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Abstract : This paper presents two linear finite difference schemes for the so–
called Rosenau–Kawahara equation, modified from a linear scheme by Hu et al.
in 2014, under a pseudo–compact method. Existence and uniqueness of solutions
generated by both schemes are proved. It is shown that the first scheme possesses
some conservation properties for mass and energy, whereas the other proposed
scheme provides only mass conservation. Some discussions on stability are given,
which reveal that numerical solutions are stable with respect to ‖ · ‖∞. It is
also shown that pseudo–compactness allows some terms in the schemes to reach
fourth–order convergence, even though the numerical solutions is of second–order
convergence overall. Furthermore, numerical simulations are illustrated confirming
that our schemes induce some improvements over the existing scheme by Hu et al.
on precision and cost.
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1 Introduction

The computation regarding nonlinear waves has been recently of great interest.
Shallow water waves, in particular, are one of the main aspects in oceanography
and atmospheric science. Equatorial waves, a type of waves trapped near the
equator, can also be explained by shallow water equations. It has been realized
that equatorial waves are one of the key ingredients in the study of tropical cli-
mates and the El Niño Southern Oscillation (ENSO). Besides, theory of shallow
water waves has been linked to efficiency of wave energy converters. As demand
for energy consumption increases, sea waves are one of the most promising sus-
tainable sources. Wave energy converters are typically installed in deep water due
to greater energy production. However, nearshore devices can reduce installation
cost, maintenance cost, and power losses in the cable. Although the amount of
energy generated at sites from offshore to nearshore is reduced, it is claimed that
the exploitable amount from both sites may not differ much. In [1], Folley and
Whittaker compared exploitable energy reduced from devices placed in deep and
shallow water at two sites in the Scottish seacoast, and found that the reduc-
tion was only 7% and 22%. This paves the way for future research on efficiency
improvements of nearshore converters, and suggests that better understanding in
nonlinear shallow water waves may help develop new technologies for renewable
and sustainable energy production.

There have appeared to be a huge number of publications contributing to
the theory of nonlinear waves through various mathematical models, see [2]– [5]
for the Korteweg–de Vries (KdV) equation; see [6]– [12] for the regularized long
wave (RLW) equation; see [13]– [18] for the Rosenau equation; see [19] for the
Rosenau–KdV equation; see [20]– [21] for the Rosenau–RLW equation; to name
but a few.

The Rosenau equation

ut + uxxxxt + ux + uux = 0 , (1.1)

has been used by many authors in the study of shallow water waves. It turns out
that seeking an analytic solution to (1.1) is not an easy task. In [22], Zuo proposed
an idea of adding some viscous terms +uxxx and −uxxxxx to the Rosenau equation
(1.1), and gave an exact periodic and solitary wave solution

u(x, t) =

(
−35

12
+

35

156

√
205

)
sech4

[
1

12

√
−13 +

√
205

(
x− 1

13

√
205 t

)]
(1.2)

to this modified equation. This gives rise to another nonlinear wave model, the
so–called Rosenau–Kawahara equation, to which the viscous terms +βuxxx and
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−γuxxxxx are introduced. Numerous techniques have been developed in order to
achieve better results. In [23], He’s principle, Variational Iteration Method (VIM),
was employed by Labidi and Bitwas to perform the integration of the Rosenau–
Kawahara equation. Finite difference schemes have also come into play. In [24], a
three–level linear and a two–level nonlinear Crank-Nicolson schemes were shown,
by Hu et al., to be conservative. It was also shown that both schemes provided
stability results and convergence of second order. Recently, in [25], a semi–explicit
(semi–implicit) linearized scheme was used to yield results for the generalized
Rosenau–Kawahara equation. A comparison between semi-implicit and purely
implicit schemes has been discussed in the work of Koley’s, [26]. It turns out that
purely implicit schemes is a more efficient tool. The reader may be also referred
to [27]– [28] for more papers concerning the Rosenau–Kawahara equation, and
to [29]– [30] for more details regarding some other finite difference methods in
nonlinear wave studies.

This paper aims to present two linear schemes and establish numerical results
regarding the Rosenau–Kawahara equation of the form

ut + uxxxxt + αux + βuxxx − γuxxxxx + η(u2)x = 0, x ∈ (xL, xR) , t > 0
(1.3)

with the initial conditions

u(x, 0) = u0(x), x ∈ [xL, xR] (1.4)

and the boundary conditions:

u (xL, t) = uxx (xL, t) = uxxxx (xL, t) = 0,

u (xR, t) = uxx (xR, t) = uxxxx (xR, t) = 0 (1.5)

t ∈ [0, T ], via a pseudo–compact finite difference method. It is shown that the
former scheme preserves mass whereas the latter conserves both mass and energy.
Moreover, the numerical accuracy of the latter is improved, compared to Hu’s
linear scheme in [24].

The structure of the paper is as follows. Section 2 provides a brief description
of finite difference method and collects some lemmas that will be used throughout
the work. Sections 3 and 4 present our linear schemes, and also discuss their
conservation properties, convergence, solvability and stability. Section 5 illustrates
the numerical results and shows the improvement in accuracy. Last but not least,
Section 6 is devoted for the conclusions.

2 Finite Difference Method

Let Ω = {(x, t)| xL ≤ x ≤ xR, 0 ≤ t ≤ T} ⊂ R × R+
0 be the domain of

the solutions to the Rosenau–Kawahara equation (1.3) with initial and boundary
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conditions (1.4) and (1.5). Discretize the domain Ω in space and time by constant
grid spacing

τ =
T

N
and h =

xR − xL
M

,

respectively, where N and M are integers. This defines the set of computational
grid points denoted by

Ωh={(xi, tn) |xi = xL+ih, tn = nτ, i = −1, 0, 1, . . . ,M,M+1, n = 0, 1, 2, . . . , N}.

