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1 Introduction

Fixed point theory is an important tool for finding solutions of various nonlin-
ear equations and can be applied to many important problems such as minimiza-
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tion problems and equilibrium problems. One of the fundamental and celebrated
results in metric fixed point theory is the Banach contraction principle [1] which
states that every single-valued contractive mapping on a complete metric space
always has a unique fixed point. However, many problems in science and technol-
ogy can be arranged in the form of multi-valued mappings. It is natural to study
the extension of the known fixed point results for single-valued mappings to the
setting of multi-valued mappings. One of the most important fixed point theorems
for multi-valued mappings was proved by Nadler [2] in 1969. He proved that every
multi-valued contractive mapping on a complete metric space has a fixed point.
Since then many results regarding the existence of fixed points for several kinds
of multi-valued contractive mappings have been developed and many papers have
appeared (see e.g., [3-14]). Among other things, Berinde and Berinde [7] proved
the following theorem.

Theorem 1.1. Let (X, d) be a complete metric space and T : X → CB(X) be a
multi-valued mapping. Suppose there exist θ ∈ [0, 1) and L ≥ 0 such that

H(T (x), T (y)) ≤ θ · d(x, y) + L · dist(y, T (x)) for all x, y ∈ X. (1.1)

Then T has a fixed point.

Recently, inspired by (1.1), Bunlue and Suantai [15] introduced the concept of
Berinde nonexpansive mappings and proved the existence of fixed points as well
as the demiclosed principle for such kind of mappings in Banach spaces satisfying
the Opial’s condition.

A geodesic space X is said to be a Hadamard space if it is a complete metric
space and every geodesic triangle in X is thinner than its comparison triangle in
the Euclidean plane. The precise definition is given in section 3. Fixed point theory
for nonexpansive mappings in Hadamard spaces was first studied by Kirk [16] in
2003. He showed that every single-valued nonexpansive mapping on a bounded
closed convex subset of a Hadamard space always has a fixed point. Notice that
complete R−trees are outstanding examples of nonlinear Hadamard spaces and
fixed point theory in complete R−trees has many applications in graph theory
(see e.g., [17, 18]).

In this paper, motivated by the above results, we prove the existence of fixed
points and the demiclosed principle for the class of Berinde nonexpansive mappings
in Hadamard spaces. We also obtain a convergence theorem of the Ishikawa iter-
ation for discontinuous quasi-nonexpansive mappings in this setting. Our results
extend and improve the results of [7, 15,16] and many results in the literature.

2 Multi-Valued Mappings

Throughout this paper, N stands for the set of natural numbers and R stands
for the set of real numbers. Let (X, d) be a metric space, x ∈ X and ∅ 6= E ⊆ X.
The distance from x to E is defined by

dist(x,E) := inf{d(x, y) : y ∈ E}.
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We denote by CB(E) the family of nonempty closed bounded subsets of E and
by K(E) the family of nonempty compact subsets of E. The Pompeiu-Hausdorff
distance on CB(E) is defined by

H(A,B) := max

{
sup
a∈A

dist(a,B), sup
b∈B

dist(b, A)

}
for all A,B ∈ CB(E).

Definition 2.1. Let E be a nonempty subset of a metric space (X, d) and T :
E → CB(X) be a multi-valued mapping. A point x ∈ E is said to be a fixed
point of T if x ∈ T (x). We denote by Fix(T ) the fixed point set of T, that is,
Fix(T ) := {x ∈ E : x ∈ T (x)}.

Definition 2.2. A multi-valued mapping T : E → CB(X) is said to be
(i) contractive if there exists λ ∈ [0, 1) such that

H(T (x), T (y)) ≤ λd(x, y) for all x, y ∈ E;

(ii) nonexpansive if H(T (x), T (y)) ≤ d(x, y) for all x, y ∈ E;
(iii) quasi-nonexpansive if Fix(T ) 6= ∅ and

H(T (x), T (p)) ≤ d(x, p) for all x ∈ E and p ∈ Fix(T ).

