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Abstract : Studying transformations is a simple way to obtain new types of map-
pings in data analysis. In this work, we present a characterization of quadratic
transformations of copula densities. Additionally, we also characterize quadratic
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1 Introduction

One important topic in data analysis is the construction and characterization
of data distribution and data representation. Over the years, several families of
distribution functions have been introduced (for example, [1–3]). Data represen-
tation such as aggregation functions has also gain interests (e.g. [4, 5]). The most
important construction theorem is Sklar’s Theorem which explains copula con-
struction from joint distributions and joint-distribution construction from copulas
(see more in [6]). In [7], de Amo, Carrillo, and Fernández-Sáanchez describe all
copulas in view of Sklar’s Theorem that use for characterizing copulas extend from
an arbitary subcopula. Another construction idea is via combining two copulas to
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obtain a new copula. In [8], Gluing of copulas is a way of constructing n−copulas,
by scaling and combining finitely n−copulas.

One common construction method is via transformations. For example, Kolesá-
rová and Mesiar [9] discuss quadratic constructions of distinguished classes of cer-
tain aggregation functions, and Tasena [10] studies polynomial transformation of
copulas generalized the work of [11] and [12]. Other constructions include, for
example, [13–17]. Following this idea, we are interest in quadratic transformations
of functions. Instead of copulas and aggregation functions, however, copula densi-
ties and probability densities will be considered. We found that results are quite
different and interesting on their own.

This paper is organized as follows. In the next section, we will provide basic
terminologies and notationss of probability density and copula density used later
on. In section 3, characterization of transformations of copula density is provided.
In section 4, we will study transformations of probability density and give addi-
tional examples that its boundary area of parameters is nonlinear. For implicitly,
a density on I2 will be considered where I = [0, 1].

2 Preliminaries

Recall that a (probability) density is a function f : I2 → [0,∞) such that∫
I2
fdλ = 1. A density f is associated to a random vector (X,Y ) if

P(X ≤ x, Y ≤ y) =

∫ x

0

∫ y

0

fdλ

for all x, y ∈ I. In this case, the expectation of X and Y is defined via

EX =

∫
I2
xf(x, y)dλ and EY =

∫
I2
yf(x, y)dλ

which alway exist and that 0 < EX < 1 and 0 < EY < 1. For each α and
β in (0, 1), denote Dα,β the collection of all densities whose expectation with
respected to the first and second coordinate are α and β, respectively. Denote also

D =
⋃

α,β∈(0,1)

Dα,β . It can be seen that D is the collection of all densities on I2.

To guarantee that Dα,β is nonempty, consider the density given below.

Example 2.1. We will construct a mapping f ∈ Dα,β as follow.
First, we construct a distribution density g : I → R with the expectation α.

For each x ∈ (0, 1) with x < α, its reflection x′ > α is denoted by x′ = 1− x(1−α)
α .

Let k = 1−α
x and h = α

(1−x′) . Hence, we obtain kx+ h(1− x′) = 1 and two closed

intervals A = [0, x] and B = [x′, 1]. Consequently, the mapping g : I → R is
defined by

g(t) = k · 1A(t) + h · 1B(t)
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for each t ∈ I where 1A(t) =

{
1, if t ∈ A
0, if t ∈ I \A

.

Thus, g is a distribution density since∫
I

gdλ = k

∫
A

1dλ+ h

∫
B

1dλ = kx+ h(1− x′) = 1.

Additionally, we have that∫
I

tg(t)dλ = k

∫ x

0

tdt+ h

∫ 1

x′
tdt

=
1− α
x

(
x2

2

)
+

α

(1− x′)

(
1− (x′)2

2

)
= α.

Therefore, g : [0, 1]→ R is a distribution density whose expectation is α.

Finally, for each (α, β) ∈ (0, 1)2, we obtain two distribution densities gα and gβ
from [0, 1] to R with expectations α and β defined from above. Now the mapping
f : I2 → (0, 1), defined by f(s, t) = gα(s) · gβ(t) for each (s, t) ∈ I2, belongs to
Dα,β .

Recall that a copula is a mapping C : I2 → I satisfying the following condi-
tions.