Each grid point (xi, tn) will be tagged by the exact solution u(xi, tn), and by
the associated numerical solution uni ≈ u(xi, tn). Moreover, the following finite
difference approximations are given for convenient use:

(uni )x =
uni+1 − uni

h
, (uni )x̄ =

uni − uni−1

h
, (uni )x̂ =

uni+1 − uni−1

2h
,

(uni )t =
un+1
i − uni

τ
, (uni )t̄ =

uni − u
n−1
i

τ
, (uni )t̂ =

un+1
i − un−1

i

2τ
,

ūni =
un+1
i + un−1

i

2
, 〈un, vn〉 = h

M−1∑
i=1

uni v
n
i , ‖un‖2 = 〈un, un〉

and ‖un‖∞ = max
1≤i≤M−1

|uni |.

Let us now recall some Sobolev spaces relevant to this work. Denote by

Hk (Ω) = {u ∈ L2 (Ω) | ∂iu

∂xi
∈ L2 (Ω) , i = 0, 1, ..., k}

the vector space containing square-integrable real-valued functions whose all spa-
tial partial derivatives (up to order k) are also square-integrable, and by

Hk
0 (Ω) = {u ∈ Hk (Ω) | ∂iu

∂xi
= 0 on ∂Ω, i = 0, 1, ..., k − 1}

the subspace of H2(Ω) containing functions whose all spatial partial derivatives
(up to order k) vanish on the boundary. Both spaces are equipped with the usual
SobolevHk–norm denoted by ‖·‖Hk . For k = 0, the Sobolev spaceH0(Ω) = L2(Ω)
enjoys the L2–norm ‖ · ‖L2 and the inner product (·, ·). Also, the norm of L∞(Ω)
is denoted by ‖ · ‖L∞ .

The following lemmas will be used later on. The proofs can be found in
[24], [31]. It is worth remarking that the positive constant C in our calculation,
independent of h and τ , may have different values for different occurrences.

Now let us set

Z0
h = {u = (ui)|u−1 = u0 = u1 = u2 = uM−2 = uM−1 = uM = uM+1 = 0,

i = −1, 0, 1, . . . ,M,M + 1}.
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Lemma 2.1. For any two mesh functions u, v ∈ Z0
h, we have

(ux̂, v) = −(u, vx̂),

(ux, v) = −(u, vx̄),

(v, uxx̄) = −(vx, ux),

(u, uxx̄) = −(ux, ux) = −‖ux‖2.

Furthermore,

(u, uxxx̄x̄) = ‖uxx̄‖2

(u, uxxxx̄x̄x̄) = −‖uxxx̄‖2.

Lemma 2.2. For u, v ∈ Z0
h be any mesh function. Then, the following hold;

1. (u(v)x̂, v) = (uv, vx̂) .

2. ‖unxxx̄‖2 ≤
4

h2
‖unxx̄‖2.

3. ‖unxx̄x̂‖2 ≤
4

h2
‖unx̄x̂‖2.

Proof. (1) Consider

(u(v)x̂, v) = h

M−1∑
i=1

[u(v)x̂v]

= h

M−1∑
i=1

[uv(v)x̂]

= (uv, vx̂) .

(2) We can reduce ‖unxxx̄‖2 to the relation

‖unxxx̄‖2 ≤
2

h

M−1∑
i=1

[
[(uni+1)xx̄]2 + [(uni )xx̄]2

]
=

4

h2
‖unxx̄‖2.

(3) We can estimate

‖unxx̄x̂‖2 ≤
2

h

M−1∑
i=1

[
[(uni+1)x̄x̂]2 + [(uni )x̄x̂]2

]
=

4

h2
‖unx̄x̂‖2.

Lemma 2.3. (Discrete Sobolev’s inequality [31]) There exist two constants C1

and C2 such that
‖un‖∞ ≤ C1‖un‖+ C2‖unx‖.
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Lemma 2.4. (Discrete Gronwall’s inequality [31]) Suppose that ω(k) and ρ(k) are
nonnegative functions and ρ(k) is nondecreasing. If C > 0 and

ω(k) ≤ ρ(k) + Cτ

k−1∑
l=0

ω(l) for all k ,

then
ω(k) ≤ ρ(k)eCτk for all k .

Lemma 2.5. (Hu et.al. [24]) Suppose that u0 ∈ H2
0 [xL, xR], then the solution un

of (1.3)–(1.5) satisfies

‖u‖L2 ≤ C, ‖ux‖L2 ≤ C, ‖uxx‖L2 ≤ C, ‖u‖L∞ ≤ C.

3 A Linear Conservative Difference Scheme 1

We now propose a linear finite difference scheme for the Rosenau–Kawahara
equation (1.3) with conditions (1.4) and (1.5):

(uni )t̂ +
h2

3
(uni )xx̄t̂ + (uni )xxx̄x̄t̂ +

h2

6
(uni )xxxx̄x̄x̄t̂ + α(ūni )x̂ + s1(ūni )xx̄x̂ − s2(ūni )xxx̄x̄x̂

+
η

3
[uni (ūni )x̂ + (uni ū

n
i )x̂] = 0;

(3.1)

1 ≤ i ≤M − 1, 1 ≤ n ≤ N − 1, where

u0
i = u0(xi), −2 ≤ i ≤M + 2, (3.2)

un0 = unM = 0, (un0 )x̂ = (unM )x̂ = 0, (un0 )xx̄ = (unM )xx̄ = 0, 1 ≤ n ≤ N, (3.3)

where s1 = β + αh2

3 and s2 = γ − βh2

12 .
Before we proceed, let us state a fact concerning conservation of mass and

energy at each time step, deduced by the scheme.

Theorem 3.1. Suppose u0 ∈ H2
0 [xL, xR]. Using the scheme (3.1)–(3.3), the dis-

crete mass Qn and the discrete energy En are conserved. That is,

Qn =
h

2

M−1∑
i=1

(
un+1
i + uni

)
+
ηhτ

6

M−1∑
i=1

uni
(
un+1
i

)
x̂

= Qn−1 = · · · = Q0 (3.4)

and

En = (‖un‖2 + ‖un−1‖2)− h2

3
(‖unx‖2 + ‖un−1

x ‖2) + (‖unxx̄‖2 + ‖un−1
xx̄ ‖2)

− h2

6
(‖unxx̄x‖2 + ‖un−1

xx̄x ‖2)

= En−1 = · · · = E0. (3.5)
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Proof. We first multiply (3.1) by h and sum all the terms up from i = 1 to M − 1.
The boundary conditions then provide

h

M−1∑
i=1

(
un+1
i − un−1

i

)
2τ

+
h

3

M−1∑
i=1

uni (ūi
n)x̂

= h

M−1∑
i=1

(
un+1
i − un−1

i

)
2τ

+
h

6

M−1∑
i=1

uni
(
un+1
i

)
x̂
− h

6

M−1∑
i=1

un−1
i (uni )x̂

= 0.