It is clear that every contractive mapping is nonexpansive and every nonex-
pansive mapping with nonempty fixed point set is quasi-nonexpansive. Inspired by
(3.14) of [7], Bunlue and Suantai [15] introduce the following class of multi-valued
mappings.

Definition 2.3. A multi-valued mapping T : E → CB(X) is said to be Berinde-
Berinde nonexpansive (B2-nonexpansive in short) if there exists µ ≥ 0 such that

H(T (x), T (y)) ≤ d(x, y) + µ · dist(x, T (x)) for all x, y ∈ E. (2.1)

Proposition 2.4. The following statements hold.
(1) If T is nonexpansive, then T is B2-nonexpansive.
(2) If T is B2-nonexpansive and Fix(T ) 6= ∅, then T is quasi-nonexpansive.

The converse of (2) in Proposition 2.4 is not true as shown in the following
example. Notice also that the converse of (1) is not true, see Example 4.3 below.

Example 2.5. ([19, Example 2]) Let E = [−1, 1] and T : E → CB(E) be defined
by

T (x) :=

{{
x

1+|x| sin( 1
x )
}

if x 6= 0;

{0} if x = 0.

It is easy to see that Fix(T ) = {0}. For x ∈ E, we have

H(T (x), T (0)) =

∣∣∣∣ x

1 + |x|
sin(

1

x
)

∣∣∣∣ ≤ |x|
1 + |x|

≤ |x− 0|.



546 Thai J. Math. 17 (2019)/ C. Klangpraphan and and B. Panyanak

This implies that T is a quasi-nonexpansive mapping. Next, we show that T is
not B2-nonexpansive. For each n ∈ N, we set xn := 1

2πn+π/2 and yn := 1
2πn . Then

H(T (xn), T (yn))− |xn − yn|
dist(xn, T (xn))

=

[
xn

1 + xn
− (yn − xn)

](
1 + xn
x2n

)
=

1

xn
− (yn − xn)(1 + xn)

x2n

= (2πn+ π/2)− (2πn+ π/2 + 1)

4n
→ ∞.

This implies that T is not B2-nonexpansive.

3 Hadamard Spaces

Let [0, l] be a closed interval in R and x, y be two points in a metric space (X, d).
A geodesic joining x to y is a map c : [0, l]→ X such that c(0) = x, c(l) = y, and
d(c(s), c(t)) = |s− t| for all s, t ∈ [0, l]. The image of c is called a geodesic segment
joining x and y which when unique is denoted by [x, y]. The space (X, d) is said
to be a geodesic space if every two points in X are joined by a geodesic, and X
is said to be uniquely geodesic if there is exactly one geodesic joining x and y for
each x, y ∈ X. A subset E of X is said to be convex if every pair of points x and
y in E can be joined by a geodesic in X and the image of every such geodesic is
contained in E.

A geodesic triangle 4(p, q, r) in a geodesic space (X, d) consists of three points
p, q, r in X and a choice of three geodesic segments [p, q], [q, r], [r, p] joining them.
A comparison triangle for geodesic triangle 4(p, q, r) in X is a triangle 4(p̄, q̄, r̄)
in the Euclidean plane R2 such that dR2 (p̄, q̄) = d(p, q), dR2 (q̄, r̄) = d(q, r), and
dR2 (r̄, p̄) = d(r, p). A point ū ∈ [p̄, q̄] is called a comparison point of u ∈ [p, q] if
d(p, u) = dR2(p̄, ū). Comparison points on [q̄, r̄] and [r̄, p̄] are defined in the same
way.

Definition 3.1. A geodesic triangle 4(p, q, r) in (X, d) is said to satisfy the
CAT(0) inequality if for any u, v ∈ 4(p, q, r) and for their comparison points
ū, v̄ ∈ 4(p̄, q̄, r̄), one has

d(u, v) ≤ dR2(ū, v̄).

A geodesic space (X, d) is said to be a Hadamard space if it is a complete metric
space and all of its geodesic triangles satisfy the CAT(0) inequality. It is well-
known that every Hadamard space is uniquely geodesic. Notice also that Hilbert
spaces and complete R−trees are examples of Hadamard spaces (see, e.g., [20]).

