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1 Introduction

Effort on discovering simple proofs of the Brouwer fixed point theorem had
been made for decades. Recent results on such effort can be found in [1, 2]. This
paper appears to be more elementary since no knowledge beyond underagraduate
level is required.
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2 The Brouwer Fixed Point Theorem (BFT)

Theorem 2.1. For the closed unit ball Bd(0, 1) of the Euclidean space (Rd, ‖ · ‖),
every continuous mapping T : Bd(0, 1) → Bd(0, 1) has a fixed point, i.e., a point
x ∈ Bd(0, 1) with T (x) = x.

Preliminaries

Let −s = n = (0, . . . , 0, 1) ∈ Sd−1. For each α ∈ [−1, 1], let

Dα = {(x1, . . . , xd−1, α) ∈ Bd(0, 1)},

and Sα its sphere (with center at cα := (0, . . . , 0, α) and radius
√

1− α2). In what
follows, we will apply several projections:

(a) A metric projection PD onto a set D.

(b) Pα : Dα\cα → Sα, z 7→
√

1− α2 z−cα
‖z−cα‖ .

Note that for D = Sd−1, PD = Pα where α = 0 in (b) and D0\c0 is replaced by
Rd\0.

Clearly, (NR)⇒ (BFT ), where (NR) states that:

The unit sphere is not a retract of the unit ball. (NR)

Recall that a subset A of a metric space M is a retract of M if the identity mapping
on A can be extended to a continuous mapping r : M → A. Call such mapping r
a retraction.

(Actually, (BFT) and (NR) are equivalent.)

Proof of Theorem 2.1

Clearly, (NR) as well as (BFT ) are valid for d = 1. Suppose U : Bd(0, 1)→ Sd−1

is a retraction for some d > 1, assuming that Sd−2 is not a retract ofBd−1(0, 1). Set
Sd−1+ = {x = (x1, . . . , xd) ∈ Sd−1 : xd ≥ 0} then write x

′
= (x1, . . . , xd−1,−xd)

for x = (x1, . . . , xd−1, xd) ∈ Sd−1+ and write Sd−1− for the collection of all those

points x
′
. For α ∈ [0, 1], let Sα = {xα := (1 − α)x + αx

′
: x ∈ Sd−1+ } and write

Uα for the restriction U |Sα .

Take δ > 0 having the property that ‖U(x) − U(y)‖ ≤ 1/8 if ‖x − y‖ < δ. Now
consider the deformation of (the image of) Uα as α moves from 0 to 1. The plan
is to block the image not to pass through the sets Sγ for all γ ∈ [−1, .25]. If
for some α < 1, Vα is the new image on Sd−1 after modifying the image of Uα
as stated above with an additional property that Vα does not produce any new
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image on Sd−1+ , take any β ∈ (α, 1) with β − α < δ/2. For x ∈ Sd−1+ , define
Wβ(xβ) = PSd−1

(
Vα(xα) + (Uβ(xβ)− Uα(xα))

)
.

It is noted that

(i) ‖Wβ(xβ)− Vα(xα)‖ < 1/8.

(ii) If Vα(xα) = Uα(xα), then Wβ(xβ) = Uβ(xβ).

(iii) If Vα(xα) 6= Uα(xα), we must have Uα(xα) ∈ Sd−1− . Consider two subcases:

(iii.1) If Wβ(xβ) ∈ Sd−1+ , put Vβ(xβ) := P0 ◦ PD0(Wβ(xβ)) (which can be done by
(i)).

(iii.2) If Wβ(xβ) ∈ Sd−1− but Wβ(xβ) 6∈ Sγ for all γ ∈ [−1,−.25], put Vβ(xβ) :=
Wβ(xβ). For the case Wβ(xβ) ∈ Sγ for some γ ∈ [−1,−.25], we apply the
projections PD−.25 and Pc−.25 to obtain Pc−.25 ◦PD−.25(Wβ(xβ)) =: Vβ(xβ).
Note that, by (i) Wβ(xβ) 6= s.

Now if A is a collection of all α for which a deformed Vα exists, then A is obviously
nonempty. Moreover, the construction of Vβ as above assures that sup(A) = 1.
Finally, modify Vα so that all the image in Sd−1− are mapped into the boundary

S0 of S1/2(= D0) which is easily done by the composition P0 ◦ PD0
.

If Vα(Sα) 6⊃ Sd−1+ for some α, we claim that the sphere Sd−2 is a retract of
Bd−1(0, 1) contradicting to the above assumption. To see this, suppose Vα(Sα)
does not contain u for some u ∈ Sd−1+ . For simplicity, suppose u = n. Denote

x0 = (x1, . . . , xd−1, 0) for x = (x1, . . . , xd−1, xd) ∈ Sd−1+ . Thus the map

x0 7→ xα 7→ Vα(xα) 7→ (Vα(xα))0 7→ P0((Vα(xα))0)

is clearly a retraction from S1/2 onto its boundary S0. This contradiction proves

our claim. Thus, Vα(Sα) ⊃ S
(d−1)
+ for all α which is impossible when α = 1. The

proof is now complete.
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