This implies the conservation of mass (3.4).
For the conservation of energy, we first take the inner product of (3.1) with

2ūn, and then use Lemmas 2.1 and 2.2.

(ūnx̂ , ū
n) = 0, (ūnxx̄x̂, ū

n) = 0, (ūnxxx̄x̄x̂, ū
n) = 0, (3.6)

We thus obtain

(‖un+1‖2 − ‖un−1‖2)− h2

3
(‖un+1

x ‖2 − ‖un−1
x ‖2) + (‖un+1

xx̄ ‖2 − ‖un−1
xx̄ ‖2)

− h2

6
(‖un+1

xxx̄ ‖2 − ‖un−1
xxx̄ ‖2)

= −2η

3
([un(ūn)x̂ + (unūn)x̂] , ūn)

= −2η

3
[(un(ūn)x̂, ū

n) + ((unūn)x̂ , ū
n)]

= −2η

3
[(un(ūn)x̂, ū

n)− ((unūn) , ūnx̂)]

= 0. (3.7)

By the definition of En, we have

En = (‖un‖2 + ‖un−1‖2)− h2

3
(‖unx‖2 + ‖un−1

x ‖2) + (‖unxx̄‖2 + ‖un−1
xx̄ ‖2)

− h2

6
(‖unxx̄x‖2 + ‖un−1

xx̄x ‖2),

implying that

En+1 − En = (‖un+1‖2 − ‖un−1‖2)− h2

3
(‖un+1

x ‖2 − ‖un−1
x ‖2)

+ (‖un+1
xx̄ ‖2 − ‖un−1

xx̄ ‖2)− h2

6
(‖un+1

xxx̄ ‖2 − ‖un−1
xxx̄ ‖2) = 0,

which proves (3.5).
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3.1 Solvability

The following theorem guarantees that our scheme can produce a unique so-
lution.

Theorem 3.2. The finite difference scheme (3.1)–(3.3) is uniquely solvable.

Proof. We will prove the theorem by induction on time levels n. Notice, first of all,
that u0 is obtained uniquely from the initial conditions, and that u1 is computed
by a second–order method.

Now, suppose that u0, u1, u2, ..., un are solved uniquely. By considering (3.1)
for un+1, we have

1

2τ
un+1
i +

1

2τ

h2

3
(un+1
i )xx̄ +

1

2τ
(un+1
i )xxx̄x̄ +

1

2τ

h2

6
(un+1
i )xxxx̄x̄x̄ +

α

2
(un+1
i )x̂

+
s1

2
(un+1
i )xx̄x̂ −

s2

2
(un+1
i )xxx̄x̄x̂ +

η

6

[
uni (un+1

i )x̂ +
(
uni u

n+1
i

)
x̂

]
= 0. (3.8)

By taking the inner product of (3.8) with un+1 and using the identities

(un+1
x̂ , un+1) = 0, (un+1

xx̄x̂ , u
n+1) = 0, (un+1

xxx̄x̄x̂, u
n+1) = 0, (3.9)

we obtain

‖un+1‖2 − h2

3
‖un+1

x ‖2 + ‖un+1
xx̄ ‖2 −

h2

6
‖un+1

xxx̄ ‖2

+
η

6

([
uni (un+1

i )x̂ +
(
uni u

n+1
i

)
x̂

]
, un+1
i

)
= 0.

Lemmas 2.1 and 2.2 then imply([
uni (un+1

i )x̂ +
(
uni u

n+1
i

)
x̂

]
, un+1
i

)
=
(
uni (un+1

i )x̂, u
n+1
i

)
+
((
uni u

n+1
i

)
x̂
, un+1
i

)
=
(
uni (un+1

i )x̂, u
n+1
i

)
−
(
uni u

n+1
i , (un+1

i )x̂
)

= 0.

It follows from Cauchy–Schwarz inequality that∥∥un+1
x

∥∥2
= −(un+1, un+1

xx̄ ) ≤ 1

2

∥∥un+1
∥∥2

+
1

2

∥∥un+1
xx̄

∥∥2
. (3.10)

Next, applying Lemma 2.2 to (3.8), we get

(
1

3
− h2

6
)‖un+1‖2 + (

1

3
− h2

6
)‖un+1

xx̄ ‖2 = 0.

Therefore, (3.8) has the only one solution; that is, the scheme (3.1) un+1 is uniquely
solvable. This completes the proof of Theorem 3.2.
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3.2 Convergence and Stability

Let us now have some discussion on the convergence and stability of the scheme
(3.1)–(3.3). Let vni = v(xi, tn) be the solution to (1.3)–(1.5). Set eni = vni − uni .
Then, we obtain the following truncation error:

rni = (eni )t̂ +
h2

3
(eni )xx̄t̂ + (eni )xxx̄x̄t̂ +

h2

6
(eni )xxxx̄x̄x̄t̂ + α(ēni )x̂ + s1(ēni )xx̄x̂

− s2(ēni )xxx̄x̄x̂ +
η

3
[vni (v̄ni )x̂ + (vni v̄

n
i )x̂]− η

3
[uni (ūni )x̂ + (uni ū

n
i )x̂] . (3.11)

Using Taylor expansion, it is easy to see that

rni = O(τ2 + h2) as τ, h→ 0.

The following theorem is required for the proof of convergence and stability of
our scheme.

Theorem 3.3. Suppose that u0 ∈ H2
0 [xL, xR]. Then, the solution un to (3.1)–

(3.3) satisfies
‖un‖ ≤ C, ‖unx‖ ≤ C, ‖unxx̄‖ ≤ C ,

that is,

‖un‖∞ ≤ C, ‖unx‖∞ ≤ C (n = 1, 2, 3, ..., N).