Let (X, d) be a Hadamard space, x, y ∈ X and t ∈ [0, 1]. By Lemma 2.1 of [21],
there exists a unique point z ∈ [x, y] such that

d(x, z) = (1− t)d(x, y) and d(y, z) = td(x, y). (3.1)
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We denote by tx ⊕ (1 − t)y the unique point z satisfying (3.1). For a nonempty
subset E of X, we set

tx⊕ (1− t)E := {tx⊕ (1− t)y : y ∈ E}.

Now, we collect some elementary facts about Hadamard spaces.

Lemma 3.2. ([22]) Let x, y, z be points in a Hadamard space (X, d) and let t ∈
[0, 1]. Then the following inequalities hold:

d(tx⊕ (1− t)y, z) ≤ td(x, z) + (1− t)d(y, z), (3.2)

d(tx⊕ (1− t)y, tx⊕ (1− t)z) ≤ (1− t)d(y, z). (3.3)

If x, y1, y2 are points in a Hadamard space and if y0 = 1
2y1 ⊕

1
2y2, then the

CAT(0) inequality implies

d2(x, y0) ≤ 1

2
d2(x, y1) +

1

2
d2(x, y2)− 1

4
d2(y1, y2). (CN)

This is the (CN) inequality of Bruhat and Tits [23].

The following lemma is a generalization of the (CN) inequality which can be
found in [21].

Lemma 3.3. Let (X, d) be a Hadamard space. Then

d2(tx⊕ (1− t)y, z) ≤ td2(x, z) + (1− t)d2(y, z)− t(1− t)d2(x, y), (3.4)

for all x, y, z ∈ X and t ∈ [0, 1].

Let {xn} be a bounded sequence in a Hadamard space (X, d). For x ∈ X, we
set

r (x, {xn}) := lim sup
n→∞

d (x, xn) .

The asymptotic radius r ({xn}) of {xn} is given by

r ({xn}) := inf {r (x, {xn}) : x ∈ X} .

The asymptotic center A ({xn}) of {xn} is the set

A ({xn}) := {x ∈ X : r (x, {xn}) = r ({xn})} .

It is known from [24] that in a Hadamard space, A({xn}) consists of exactly
one point. A sequence {xn} in X is said to ∆−converge to a point x in X if
A({xnk

}) = {x} for every subsequence {xnk
} of {xn}. In this case, we write

∆− lim
n→∞

xn = x and call x the ∆−limit of {xn}.

The following lemmas are also needed.

Lemma 3.4. ([25]) Every bounded sequence in a Hadamard space always has a
∆−convergent subsequence.

Lemma 3.5. ([26]) If E is a closed convex subset of a Hadamard space and if
{xn} is a bounded sequence in E, then the asymptotic center of {xn} is in E.
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4 Fixed Point Theorems

This section is begun by proving the demiclosed principle for B2-nonexpansive
mappings in Hadamard spaces.

Theorem 4.1. Let E be a nonempty closed convex subset of a Hadamard space
(X, d) and T : E → K(X) be a B2-nonexpansive mapping. If {xn} is a sequence
in E and x ∈ X, then the conditions ∆− lim

n→∞
xn = x and lim

n→∞
dist(xn, T (xn)) = 0

imply x ∈ T (x).

Proof. By Lemma 3.5, x ∈ E. For each n ∈ N, we can choose yn ∈ T (xn) and
zn ∈ T (x) such that

d(xn, yn) = dist(xn, T (xn)) and d(yn, zn) = dist(yn, T (x)).

Since T (x) is compact, there exists a subsequence {znk
} of {zn} such that lim

n→∞
znk

=

w for some w ∈ T (x). By (2.1), we have

d(xnk
, w) ≤ d(xnk

, ynk
) + d(ynk

, znk
) + d(znk

, w)

≤ d(xnk
, ynk

) +H(T (xnk
), T (x)) + d(znk

, w)

≤ (1 + µ)dist(xnk
, T (xnk

)) + d(xnk
, x) + d(znk

, w).

