such that W � mA �∗ nA∪̇W
where 0 < n < m. Since A is Dedekind infinite, so is nA. If W is finite, then
nA∪̇W ≈ nA. Suppose W is infinite. Then W ≈ 2W . Since W � mA, by Lemma
3.4, W � A � nA. Hence there is a set X such that

nA ≈ X∪̇W ≈ X∪̇2W ≈ (X∪̇W )∪̇W ≈ nA∪̇W .

Thus mA �∗ nA and so P(mA) � P(nA). Since nA � mA, P(nA) � P(mA).
By the Cantor-Bernstein Theorem, P(nA) ≈ P(mA).

Since P(mA) ≈ P(nA)× P((m− n)A) ≈ P(mA)× P((m− n)A),
P(nA) ≈ P(mA)× P((m− n)A)× . . .× P((m− n)A)︸ ︷︷ ︸

n copies

≈ P((m+ n(m− n))A).

Let r = m+ n(m− n). Then P(nA) ≈ P(rA) where r > 2n. Thus

P((r − n)A) = P((n+ r − 2n)A)

≈ P(nA)× P((r − 2n)A)

≈ P(rA)× P((r − 2n)A)

= P(2(r − n)A).

Let l = r − n. Then P(2lA) ≈ P(lA) � 2P(lA) � P(lA) × P(lA) ≈ P(2lA).
Hence P(lA) ≈ 2P(lA) ≈ P(2lA).

The following definition and Lemma 3.7 are by A. Blass [4, Appendix].

Definition 3.6. For any setX, defineQ(X) = Q1(X) = X×P(X) andQi+1(X) =
Q(Qi(X)) for all i ≥ 1.

Note that, by Cantor’s Theorem, X ≺ Q(X) for any nonempty set X.

Lemma 3.7. [4, Lemma 7] For any sets X and Y , if Y is well-ordered, then an
injection from Q(X) into X∪̇Y induces a canonical well ordering of X.

Lemma 3.8. The k-Dual Trichotomy Principle implies that every Dedekind infi-
nite set can be well-ordered.

Proof. Fix a Dedekind infinite set A. By Lemma 3.5, there exists l > 0 such
that P(lA) ≈ 2P(lA) ≈ P(2lA). Let B = lA. Then P(B) ≈ 2P(B) ≈ P(2B). It
follows straightforwardly by induction that P(Qp(B)) ≈ P(2Qp(B)) for all natural
numbers p ≥ 1.

Since Q(B) ≺ Q2(B) ≺ · · · ≺ Qk(B), by Lemma 3.1, there exist m,n ≤ k
where n < m and a well-ordered set W such that Qm(B) �∗ Qn(B)∪̇W . Let
f : Qn(B)∪̇W → Qm(B) be a surjection, X = f [Qn(B)] and Y = Qm(B) \ X.
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Then Qm(B) = X∪̇Y where X �∗ Qm−1(B) and Y is well-ordered since f−1[Y ] ⊆
W . Hence X ≺ P(X) � P(Qm−1(B)) and so

Q(X) = X × P(X)

� P(Qm−1(B))× P(Qm−1(B))

≈ P(2Qm−1(B))

≈ P(Qm−1(B))

� Qm−1(B)× P(Qm−1(B)) = Qm(B) = X∪̇Y.

By Lemma 3.7, X can be well-ordered and so can Qm(B). Since A � B ≺
Q(B) � Qm(B), A can be well-ordered.

Now, we are ready to prove our main theorem.

Theorem 3.9. The k-Dual Trichotomy Principle implies AC.

Proof. Assume the k-Dual Trichotomy Principle and let A be an infinite set. By
Lemma 3.3, A is weakly Dedekind infinite and hence P(A) is Dedekind infinite.
By Lemma 3.8, P(A) can be well-ordered. Since A ≺ P(A), A can also be well-
ordered.
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