Proof. From (3.5), we know that

En = (‖un‖2 + ‖un−1‖2)− h2

3
(‖unx‖2 + ‖un−1

x ‖2) + (‖unxx̄‖2 + ‖un−1
xx̄ ‖2)

− h2

6
(‖unxx̄x‖2 + ‖un−1

xx̄x ‖2) = E0.

According to Cauchy-Schwarz inequality and Lemma 2.2, we have

(
1

3
− h2

6
)
[
‖un‖2 + ‖un−1‖2 + ‖unxx̄‖2 + ‖un−1

xx̄ ‖2
]
≤ C.

It follows that

‖un‖ ≤ C and ‖unxx̄‖ ≤ C

and, by (3.10), hence
‖unx‖ ≤ C .

Then, by Lemma 2.3, we finally obtain

‖un‖∞ ≤ C and ‖unx‖∞ ≤ C (n = 1, 2, 3, ..., N).

The following shows that our scheme produces a solution with convergence
rate O(τ2 + h2).
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Theorem 3.4. Suppose u0 ∈ H2
0 [xL, xR]. Then, the solution un converges (with

respect to ‖·‖∞) to the solution to the problem (1.3)–(1.5) with rate of convergence
is O(τ2 + h2).

Proof. By taking the inner product on both sides of (3.11) with 2ēn = (en+1 +
en−1) and by using

(ēnx̂ , ē
n) = 0, (ēnxx̄x̂, ē

n) = 0, (ēnxxx̄x̄x̂, ē
n) = 0, (3.12)

we get

(‖en+1‖2 − ‖en−1‖2)− h2

3
(‖en+1

x ‖2 − ‖en−1
x ‖2) + (‖en+1

xx̄ ‖2 − ‖en−1
xx̄ ‖2)

− h2

6
(‖en+1

xx̄x ‖2 − ‖en−1
xx̄x ‖2)

= 2τ(rn, 2ēn)− ητ

3
([vn(v̄n)x̂ + (vnv̄n)x̂] , 2ēn) +

ητ

3
([un(ūn)x̂ + (unūn)x̂] , 2ēn) .

(3.13)

Due to Cauchy-Schwarz inequality, Lemma 2.1, Theorem 3.1, and Lemma 2.5, we
obtain the inequalities:

‖enx‖ = − (en, enxx̄) ≤ 1

2

(
‖en‖2 + ‖enxx̄‖

2
)
, (3.14)

−η
3

([vn(v̄n)x̂ + (vnv̄n)x̂] , 2ēn) +
η

3
([un(ūn)x̂ + (unūn)x̂] , 2ēn) (3.15)

≤ C(‖en−1‖2 + ‖en‖2 + ‖en+1‖2 + ‖en−1
xx̄ ‖2 + ‖en+1

xx̄ ‖2).

and

(rn, 2ēn) ≤ ‖rn‖2 +
1

2

(∥∥en+1
∥∥2

+
∥∥en−1

∥∥2
)
. (3.16)

Applying (3.14)–(3.16) to(3.13) and using Cauchy-Schwarz inequality, we have

(‖en+1‖2 − ‖en−1‖2)− h2

3
(‖en+1

x ‖2 − ‖en−1
x ‖2) + (‖en+1

xx̄ ‖2 − ‖en−1
xx̄ ‖2)

− h2

6
(‖en+1

xxx̄ ‖2 − ‖en−1
xxx̄ ‖2) (3.17)

≤ 2τ‖rn‖2 + τC(‖en−1‖2 + ‖en‖2 + ‖en+1‖2 + ‖en−1
xx̄ ‖2 + ‖en+1

xx̄ ‖2).
(3.18)

Let us set

En =(‖en‖2 + ‖en−1‖2)− h2

3
(‖enx‖2 + ‖en−1

x ‖2) + (‖enxx̄‖2 + ‖en−1
xx̄ ‖2)

− h2

6
(‖enxxx̄‖2 + ‖en−1

xxx̄ ‖2).
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Using (3.14) and Lemma 2.2, (3.17) can be rewritten as

En+1 − En ≤ 2τ‖rn‖2 + τC(En+1 + En),

implying that

(1− 2τC)
(
En+1 − En

)
≤ 2τ‖rn‖2 + 2τCEn.

If τ is sufficiently small, which satisfies 1− 2Cτ > 0, then

En+1 − En ≤ τC‖rn‖2 + τCEn. (3.19)

Since (3.19) holds for every n, it can be summed up from k = 1 to n to become

En+1 ≤ E1 + Cτ

n∑
k=1

∥∥rk∥∥2
+ Cτ

n∑
k=1

Ek. (3.20)

Thus, we can use a second–order method to compute u1 such that

E1 ≤ O(τ2 + h2)
2
,

and

τ

n∑
k=1

∥∥rk∥∥2 ≤ nτ max
0≤l≤n−1

∥∥rl∥∥2 ≤ T ·O(τ2 + h2)2.

By Lemma 2.3, we obtain En ≤ O(τ2 + h2)
2
. Next, applying Lemma 2.2 to (3.13),

we have

(1−h
2

6
)‖en‖2+(1−h

2

6
)‖en−1‖2+(

1

3
−h

2

6
)‖enxx̄‖2+(

1

3
−h

2

6
)‖en−1

xx̄ ‖2 ≤ O(τ2 + h2)
2
.

That is,

‖en‖ ≤ O(τ2 + h2) and ‖enxx̄‖ ≤ O(τ2 + h2).

Using (3.14), we therefore obtain

‖enx‖ ≤ O(τ2 + h2).

and thus, by and Lemma 2.3,

‖en‖∞ ≤ O(τ2 + h2)

as desired.

Theorem 3.5. Under the conditions of Theorem 3.4, the solution un obtained by
the scheme (3.1)–(3.3) is stable with respect to ‖ · ‖∞.
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4 A Linear Conservative Difference Scheme 2

Let us now be concerned with another linear finite difference scheme that is
proposed to solve the Rosenau–Kawahara equation (1.3)–(1.5).