This implies that lim sup
k→∞

d(xnk
, w) ≤ lim sup

k→∞
d(xnk

, x). Therefore, w ∈ A({xnk
}) =

{x} and hence x = w ∈ T (x).

Now, we prove a fixed point theorem which is an analog of Theorem 6 of [15].

Theorem 4.2. Let E be a nonempty bounded closed convex subset of a Hadamard
space (X, d) and T : E → K(E) be a B2-nonexpansive mapping. Suppose there
exist u ∈ E and L ≥ 0 such that

H(T (x), T (y)) ≤ d(x, y) + L · dist(y, αu⊕ (1− α)T (x)), (4.1)

for all x, y ∈ E and α ∈ [0, 1]. Then T has a fixed point in E.

Proof. For each n ∈ N, we define Tn : E → K(E) by

Tn(x) :=
1

n
u⊕ (1− 1

n
)T (x), for all x ∈ E.

It follows from (3.3) and (4.1) that

H(Tn(x), Tn(y)) ≤ (1− 1

n
)H(T (x), T (y))

≤ (1− 1

n
)d(x, y) + (1− 1

n
)L · dist(y, Tn(x)).
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Applying Theorem 1.1 we can conclude that Tn has a fixed point, say xn. For each
n ∈ N, there exists zn ∈ T (xn) such that

xn =
1

n
u⊕ (1− 1

n
)zn.

By Lemmas 3.4 and 3.5, there exists a subsequence {xnk
} of {xn} such that ∆−

lim
k→∞

xnk
= x for some x ∈ E. Notice also that

dist(xnk
, T (xnk

)) ≤ d(xnk
, znk

) =
1

nk
d(u, znk

)→ 0 as k →∞.

By Theorem 4.1, x is a fixed point of T and hence the proof is complete.

One may observe that the condition (4.1) in Theorem 4.2 is strong. However,
the following example shows that it is a necessary condition.

Example 4.3. Let E = [0, 1], X = (R, | · |) and T : E → K(E) be defined by

T (x) :=

{
{1} if x ∈ [0, 12 ];

{0} if x ∈ ( 1
2 , 1].

Obviously, T is not nonexpansive and does not have a fixed point. Next, we show
that T is a B2-nonexpansive mapping. Let µ = 2 and x, y ∈ [0, 1].

Case 1. If x ∈ [0, 12 ] and y ∈ ( 1
2 , 1], then T (x) = {1} and T (y) = {0}. This

implies that dist(x, T (x)) ≥ 1
2 and hence

H(T (x), T (y)) = |1− 0| = 1 ≤ |x− y|+ µ · dist(x, T (x)).

Case 2. If x ∈ ( 1
2 , 1] and y ∈ [0, 12 ], then T (x) = {0} and T (y) = {1}. This

implies that dist(x, T (x)) ≥ 1
2 and hence

H(T (x), T (y)) = |0− 1| = 1 ≤ |x− y|+ µ · dist(x, T (x)).

Next, we show that T does not satisfy (4.1). Given u ∈ E and L ≥ 0. Choose
x = 1

2 , y = 1 and α = 0. Then T (x) = {1}, T (y) = {0} and

dist(y, αu⊕ (1− α)T (x)) = dist(y, T (x)) = 0.

This implies that

H(T (x), T (y)) = |1− 0| = 1 >
1

2
= |x− y|+ L · dist(y, αu⊕ (1− α)T (x)).
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5 Convergence Theorems

In 2009, Shahzad and Zegeye [27] defined an Ishikawa iteration for multi-valued
mappings in Banach spaces and proved, under some appropriate conditions, that
the proposed iteration converges to a fixed point of a quasi-nonexpansive mapping.
In 2010, Puttasontiphot [28] extended the idea of Shahzad and Zegeye to the
setting of Hadamard spaces and defined the sequence of Ishikawa iteration in the
following manner:

Definition 5.1. Let E be a nonempty convex subset of a Hadamard space X,
{αn}, {βn} be sequences in [0, 1], and T : E → CB(E) be a multi-valued mapping.
The sequence of Ishikawa iteration is defined by x1 ∈ E,

yn = βnzn ⊕ (1− βn)xn, n ∈ N,

where zn ∈ T (xn), and

xn+1 = αnz
′
n ⊕ (1− αn)xn, n ∈ N, (5.1)

where z′n ∈ T (yn).