1. C(u, 0) = 0 = C(0, v) for all u, v ∈ I.

2. C(u, 1) = 0 = C(1, v) for all u, v ∈ I.

3. V ([u1, u2]× [v1, v2]) =
C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0
for all [u1, u2]× [v1, v2] ⊆ I2.

Additionally, if a mapping c : I2 → R satisfies

C(s, t) =

∫ s

0

∫ t

0

c dudv

for all s, t ∈ I, then c is called a density of the copula C. It can be seen that
the density of any copula is a probability density and a probability density of f is
a copula density if ∫ 1

0

∫ u

0

f(s, t)dλ =

∫ u

0

∫ 1

0

f(s, t)dλ = u

for all u ∈ I.
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Example 2.2 (Clayton copula [18]). For each arbitary θ ∈ (0,∞), the Clayton
copula Cθ : I2 → I is defined by

Cθ(u, v) = (u−θ + v−θ − 1)−1/θ

for each (u, v) ∈ I2. So its density is in the form

cθ(u, v) =
∂2

∂v∂u
Cθ(u, v) = (1 + θ)(uv)−(θ−1)(u−θ + v−θ − 1)−(1+θ)/θ

= (1 + θ)(uv)2
(

1

uθ + vθ − uθvθ

)(1+θ)/θ

for each (u, v) ∈ (0, 1)2. We have that lim
θ→∞

cθ(u, v) = ∞ for each (u, v) ∈ (0, 1)2

since lim
θ→∞

(
1

uθ + vθ − uθvθ

)
=∞. Thus, we obtain a density c of a copula with

an arbitrary large value at a point (u, v) ∈ (0, 1)2.

Example 2.3. Fixed (u, v) ∈ (0, 1)2, let

h =
1

2
[Cmax(u, v) + Cmin(u, v)]

where Cmax(u, v) = min(u, v) and Cmin(u, v) = max{u + v − 1, 0}. Note that
(u, v) ∈ (h, 1]2 ∩ {(s, t) : s+ t− 1 < h}. We define a mapping C : [0, 1]2 → I by

C(s, t) =

{
max{s+ t− 1, h}, if (s, t) ∈ [h, 1]2

Cmax(s, t), otherwise

for each (s, t) ∈ I2. We get that C is a copula and C(s, t) = h for each (s, t) ∈
[h, 1]2 ∩ {(s, t) : s+ t− 1 ≤ h}. Therefore, its density is zero at (u, v).

3 Main Results

3.1 Transformations of Copula Densities

Let F be the collection of all mappings form I2 to R, and CD be the collection
of all densities of copulas. Given a quadratic polynomial P of three variables, we
always obtain a mapping T : CD → F defined by

T (c)(u, v) = P (u, v, c(u, v))

for all (u, v) ∈ I2 and c ∈ CD. Notice that every T (c) is in the form

T (c)(u, v) =a1 + a2u+ a3v + a4c+ a5u
2 + a6v

2 + a7c
2 + a8uv + a9uc+ a10vc

where a1, a2, . . . , a10 are constants.
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Definition 3.1. The mapping T is said to be a transformation of copula den-
sities (shortly, CD-transformation) if T (c) is a density of a copula whenever
c is a density of a copula.

To obtain necessary conditions of coefficients on quadratic polynomials ob-
served the following.

Lemma 3.2. If T is a CD-transformation, then

• a5 = 0 = a6 = a7 = a9 = a10,

• 2a1 + a3 + 2a4 = 2,

• 2a3 + a8 = 0,

• a2 = a3.

Proof. Assume that T is a CD-transformation; that is, for each density c of a
copula, there is a copula C such that

T (c) =
∂2

∂u∂v
C.

First, we follow the condition on boundary of copula that v = 1 and u = t
being arbitary on [0, 1]. We observe that

∫ 1

0

∫ t

0

a1 dudv = a1t,

∫ 1

0

∫ t

0

a2u dudv =
a2
2
t2,

∫ 1

0

∫ t

0

a3v dudv =
a3
2
t,∫ 1

0

∫ t

0

a5u
2 dudv =

a5
3
t3,

∫ 1

0

∫ t

0

a6v
2 dudv =

a6
3
t,

∫ 1

0

∫ t

0

a8uv dudv =
a8
4
t2.