(uni )t̂+(uni )xxx̄x̄t̂+α(ūni )x̂+β(ūni )xx̄x̂−γ(ūni )xxx̄x̄x̂+η
[
(uni )

2
]
x̂
+
ηh2

6

[
(uni )

2
]
xx̄x̂

= 0;

(4.1)
1 ≤ i ≤M − 1, 1 ≤ n ≤ N − 1, where

u0
i = u0(xi), −2 ≤ i ≤M + 2, (4.2)

un0 = unM = 0, (un0 )x̂ = (unM )x̂ = 0, (un0 )xx̄ = (unM )xx̄ = 0, 1 ≤ n ≤ N. (4.3)

Theorem 4.1. Suppose that un ∈ Z0
h. Using the scheme (4.1)–(4.3), the discrete

mass Qn is conserved; that is,

Qn =
h

2

M−1∑
i=1

(
un+1
i + uni

)
= Qn−1 = · · · = Q0. (4.4)

Proof. Multiplying Eq. (4.1) by h, summing up for i from i = 0 to M − 1 and
using the boundary conditions, it follows that

h

2

M−1∑
i=1

(
un+1
i − un−1

i

)
= 0.

Thus, Qn −Qn−1 = 0, yielding the conservation law (4.4).

Theorem 4.2. Suppose u0 ∈ H2
0 [xL, xR]. Then, the solution un to (4.1)–(4.3)

satisfies ‖un‖ ≤ C and ‖unxx‖ ≤ C, which yields ‖un‖∞ ≤ C .

Proof. The theorem will be argued by induction on the time levels n. First of all, it
follows from the initial condition (4.2) that u0 ≤ C. The first–level approximation
u1 can be computed directly by a second–order method. Hence,

∥∥u1
∥∥ ≤ C and∥∥u1

∥∥
∞ ≤ C. Now, we assume that∥∥uk∥∥∞ ≤ C for k = 0, 1, 2, . . . , n. (4.5)

Taking the inner product of (4.1) with 2ūn, and using equalities (3.6) and Lemma
2.1, we obtain

(‖un+1‖2 − ‖un−1‖2) + (‖un+1
xx̄ ‖2 − ‖un−1

xx̄ ‖2)

= −2τ(η[(unj )2]x̂, 2ū
n)− 2τ((

ηh2

6
)[(unj )2]xx̄x̂, 2ū

n).
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By Cauchy–Schwarz inequality and direct computation, it gives

‖unx̂‖ ≤ ‖unx‖,

and

‖unx‖2 ≤
1

2
(‖un‖2 + ‖unxx̄‖2).

From (4.5), Cauchy–Schwarz inequality again together with Lemma 2.1, we get

([
(un)

2
]
x̂
, 2ūn

)
= −h

M−1∑
i=1

(uni )
2(
un+1
i + un−1

i

)
x̂

≤ C
(
‖un‖2 +

1

4

∥∥un−1
∥∥2

+
1

4

∥∥un+1
∥∥2

+
1

4

∥∥un+1
xx̄

∥∥ 2 +
1

4

∥∥un−1
xx̄

∥∥ 2

)
.

The boundary conditions (4.3) and Lemma 2.1 provide

‖unx̂‖2 ≤
1

2
(‖unx‖2 + ‖unx̄‖2) = ‖unx‖2 (4.6)

and

‖unxx̂‖2 = ‖unx̄x̂‖2 ≤ ‖unxx̄‖2. (4.7)

Using (4.6), (4.7) and Lemma 2.2, we thus obtain

(
[(un)2]xx̄x̂, 2ū

n
)

= −h
M−1∑
i=1

(uni )
2(
un+1
i + un−1

i

)
xx̄x̂

= −h
M−1∑
i=1

(uni )(uni )
(
un+1
i + un−1

i

)
xx̄x̂

≤ C
(
‖un‖2 +

1

2

∥∥un+1
xx̄x̂

∥∥ 2 +
1

2

∥∥un−1
xx̄x̂

∥∥ 2

)
≤ C

(
‖un‖2 +

2

h2

∥∥un+1
xx̄

∥∥ 2 +
2

h2

∥∥un−1
xx̄

∥∥ 2

)
.

Let us now set

Bn = (‖un‖2 + ‖un−1‖2) + (‖unxx̄‖2 + ‖un−1
xx̄ ‖2).

This follows that

Bn+1 −Bn ≤ τC(‖un‖2 + ‖un−1‖2 + ‖un+1‖2 + ‖un+1
xx̄ ‖2 + ‖un−1

xx̄ ‖2)

≤ τC(Bn+1 +Bn).
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If τ is sufficiently small, which satisfies τ ≤ k − 2

kC
for k > 2, then

Bn+1 ≤ (1 + τC)

(1− τC)
Bn ≤ (1 + τkC)Bn ≤ exp (kCT )B0.

Hence,
(‖un+1‖2 + ‖un‖2) + (‖un+1

xx̄ ‖2 + ‖unxx̄‖2) ≤ C.

Therefore,
∥∥un+1

∥∥ ≤ C and
∥∥un+1

xx̄

∥∥ ≤ C, which yield
∥∥un+1

∥∥
∞ ≤ C by Lemma

2.3.

4.1 Solvability

We now prove that the scheme gives a unique solution to the Rosenau–Kawahara
equation.

Theorem 4.3. The finite difference scheme (4.1)–(4.3) is uniquely solvable.

Proof. The proof will be done by induction on the time levels n. First, we can
determine u0 uniquely by the initial conditions. Next, a second–order method
will give u1. For the inductive procedure, suppose that u0, u1, u2, ..., un are solved
uniquely. Considering (4.1) for un+1, we have

1

2τ
un+1
i +

1

2τ
(un+1
i )xxx̄x̄+α

1

2
(un+1
i )x̂+β

1

2
(un+1
i )xx̄x̂−γ

1

2
(un+1
i )xxx̄x̄x̂ = 0. (4.8)

By taking the inner product of (4.8) with un+1 and using (3.9), we obtain

‖un+1‖2 + ‖un+1
xx̄ ‖2 = 0.