Definition 5.2. A multi-valued mapping T : E → CB(E) is said to be
(i) continuous if for any sequence {xn} in E such that lim

n→∞
xn = x, we have

lim
n→∞

H(T (xn), T (x)) = 0;

(ii) hemicompact if for any sequence {xn} in E such that lim
n→∞

dist(xn, T (xn)) =

0, there exists a subsequence {xnk
} of {xn} and q ∈ E such that lim

k→∞
xnk

= q;

(iii) Berinde nonexpansive (B-nonexpansive in short) if there exists L ≥ 0
such that

H(T (x), T (y)) ≤ d(x, y) + L · dist(y, T (x)) for all x, y ∈ E.

The following results can be found in [28].

Lemma 5.3. Let E be a nonempty closed convex subset of a Hadamard space
(X, d) and T : E → CB(E) be a quasi-nonexpansive mapping with T (p) = {p} for
each p ∈ Fix(T ). Let {xn} be the sequence of Ishikawa iteration defined by (5.1).
Then lim

n→∞
d(xn, p) exists for each p ∈ Fix(T ).

Theorem 5.4. Let E be a nonempty closed convex subset of a Hadamard space
(X, d) and T : E → CB(E) be a quasi-nonexpansive mapping with T (p) = {p}
for each p ∈ Fix(T ). Let {xn} be the sequence of Ishikawa iteration defined by
(5.1). Assume that T is hemicompact and continuous, and (i) 0 ≤ αn, βn < 1; (ii)
βn → 0; (iii)

∑
αnβn =∞. Then {xn} converges to a fixed point of T .

Next, we show that the continuity of T in Theorem 5.4 can be replaced by the
B-nonexpansiveness of T. For this we will make use of the following lemma.
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Lemma 5.5. ([29]) Let {αn}, {βn} be two real sequences such that
(i) 0 ≤ αn, βn < 1;
(ii) βn → 0 as n→∞;
(iii)

∑
αnβn =∞.

Let {γn} be a nonnegative real sequence such that
∑
αnβn(1− βn)γn <∞. Then

{γn} has a subsequence which converges to zero.

Theorem 5.6. Let E be a nonempty closed convex subset of a Hadamard space
(X, d) and T : E → CB(E) be a quasi-nonexpansive mapping with T (p) = {p} for
each p ∈ Fix(T ). Let {xn} be the sequence of Ishikawa iteration defined by (5.1).
Assume that T is hemicompact and B-nonexpansive, and (i) 0 ≤ αn, βn < 1; (ii)
βn → 0; (iii)

∑
αnβn =∞. Then {xn} converges to a fixed point of T .

Proof. Let p ∈ Fix(T ). It follows from (3.4) that

d2(xn+1, p) = d2(αnz
′
n ⊕ (1− αn)xn, p)

≤ (1− αn)d2(xn, p) + αnd
2(z′n, p)− αn(1− αn)d2(xn, z

′
n)

≤ (1− αn)d2(xn, p) + αnH
2(T (yn), T (p))− αn(1− αn)d2(xn, z

′
n)

≤ (1− αn)d2(xn, p) + αnd
2(yn, p)− αn(1− αn)d2(xn, z

′
n)

≤ (1− αn)d2(xn, p) + αnd
2(yn, p) (5.2)

and

d2(yn, p) = d2(βnzn ⊕ (1− βn)xn, p)

≤ (1− βn)d2(xn, p) + βnd
2(zn, p)− βn(1− βn)d2(xn, zn)

≤ (1− βn)d2(xn, p) + βnH
2(T (xn), T (p))− βn(1− βn)d2(xn, zn)

≤ (1− βn)d2(xn, p) + βnd
2(xn, p)− βn(1− βn)d2(xn, zn)

≤ d2(xn, p)− βn(1− βn)d2(xn, zn). (5.3)

By (5.2) and (5.3), we have

d2(xn+1, p) ≤ (1− αn)d2(xn, p) + αnd
2(xn, p)− αnβn(1− βn)d2(xn, zn).