Moreover, we get that

∫ 1

0

∫ t

0

a4c dudv = a4

∫ 1

0

[Cv]
t
0 dv

= a4

∫ 1

0

Cv(t, v) dv

= a4C(t, 1) = a4t,

∫ 1

0

∫ t

0

a9uc dudv = a9

∫ 1

0

{
[uCv]

u=t
u=0 −

∫ t

0

Cvdu

}
dv

= a9

[∫ 1

0

tCv(t, v)dv −
∫ 1

0

∫ t

0

Cvdu dv

]
= a9

[
t[Cv(t, v)]v=1

v=0 −
∫ t

0

∫ 1

0

Cvdvdu

]
,
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and ∫ 1

0

∫ t

0

a10vc dudv = a10t− a10
∫ 1

0

C(t, v)dv.

Consequently, we obtain that

t = C(t, 1) =

∫ 1

0

∫ t

0

T (c)dudv

=
(
a1 +

a3
2

+ a4 +
a6
3

+ a10

)
t

+
(a2

2
+
a8
4

+
a9
2

)
t2 +

a5
3
t3

+ a7

∫ 1

0

∫ t

0

c2 dudv − a10
∫ 1

0

C(t, v)dv (3.1)

for each copula C with its density c.
Next, we will use the density of a Clayton copula (see Example 2.2) which is

in the form

cθ(u, v) = (1 + θ)(uv)−(θ−1)(u−θ + v−θ − 1)−(1+θ)/θ.

Since two mappings

∫ 1

0

∫ t

0

c2θ dudv and

∫ 1

0

Cθ(t, v)dv contain two independent

parameters θ and t, they are linearly independent to t, t2, and t3. Thus, a1 +
a3
2

+

a4 +
a6
3

+ a10 = 1, 2a2 + a8 + 2a9 = 0, a5 = 0, and

0 = a7

∫ 1

0

∫ t

0

c2 dudv − a10
∫ 1

0

C(t, v)dv.

To show a7 = 0 = a10, we use the Clayton copula Cθ again. Now fixed t = 1,
we obtain that∫ 1

0

Cθ(t, v)dv =

∫ 1

0

vdv =
1

2
and

∫ 1

0

∫ 1

0

c2θ(u, v)dudv = (1 + θ)2G(θ)

where G(θ) :=

∫ 1

0

∫ 1

0

(uv)−2(θ−1)(u−θ + v−θ − 1)−2(1+θ)/θdudv is a real-valued

function containing only the variable θ. So

∫ 1

0

Cθ(t, v)dv and

∫ 1

0

∫ 1

0

c2θ(t, v)dudv

are independent, and hence, a7 = 0 = a10 = a5. Thus, a1 +
a3
2

+ a4 +
a6
3

= 1 and

2a2 + a8 + 2a9 = 0.
Finally, to show that a6 = 0 = a9, we may set the other boundary condition

that u = 1 and v = s for any s ∈ [0, 1]. Similar to the previous argument, we
obtain that
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a6 = 0 = a9, 2a3 + a8 = 0, and 2a1 + a2 + 2a4 = 2.

Therefore, a2 = a3.

Remark. Following the above lemma, we get

T (c) = a1 + a2u+ a3v + a4c+ a8uv (3.2)

where a2 = a3 = 2− 2a1 − 2a4 and a8 = 4a1 + 4a4 − 4.

Theorem 3.3. The mapping T is a CD-transformation if and only if

T (c) = a1 + a2(u+ v) + a4c+ a8uv

where a1 ≥ 0, a4 ≥ 0, 2 ≥ a1 + 2a4, a2 = 2− 2a1 − 2a4, and a8 = 4a1 + 4a4 − 4.

Proof. Assume that T is a CD-transformation. Since any copula density is non-
negative, T (c) ≥ 0 for each copula density c, i.e., for each (u, v) ∈ I2 and a copula
density c,

a1 + a2(u+ v) + a4c+ a8uv = T (c) ≥ 0. (3.3)

In the case that u = 0 and v = 0, we get a1 ≥ 0. Following a fact of the Clayton
copula (see Example 2.2), we obtain a density c of a copula whose gives an arbitrary
large value at an arbitrary point (u, v) ∈ (0, 1)2. Thus, the coefficient a4 can not
be negative, otherwise T (c) may be negative.

To obtain 2 ≥ a1 + 2a4, we will construct a density c of copula with zero value
at an arbitrary point (u, v) ∈ (0, 1)2. Following the copula in Example 2.3, the
density c of C gives zero at an arbitrary point (s, t) ∈ (0, 1)2, and hence, we may
ignore the term of density in the inequality (3.3). Following Lemma 3.2 (2) and
(3),

0 ≤(2u+ 2v − 4uv) + (1− 2u− 2v + 4uv)a1 + (−2u− 2v + 4uv)a4.