Therefore, (4.8) has the only one solution un+1; that is, (4.1) is uniquely solvable.
This completes the proof of Theorem 4.3.

4.2 Convergence and Stability

Next, we deal with the convergence and stability of the scheme (4.1)–(4.3).
Let vni = v(xi, tn) be the solution to (1.3)–(1.5). Set eni = vni − uni . Then, we
obtain

rni = (eni )t̂ + (eni )xxx̄x̄t̂ + α(ēni )x̂ + β(ēni )xx̄x̂ − γ(ēni )xxx̄x̄x̂ (4.9)

+ η[(vni )2
x̂ − (uni )2

x̂] + (
ηh2

6
)[(vni )2

xx̄x̂ − (uni )2
xx̄x̂].

where rni denotes the truncation error. By Taylor expansion, it follows that rni =
O(τ2 + h2) as τ, h→ 0.

Theorem 4.4. Suppose u0 ∈ H2
0 [xL, xR]. Then, the solution un produced by the

scheme (4.1)–(4.3) converges (with respect to ‖·‖∞) to the solution to the problem
(1.3)–(1.5) with rate of convergence is O(τ2 + h2).
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Proof. By taking the inner product on both sides of (4.9) with 2ēn = (en+1+en−1)
and by using (3.12), we get

(‖en+1‖2 − ‖en−1‖2) + (‖en+1
xx̄ ‖2 − ‖en−1

xx̄ ‖2) (4.10)

= 2τ(rn, 2ēn)− 2τη((vni )2
x̂ − (uni )2

x̂, 2ē
n)− 2τ(

ηh2

6
)((vni )2

xx̄x̂ − (uni )2
xx̄x̂, 2ē

n).

By Cauchy–Schwarz inequality, Lemma 2.1, Theorem 4.1, and Lemma 2.5, we
obtain the following inequalities

([(vni )2]x̂ − [(uni )2]x̂, 2ē
n) = 2h

M−1∑
i=1

[(vni )2
x̂ − (uni )2

x̂]ēni

= −2h

M−1∑
i=1

[(vni )2 − (uni )2](ēni )x̂

= −2h

M−1∑
i=1

[(vni )− (uni )][(vni ) + (uni )](ēni )x̂

= −2h

M−1∑
i=1

[en][(vni ) + (uni )](ēni )x̂

≤ C(‖en‖2 + ‖(ēn)x̂‖2)

≤ C(‖en‖2 + ‖en−1‖2 + ‖en+1‖2 + ‖en−1
xx̄ ‖2 + ‖en+1

xx̄ ‖2)
(4.11)

([(vni )2]xx̄x̂ − [(uni )2]xx̄x̂, 2ē
n) = −2h

M−1∑
i=1

[(vni )2
x̂ − (uni )2

x̂](ēni )xx̄

= −
M−1∑
i=1

[[(vni+1)2 − (vni−1)2]− [(uni+1)2 − (uni−1)2]](ēni )xx̄

= −
M−1∑
i=1

[eni+1[(vni+1) + (uni+1)]− eni−1[(vni−1) + (uni−1)]](ēni )xx̄

≤ C 1

h
[h

M−1∑
i=1

[|eni+1||(ēni )xx̄|] + C
1

h
[h

M−1∑
i=1

|eni−1||(ēni )xx̄|]

≤ 1

h
C(‖en‖2 + ‖(ēn)xx̄‖2)

≤ 1

h
C(‖en‖2 + ‖en−1

xx̄ ‖2 + ‖en+1
xx̄ ‖2) (4.12)

and

(rn, 2ēn) ≤ ‖rn‖2 +
1

2

(∥∥en+1
∥∥2

+
∥∥en−1

∥∥2
)
. (4.13)
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Utilizing (4.11)–(4.13), (4.10) becomes

(‖en+1‖2 − ‖en−1‖2) + (‖en+1
xx̄ ‖2 − ‖en−1

xx̄ ‖2)

≤ 2τ‖rn‖2 + τC(‖en−1‖2 + ‖en‖2 + ‖en+1‖2 + ‖en−1
xx̄ ‖2 + ‖en+1

xx̄ ‖2). (4.14)

Again, Cauchy-Schwarz inequality and Lemma 2.1 give

‖enx̂‖ ≤ ‖enx‖, (4.15)

and hence

‖enx‖ = − (en, enxx̄) ≤ 1

2

(
‖en‖2 + ‖enxx̄‖

2
)
. (4.16)

Setting
Dn = ‖en‖2 + ‖en−1‖2 + ‖enxx̄‖2 + ‖en−1

xx̄ ‖2

and using (4.15), (4.16) and Lemma 2.2, we can rewrite (4.14) as

Dn+1 −Dn ≤ 2τ‖rn‖2 + τC(Dn+1 +Dn).

This implies that

(1− 2τC)
(
Dn+1 −Dn

)
≤ τ‖rn‖2 + 2τCDn.

If τ is small enough satisfying 1− 2Cτ > 0, then

Dn+1 −Dn ≤ τC‖rn‖2 + τCDn (4.17)

for every n. Summing up (4.17) from k = 1 to n gives

Dn+1 ≤ D1 + Cτ

n∑
k=1

∥∥rk∥∥2
+ Cτ

n∑
k=1

Dk. (4.18)

Thus, we can use a second–order method to compute u1 such that

D1 ≤ O(τ2 + h2)
2
,

and

τ

n∑
k=1

∥∥rk∥∥2 ≤ nτ max
0≤l≤n−1

∥∥rl∥∥2 ≤ T ·O(τ2 + h2)2.

By Lemma 2.4, we obtain En ≤ O(τ2 + h2)
2
. That is,

‖en‖ ≤ O(τ2 + h2) and ‖enxx̄‖ ≤ O(τ2 + h2).

From (4.16), it follows that

‖enx‖ ≤ O(τ2 + h2)

and, by Lemma 2.3, we have

‖en‖∞ ≤ O(τ2 + h2).

The proof is now complete.

Theorem 4.5. Under the conditions of Theorem 4.4, the solution un obtained by
the scheme (4.1)–(4.3) is stable with respect to ‖ · ‖∞.