This implies

αnβn(1− βn)d2(xn, zn) ≤ d2(xn, p)− d2(xn+1, p).

Thus
∞∑
n=1

αnβn(1− βn)d2(xn, zn) <∞.

By Lemma 5.5, there exist subsequences {xnk
} and {znk

} of {xn} and {zn} re-
spectively, such that lim

k→∞
d(xnk

, znk
) = 0. Hence

lim
k→∞

dist(xnk
, T (xnk

)) ≤ lim
k→∞

d(xnk
, znk

) = 0.



552 Thai J. Math. 17 (2019)/ C. Klangpraphan and and B. Panyanak

Since T is hemicompact, by passing to a subsequence, we may assume that lim
k→∞

xnk

= q for some q ∈ E. Since T is B-nonexpansive, there exists L ≥ 0 such that

H(T (xnk
), T (q)) ≤ d(xnk

, q) + L · dist(q, T (xnk
)) for all k ∈ N.

This implies that

dist(q, T (q)) ≤ d(q, xnk
) + dist(xnk

, T (xnk
)) +H(T (xnk

), T (q))

≤ 2d(xnk
, q) + dist(xnk

, T (xnk
)) + L · dist(q, T (xnk

))

≤ (2 + L)d(xnk
, q) + (1 + L)dist(xnk

, T (xnk
)) → 0 as k →∞.

That is q ∈ Fix(T ). By Lemma 5.3, lim
n→∞

d(xn, q) exists, it follows that {xn}
converges to q. Therefore, the proof is complete.

Finally, we finish the paper by providing an example supporting Theorem 5.6.

Example 5.7. Let E = [0, 1], X = (R, | · |) and T : E → CB(E) be defined by

T (x) :=

{{
1
2

}
if x ∈ [0, 1);

{0} if x = 1.

It is clear that Fix(T ) =
{

1
2

}
. Since E is compact, T is hemicompact. Now, we

show that T is a quasi-nonexpansive mapping. Let x ∈ [0, 1). Then T (x) =
{

1
2

}
,

which implies that

H(T (x), T (
1

2
)) = 0 ≤

∣∣∣∣x− 1

2

∣∣∣∣ .
On the other hand, if x = 1 then

H(T (x), T (
1

2
)) =

∣∣∣∣0− 1

2

∣∣∣∣ =
1

2
=

∣∣∣∣x− 1

2

∣∣∣∣ .
This shows that T is a quasi-nonexpansive mapping.

Next, we show that T is a B-nonexpansive mapping. Let L = 1 and x, y ∈ [0, 1].

Case 1. If x, y ∈ [0, 1), then

H(T (x), T (y)) = 0 ≤ |x− y|+ L · dist(y, T (x)).

Case 2. If x ∈ [0, 1) and y = 1, then T (x) =
{

1
2

}
and T (y) = {0}. This

implies that dist(y, T (x)) = 1
2 and hence

H(T (x), T (y)) =
1

2
≤ |x− y|+ L · dist(y, T (x)).
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Case 3. If x = 1 and y ∈ [0, 12 ), then T (x) = {0} and T (y) =
{

1
2

}
. This

implies that |x− y| ≥ 1
2 and hence

H(T (x), T (y)) =
1

2
≤ |x− y|+ L · dist(y, T (x)).

Case 4. If x = 1 and y ∈ [ 12 , 1), then T (x) = {0} and T (y) =
{

1
2

}
. This

implies that dist(y, T (x)) ≥ 1
2 and hence

H(T (x), T (y)) =
1

2
≤ |x− y|+ L · dist(y, T (x)).

This shows that T is a B-nonexpansive mapping. By Theorem 5.6, for any
starting point x1 in E, the sequence of Ishikawa iteration defined by (5.1) converges
to 1

2 . However, in this situation, Theorem 5.4 cannot be applied since T is not
continuous.
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