Let h(u, v) = 2u+ 2v − 4uv. Hence,

h(u, v) + (1− h(u, v))a1 − h(u, v)a4 ≥ 0.

It is not hard to see that 0 ≤ h(u, v) ≤ 2, and hence, a1 and a4 satisfy the
inequality 2− a1 − 2a4 ≥ 0.

Conversely, assume that

T (c)(u, v) = a1 + a2(u+ v) + a4c+ a8uv

with a1 ≥ 0, a4 ≥ 0, 2 ≥ a1 + 2a4, a2 = 2 − 2a1 − 2a4, and a8 = 4a1 + 4a4 − 4.
We can see that T (c) ≥ 0 for each density c. This implies that the volume of∫ u

0

∫ v

0

T (c)(t, s)dtds is non-negative. Therefore,

∫ u

0

∫ v

0

T (c)(t, s)dtds is a copula

with the density T (c).
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3.2 Transformations of Probability Density

At the begin of this section, we will introduce some probability densities with
special properties as below.

1. A distribution density in Fα,β which gives a large number at an arbitrary
point in (0, 1)2.

2. A distribution density in Fα,β which is zero at an arbitrary point in I2.

Example 3.4. Given (x, y) ∈ (0, 1)2 be such that x 6= α and y 6= β. We will
constuct a mapping f : I2 → R as following.

First, we construct a distribution density g : I → R with the expectation α.
For each x ∈ (0, 1) with x 6= α, its reflection x′ is denoted by

x′ =

{
1− x(1−α)

α , if x < α
(1−x)α
1−α , if x > α

.

Note that x = x′′, and either x < α < x′ or x′ < α < x. Without loss of
generality, we may assume that x < α. Fix a parameter r ∈ (0, 1), let k = 1−α

rx ,
and h = α

r(1−x′) . Hence, we obtain krx+ hr(1− x′) = 1 and two closed intervals

A = [x− rx, x] and B = [x′, x′ + r(1− x′)] which are subsets of I. Consequently,
we define the mapping g by

g(t) = k · 1A(t) + h · 1B(t) for each t ∈ I.

Thus, g is a distribution density since∫
I

gdλ = k

∫
A

dλ+ h

∫
B

dλ = krx+ hr(1− x′) = 1

for each r, t ∈ (0, 1). Additionally, we have that∫
I

tg(t)dλ =k

∫ x

x−rx
tdt+ h

∫ x′+r(1−x′)

x′
tdt

=
k

2

(
2rx2 − r2x2

)
+
h

2

(
2rx′(1− x′) + r2(1− x′)2

)
=

1− α
2

(2− r)x+
α

2
[2x′ + r(1− x′)] = α.

Therefore, g : [0, 1]→ R is a distribution density with the expectation α.
Finally, for each (α, β) ∈ (0, 1)2, we obtain two distribution densities gα and

gβ contained expectations α and β, repectively, from above. Now we define the
mapping f : I2 → (0, 1) by

f(s, t) = gx(s) · gy(t) for each (s, t) ∈ I2.

Therefore, f ∈ Fα,β .
To obtain the property (1) from above, we observe that
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f(x, y) ∈
{

(1−α)
rx

(1−β)
ry , (1−α)

rx
β

r(1−y) ,
α

r(1−x)
(1−β)
ry , α

r(1−x)
β

r(1−y)

}
.

If r tends to zero, then f(x, y) tends to infinity. That is, we will obtain a distri-
bution density in Fα,β with a large number at an arbitrary point in (0, 1)2.

To obtain the property (2), consider (x̂, ŷ) ∈ I2 and (x, y) ∈ (0, 1)2 with
x̂ 6= x, x 6= α, and y 6= β. We may construct the mapping f from (x, y) with

r = 1
2 min

{
|x−x̂|
x , |x

′−x̂|
1−x′

}
. Consequently, x̂ 6∈ A ∪ B which implies f(x̂, ŷ) = 0.

Therefore, we obtain a distribution density in Fα,β which is zero at an arbitrary
point in I2.