Numerical Solutions to the Rosenau–Kawahara Equation ... 587

5 Numerical Experiments

In this section, we will show the performance our schemes presented earlier in
the case α = β = γ = 1 and η = 1

2 . We will compare further our numerical results
with the existing scheme proposed by J. Hu et al., see [24]. For convenience, our
schemes (3.1) and (4.1) will be named Scheme I and Scheme II, respectively, and
Hu’s scheme will be called Scheme III.

5.1 Error and Rate of Convergence

We first verify the error and order of convergence of the presented schemes.
Numerical experiments are illustrated using various step sizes in space and time.
Let vh be an approximate solution obtained by the schemes and u be an exact
solution to the Rosenau–Kawahara equation. The error of approximation is simply
eh = u− vh. In addition, the rate of convergence is computed by

Rate = log2

(
‖eh‖
‖eh/2‖

)
.

We implement the soliton solutions on the domain Ω = [−50, 100] at the final time
T = 10 with the initial condition

u(x, 0) =

(
− 32

12
+

35

156

√
205

)
× sech4

(
1

12

√
−13 +

√
205x

)
. (5.1)

Table 1: Error of approximation with respect to ‖ ·‖∞ of Scheme I, Scheme
II, and Scheme III at T = 10 using various step sizes.

h = τ
Scheme I Scheme II Scheme III

‖e‖∞ Rate ‖e‖∞ Rate ‖e‖∞ Rate

0.5 2.086310× 10−3 n/a 3.264703× 10−3 n/a 3.594368× 10−3 n/a

0.25 5.309411× 10−4 1.974329811 8.391734× 10−4 1.959910898 9.169029× 10−4 1.970897257

0.125 1.334714× 10−4 1.992021187 2.120559× 10−4 1.984524325 2.306178× 10−4 1.991265090

0.0625 3.341600× 10−5 1.997919683 5.325164× 10−5 1.993546761 5.775198× 10−5 1.997561556

Table 2: Error of approximation with respect to ‖ · ‖2 of Scheme I, Scheme
II, and Scheme III at T = 10 using various step sizes.

h = τ
Scheme I Scheme II Scheme III

‖e‖2 Rate ‖e‖2 Rate ‖e‖2 Rate

0.5 6.467452× 10−3 n/a 9.621914× 10−3 n/a 1.050832× 10−2 n/a

0.25 1.640375× 10−3 1.979171780 2.458968× 10−3 1.968270944 2.674182× 10−3 1.974362478

0.125 4.117395× 10−4 1.994221897 6.196686× 10−4 1.988484190 6.718586× 10−4 1.992868117

0.0625 1.030601× 10−4 1.998245962 1.554175× 10−4 1.995347905 1.682122× 10−4 1.997875290
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The error of approximation and rate of convergence with respect to ‖ · ‖∞ and
‖ · ‖2 are presented in Table 1 and Table 2, respectively. Our results indicate that
the rate of convergence of each scheme is of second order in both space and time.
However, the approximation error of Scheme I is reduced approximately 37% from
the Scheme II and 42% from the scheme III.

Table 3: Comparison of the error of approximation of Scheme I, Scheme II,
and Scheme III at T = 100 using h = τ .

Numerical Scheme ‖e‖∞ ‖e‖2 CPU time (s)

Scheme I h = 0.5 1.477357× 10−2 4.888249× 10−2 3.149645

Scheme II 2.066746× 10−2 6.796953× 10−2 2.898694

Scheme III 2.260739× 10−3 7.438533× 10−2 3.361335

Scheme I h = 0.25 3.812803× 10−3 1.254717× 10−2 27.635016

Scheme II 5.390120× 10−3 1.758850× 10−2 23.926143

Scheme III 5.930241× 10−3 1.934925× 10−2 27.209961

Scheme I h = 0.125 9.608151× 10−4 3.158538× 10−3 222.666841

Scheme II 1.362574× 10−3 4.436043× 10−3 205.035816

Scheme III 1.500739× 10−3 4.887029× 10−3 223.237495

Figure 1: Error distribution of Scheme I on the time interval 0 ≤ t ≤ 100
using h = τ = 0.25.
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Figure 2: Error distribution of Scheme II on the time interval 0 ≤ t ≤ 100
using h = τ = 0.25.

Figure 3: Error distribution of Scheme III on the time interval 0 ≤ t ≤ 100
using h = τ = 0.25.
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Figure 4: Exact solution and error of approximation of Scheme I, Scheme
II and Scheme III at T = 10 using h = τ = 0.25.

Figure 5: Exact solution and numerical solutions at T = 100 with step size
h = τ = 0.25.

We further observe prolonged behavior of the soliton solution by tracking the
numerical solution until T = 100 on the domain Ω = [−50, 200]. The error and
computational cost (CPU time) are illustrated in Table 3. Notice that Scheme
I performs best in terms of accuracy. However, an advantage of Scheme II is
that it does not need a matrix reconstruction in each time step of computation,
yielding the lowest computational cost that is reduced about 8% from the others.
Figures 1–3 exhibit the distribution of approximation errors occurred from the
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three schemes. Observe that, in each time step, all schemes generate a similar
characteristic of the errors. Figure 4 shows the error patterns together with the
exact solution, which hints that the errors occur near the wave peaks with small
fluctuation on the left tails. In fact, the fluctuation increases as the time increases.
This causes the oscillation to appear on the left tails of our numerical solutions, as
shown in Figure 5. Since Scheme I can reduce the error of approximation, it also
produces less left-tail oscillation. In other words, Scheme I is more stable than the
others.

5.2 Conservation of Mass and Energy

By Theorems 3.1 and 4.1, the quantities Qn and En are theoretically con-
served. More precisely, the formulae (3.4) and (3.5) guarantee conservation in
each time step for Scheme I, and so does the formula (4.4) for Scheme II. To
confirm this, our numerical investigation is implemented on the domain Ω× T =
[−50, 200]× [0, 100] using step sizes h = τ = 0.5 and h = τ = 0.25. The numerical
results obtained from both schemes are illustrated in Tables 4–6, indicating that
the quantities Qn and En are conserved with high accuracy.