Given (α, β) ∈ (0, 1)2 and a quadratic polynomial P of three variables, we
alway obtain a mapping T : Dα,β → F defined by

T (f)(x, y) = P (x, y, f(x, y))

for all (x, y) ∈ I2 and f ∈ Dα,β .

Definition 3.5. The mapping T is said to be a density transformation of
distributions (shortly, DD-transformation) if T (f) is a distribution density
whenever f is a distribution density.

Lemma 3.6. If g(x, y) = a1 + a2x+ a3y + a5x
2 + a6y

2 + a8xy is nonnegative on
I2, then the following conditions are true.

(A) a1 ≥ 0, a1+a3+a6 ≥ 0, a1+a2+a5 ≥ 0, and a1+a2+a3+a5+a6+a8 ≥ 0.

(B1) 4a1a5 − a22 ≥ 0 when a5 > 0 and −a22a5
∈ I.

(B2) 4(a1 + a3 + a6)a5 − (a2 + a8)2 ≥ 0 when a5 > 0 and −a2−a82a5
∈ I.

(B3) 4a1a6 − a23 ≥ 0 when a6 > 0 and −a32a6
∈ I.

(B4) 4(a1 + a2 + a5)a6 − (a3 + a8)2 ≥ 0 when a6 > 0 and −a3−a82a6
∈ I.

Proof. Since g(0, 0), g(0, 1), g(1, 0) and g(1, 1) are nonnegative, we obtain the
condition (A). Next, we will show (B1). When a5 > 0, the restriction of g on

R × {0} is an upward parabola and it’s minimum point is
(
−a2
2a5

, 0
)

. Thus, a1 −
a22
4a5

= g
(
−a2
2a5

, 0
)
≥ 0 when g is nonnegative on I2 and

(
−a2
2a5

, 0
)
∈ I2. The other

conditions (B2)-(B4) are the assumptions over the other line segments on the
boundary of I2.

Lemma 3.7. The function

g(x, y) = a1 + a2x+ a3y + a5x
2 + a6y

2 + a8xy

is nonnegative on I2 if and only if conditions
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(A), (B1), (B2), (B3) (B4), and (C) hold

where the condition (C) is the following:

a1(4a5a6 − a28) + a2a3a8 − a22a6 − a5a23 ≥ 0

when a5 > 0, det

∣∣∣∣ 2a5 a8
a8 2a6

∣∣∣∣ > 0, and

(
−2a2a6 + a3a8

4a5a6 − a28
,
−2a3a5 + a2a8

4a5a6 − a28

)
∈ I2.

Proof. To show sufficiency, we will show only the condition (C) and suppose g is

nonnegative. Since a5 > 0 and det

∣∣∣∣ 2a5 a8
a8 2a6

∣∣∣∣ > 0, the function g is an upward

paraboloid and it’s vertex point is

(x0, y0) =

(
−2a2a6 + a3a8

4a5a6 − a28
,
−2a3a5 + a2a8

4a5a6 − a28

)
.

Hence, a1 +
a2a3a8 − a22a6 − a5a23

4a5a6 − a28
= g(x0, y0) ≥ 0 when (x0, y0) ∈ I2. Therefore,

we obtain the condition (C).

Conversely, we consider the following cases.

Case 1. g is an upward paraboloid and it’s vertex point is in I2. This situation
is equivalent to the assumption of (C). Thus, g is nonnegative.

Case 2. g is not an upward paraboloid or it’s vertex point is not in I2. Since g
is a quadratic polynomial, the minimum point (a, b) of the restriction of g on the
box I2 must belong in the boundary of I2. The condition (A) guarantees that the
values of g at the four corners of I2 are nonnegative. So, we obtain the case that
the minimum point (a, b) is a corner of I2. Now suppose that the minimum point
(a, b) is not a corners of I2 but is in a line segment around I2. Consequently, the
line segment is an upward paraboloid with it’s vertex point is in I2. This implies
an assumption of (B1)-(B4). Therefore, g is nonnegative.

Theorem 3.8. The mapping T is a DD-transformation, if and only if, T (f) is in
the form

T (f)(x, y) =a1 + a2x+ a3y + a4f + a5x
2 + a6y

2 + a8xy + a9xf + a10yf

and satisfies following conditions.

(M1) 1 = a1 +
a2
2

+
a3
2

+ a4 +
a5
3

+
a6
3

+
a8
4

+ a9α+ a10β,

(M2) a4 ≥ 0, a4 + a9 ≥ 0,a4 + a10 ≥ 0, and a4 + a9 + a10 ≥ 0,

(M3) (A), (B1), (B2), (B3) (B4), and (C) hold.
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Proof. Suppose T is a DD-transformation. Then

1 =

∫
I2
T (f)dλ =

∫
I2

(a1 + a2x+ a3y + a4f + a5x
2 + a6y

2 + a7f
2 + a8xy

+ a9xf + a10yf)(x, y)dλ

=a1 +
a2
2

+
a3
2

+ a4 +
a5
3

+
a6
3

+ a7

∫
I2
f2(x, y)dλ+

a8
4

+ a9α+ a10β.

We get that a7 = 0 because

∫
I2
f2(x, y)dλ is varied with f . Now we get

T (f)(x, y) = a1+a2x+a3y+a4f(x, y)+a5x
2+a6y

2+a8xy+a9xf(x, y)+a10yf(x, y)

where 1 = a1 +
a2
2

+
a3
2

+ a4 +
a5
3

+
a6
3

+
a8
4

+ a9α+ a10β.

Following T (f) ≥ 0 for each f ∈ Fα,β , we have that for all x, y ∈ [0, 1],

a1 + a2x+ a3y + a4f(x, y) + a5x
2 + a6y

2 + a8xy + a9xf(x, y) + a10yf(x, y) ≥ 0.

Since some density f (see Example 3.4) may give a large positive number at an
arbitrary point (x, y) ∈ (0, 1)2, we must get (a4 + a9x + a10y)f(x, y) ≥ 0, and
hence, a4 + a9x+ a10y ≥ 0. We get the followings.

• a4 ≥ 0 when (x, y) converges to (0, 0).

• a4 + a9 ≥ 0 when (x, y) converges to (1, 0).

• a4 + a10 ≥ 0 when (x, y) converges to (0, 1).

• a4 + a9 + a10 ≥ 0 when (x, y) converges to (1, 1).

Additionally, we obtain other distribution densities f (see Example 3.4) that
f(x, y) = 0 at an arbitrary point (x, y) ∈ I2. So

a1 + a2x+ a3y + a5x
2 + a6y

2 + a8xy ≥ 0

for each (x, y) ∈ I2. Denote g(x, y) := a1 +a2x+a3y+a5x
2 +a6y

2 +a8xy. From
Lemma 3.7, we obtain (A), (B1), (B2), (B3) (B4), and (C).

Conversely, we assume that the conditions hold. We know that∫
I2
T (f)dλ = a1 +

a2
2

+
a3
2

+ a4 +
a5
3

+
a6
3

+
a8
4

+ a9α+ a10β = 1.

To show that T (f) ≥ 0, we will show only the function g(x, y) ≥ 0, since (a4 +
a9x+ a10y)f ≥ 0. Following Lemma 3.7, the proof is done.

We see that DD-transformations depend on eight coefficients. So we will show
some example of DD-transformations.
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Example 3.9. For each α, β ∈ (0, 1), we may obtain a DD-transformation T in
the form

T (f)(x, y) = 1 + x− y − xy +

(
1

4
− αa9 + a9x− βa10 + a10y

)
f

where two coefficients a9 and a10 satisfy the following

1. αa9 + βa10 ≥ 1
4 ,

2. (1− α)a9 + (1− β)a10 ≥ − 1
4 ,

3. (1− α)a9 − βa10 ≥ − 1
4 ,

4. −αa9 + (1− β)a10 ≥ − 1
4 .

Example 3.10. For each α, β ∈ (0, 1) satisfied β − α = 1
2 , we obtain a DD-

transformation T in the form

T (f)(x, y) = a1 + a2x+ a5x
2 + (1 + x− y)f

where the coefficients a1, a2 and a5 satisfy the following

1. a1 =
1

2
− a2

2
− a5

3
,

2. 1
2 ≥

a2
2 + a5

3 , and 1
2 ≥ −

a2
2 −

2a5
3 ,

3. 0 < −a2 < 2a5,

4. 4
(
1
2 −

a2
2 −

a5
3

)
a5 − a22 ≥ 0.

Moreover, the condition 4. implies that the graph of the set of (a2, a5) is in an
oval, see the figure below.

Fig. 1.
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