Table 4: Conservative quantity Q of soliton solution from Scheme I on
Ω = [−50, 200] at various times.

t
h = τ = 0.5 h = τ = 0.25

Qn |Q0 −Qn| Qn |Q0 −Qn|
0 4.12120624293163 n/a 4.12089587363922 n/a

20 4.12122082087774 1.45779× 10−5 4.12093751058313 2.67624× 10−6

40 4.12130091258107 9.46696× 10−5 4.12095223369831 1.73994× 10−5

60 4.12130530603033 9.90631× 10−5 4.12095397274229 1.91384× 10−5

80 4.12129069413532 8.44512× 10−5 4.12095026453351 1.54302× 10−5

100 4.12127811180463 7.18689× 10−5 4.12094767914707 1.28448× 10−5

Table 5: Conservative quantity Q of soliton solution from Scheme II on
Ω = [−50, 200] at various times.

t
h = τ = 0.5 h = τ = 0.25

Qn |Q0 −Qn| Qn |Q0 −Qn|
0 4.12089587162373 n/a 4.12089589231287 n/a

20 4.12089536762160 5.04002× 10−7 4.12089618772231 2.95409× 10−7

40 4.12094544253396 4.95709× 10−5 4.12090527604004 9.38373× 10−6

60 4.12088990933825 5.96229× 10−6 4.12089568110516 2.11208× 10−7

80 4.12089504819607 8.23428× 10−7 4.12089482601477 1.06630× 10−6

100 4.12090784998133 1.19784× 10−5 4.12089314640128 2.74591× 10−6
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Table 6: Conservative quantity E of soliton solution from Scheme I on
Ω = [−50, 200] at various times.

t
h = τ = 0.5 h = τ = 0.25

En |E0 − En| En |E0 − En|
0 0.835063957830431 n/a 0.835916655770310 n/a

20 0.835063957832700 2.26907× 10−12 0.835916655772429 2.11897× 10−12

40 0.835063957802984 2.74469× 10−11 0.835916655775377 5.06695× 10−12

60 0.835063957824593 5.83800× 10−12 0.835916655777922 7.61191× 10−12

80 0.835063957831566 1.13498× 10−12 0.835916655781469 1.11590× 10−11

100 0.835063957794769 3.56619× 10−11 0.835916655783726 1.34159× 10−11

Next, let us compare the conservation properties of Scheme I with Scheme III.
The discrete mass (Q̃) and energy (Ẽ) are provided by

Q̃n = h

N−1∑
i=1

uni , Ẽn = ‖un‖2 + ‖unxx̄‖2 (5.2)

Our experiment is again processed on Ω×[0, T ] = [−50, 200]×[0, 100] using the
several step sizes. The quantities of wave mass (Q̃n) and energy (Ẽn) are calculated
in each time step. Comparisons of these quantities between Schemes I and III are
given in Tables 7 and 8. It can be seen from the tables that Scheme I performs
better to maintain the wave mass, whereas Scheme III is noticeably more powerful
to level the energy. Nevertheless, Scheme I can produce at least 6-digit energy
conservation for h = τ = 0.5 and at least 7-digit conservation for h = τ = 0.25.
These mass and energy fluctuations gets smaller as the mesh size decreases. This
phenomenon can be explained in terms of the following conservative invariant law

En → Ẽn and Qn → Q̃n as h, τ → 0.

Table 7: Mass of soliton on Ω = [−50, 200] at various times using h = τ .

t
Scheme I Scheme III

Mass (Q̃) |Q̃0 − Q̃n| Mass (Q̃) |Q̃0 − Q̃n|
h = 0.5

0 4.12089590001200 n/a 4.12089590001200 n/a

20 4.12087376981871 2.21302× 10−5 4.12085949889725 3.64011× 10−5

40 4.12087006230423 2.58377× 10−5 4.12084330921174 5.25908× 10−5

60 4.12086399622980 3.19038× 10−5 4.12082446889683 7.14311× 10−5

80 4.12085554366322 4.03563× 10−5 4.12081628945948 7.96106× 10−5

100 4.12085028148892 4.56185× 10−5 4.12081296710255 8.29329× 10−5

h = 0.25

0 4.12089590447742 n/a 4.12089590447742 n/a

20 4.12089333227784 2.57220× 10−6 4.12089137960091 4.52488× 10−6

40 4.12089403312682 1.87135× 10−6 4.12088978919473 6.11528× 10−6

60 4.12089356800729 2.33647× 10−6 4.12088674898706 9.15549× 10−6

80 4.12089204182397 3.86265× 10−6 4.12088554485882 1.03596× 10−5

100 4.12089111245420 4.79202× 10−6 4.12088516889890 1.07356× 10−5
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Table 8: Energy of soliton on Ω = [−50, 200] at various times using h = τ .

t
Scheme I Scheme III

Energy (Ẽ) |Ẽ0 − Ẽn| Energy (Ẽ) |Ẽ0 − Ẽn|
h = 0.5

0 0.836200484217486 n/a 0.836200484217486 n/a

20 0.836200007917385 4.76300× 10−7 0.836200484216087 1.39910× 10−12

40 0.836199124415244 1.35980× 10−6 0.836200484216873 6.13065× 10−13

60 0.836198297681637 2.18654× 10−6 0.836200484215122 2.36400× 10−12

80 0.836197618268678 2.86595× 10−6 0.836200484214289 3.19700× 10−12

100 0.836197083275489 3.40094× 10−6 0.836200484214749 2.73703× 10−12

h = 0.25

0 0.836201029067217 n/a 0.836201029067217 n/a

20 0.836200998914977 3.01522× 10−8 0.836201029064854 2.36300× 10−12

40 0.836200943334864 8.57324× 10−8 0.836201029066681 5.36016× 10−13

60 0.836200891256782 1.37810× 10−7 0.836201029066314 9.03055× 10−13

80 0.836200848426374 1.80641× 10−7 0.836201029065430 1.78701× 10−12

100 0.836200814710434 2.14357× 10−7 0.836201029065492 1.72506× 10−12
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