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Abstract : In this work, we discuss a numerical approximation of the solution
of the reduced Burgers-Poisson equation using the local discontinuous Galerkin
method (LDG). The reduced Burgers-Poisson equation comes from rewriting the
system of Burger-Poisson equations into a single equation. The equation is then
rewritten into a system of first-order partial differential equation before the discon-
tinuous Galerkin framework is applied. Numerical tests show that optimal order
of convergence can be achieved when using polynomials of even degree in the ap-
proximation. The result agrees with the behavior of the numerical solution of the
system of Burgers-Poisson equations using LDG method.
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1 Introduction

Partial differential equations (PDE) have been used as a mathematical tool to
describe various natural phenomena by means of simplified models. One of the
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most widely-used PDE’s is the advection equation

∂tu+ ∂xu+ = 0 (1.1)

which describes the transportation for bulk of substances, such as pollutants or
small particles in the air or river. One main property of the advection equation is
the conservation of quantity in a bulk motion. A generalized form of (1.1)

∂tu+ ∂x[f(u)] = 0 (1.2)

can be used to described more complicated models, enabling us to describe a wider
variety of natural phenomena. One of many interesting models is shallow water
wave model. In 1974, Whitham [1] proposed a model of the form

∂tu+ u∂xu+ ∂x[G ∗ u] = 0 (1.3)

When the kernel G is G(x) = 1
2e
−|x|, equation (1.3) reduces to the system of

Burgers-Poisson equations

ut + uux = φx (1.4)

φxx − φ = u. (1.5)

The Burgers-Poisson system can be rewritten into a single equation

ut − uxxt + ux + uux = 3uxuxx + uuxxx (1.6)

by applying 1− ∂2x to (1.4), then replacing the right-hand side by -∂x of (1.5). In
[2], the authors note that (1.6) has similar form to the Camassa-Holn equation

ut − uxxt + 2κux + 3uux = 2uxuxx + uuxxx.

In this paper, we apply a local discontinuous Galerkin method (LDG method)
to numerically approximate the solution of the reduced Burgers-Poisson equation
(1.6). The LDG method adapts from the discontinuous Galerkin method (DG
method) which was used for the first time by Reed and Hill in 1973 to solve the
neutron transport equations [3]. Since then, it has been made popular by Shu
and Cockburn to solve the first-order hyperbolic conservative equation. See [4] for
general framework. When a PDE of interest is of higher order, can rewrite it into
a system of first-order PDE and apply the DG framework to the resulting system.
See [5] for a comprehensive introductory to LDG method.

In Chapter 2, we will formulate an LDG methods for the reduced Burgers-
Poisson equation (1.6). In Chapter 3, we will show numerical results on various
test problems. We will then make a conclusion in Chapter 4.

2 LDG Method

In this section, we discuss the formulation of a local discontinuous Galekin
method for approximating solutions of the reduced Burgers-Poisson equation (1.6)
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subject to initial data u0(x). The problem is defined on the domain I = [0, L] with
periodic boundary conditions in spatial direction.

The interval I is partitioned into N sub-interval with the partition 0 = x1/2,
x3/2, . . . , xN+1/2 = L. Let Ij = [xj−1/2, xj+1/2] with mesh size hj = xj+1/2 −
xj−1/2 for j = 1, 2, ...N . Denote the center of cell by xj = 1

2 (xj−1/2 + xj+1/2).

Let V k
h be defined as the space of piecewise polynomials of degree up to k in

each cell Ij , that is,

V k
h = {vh : vh|Ij ∈ P k(Ij), j = 1, 2, ....N}.

Since functions in V k
h are allowed to have discontinuities across the cell inter-

faces, then for vh ∈ V k
h , vh may have two different values on the interface: we use

(vh)−j+1/2 and (vh)+j+1/2 to denote the limit values of vh at xj+1/2 from the left

and right directions respectively. The jump and average across the cell interface

are denoted by [vh] := v+h − v
−
h and {vh} :=

v+
h +v−

h

2 respectively.
To formulate the LDG scheme, we first rewrite (1.6) by introducing auxiliary

variables r, w, z, q to obtain

r − ux = 0, (2.1)

w −
(
u2

2

)
x

= 0, (2.2)

z − wx = 0, (2.3)

q − u+ rx = 0, (2.4)

qt +

(
u2

2

)
x

− zx + ux = 0. (2.5)

Now, our proposed scheme is to seek uh, rh, wh, zh, qh ∈ V k
h such that, for all

j, the followings hold for any α, β, γ, ρ, φ ∈ V k
h∫

Ij

rhα dx+

∫
Ij

uhαx dx− ûhα|∂Ij = 0, (2.6)

∫
Ij

whβ dx+

∫
Ij

(
u2h
2

)
βx dx−

û2h
2
β|∂Ij = 0, (2.7)∫

Ij

zhγ dx+

∫
Ij

whγx dx− ŵhγ|∂Ij = 0, (2.8)∫
Ij

qhρ dx−
∫
Ij

uhρ dx−
∫
Ij

rhρx dx+ r̂hρ|∂Ij = 0, (2.9)

∫
Ij

(qh)tφ dx−
∫
Ij

(
u2h
2

)
φx dx+

û2h
2
φ|∂Ij

+

∫
Ij

zhφx dx− ẑhφ|∂Ij −
∫
Ij

uhφx dx+ ûhφ|∂Ij = 0, (2.10)
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where the numerical fluxes û2h, ûh, r̂h, ŵh are given by

û2h =
1

3

(
(u+h )2 + u+h u

−
h + (u−h )2

)
, (2.11)

ûh = θu+h + (1− θ)u−h , (2.12)

r̂h = (1− θ)r+h + θr−h , (2.13)

ŵh = ηw+
h + (1− η)w−h , (2.14)

ẑh = (1− η)z+h + ηz−h , (2.15)

for θ, η ∈ [0, 1]. Note that because of the periodic boundary conditions on u and its
derivatives, we have that U−1/2 := U−N+1/2 and U+

N+1/2 := U+
1/2, where U represents

uh, rh, wh, zh, or qh.
Let ~U be a vector consisting of unknown coefficients for uh. Similarly, let

~R, ~W, ~Z, and ~Q be coefficient vectors for rh, wh, zh, and qh respectively. The
scheme (2.6)-(2.10) can be written as matrix-vector equations. Equations involving

the unknown ~W, ~Z, and ~Q can be solved and written in terms of ~U . This is a
characteristic of the local discontinuous Galerkin method. Finally, the scheme is
reduced to a system of ODE to solve for the unknown ~U

d

dt
~U = L~U, (2.16)

for some operator L.
To approximate the solution of the ODE system (2.16), the third order TVD

Runge-Kutta scheme [6] is used:

~a1 = ~a(t) + ∆tL(~a(t), t)

~a2 =
3

4
~a(t) +

1

4
~a1 +

1

4
∆tL(~a1, t+ ∆t)

~a(t+ ∆t) =
1

3
~a(t) +

2

3
~a2 +

2

3
∆tL(~a2, t+

∆t

2
).

3 Numerical Results

Example 3.1. Test on smooth problem.

For preliminary test, we perform the numerical simulation on

ut − uxxt + ux + uux = 3uxuxx + uuxxx + f(t, x), t > 0, x ∈ [0, L], (3.1)

with periodic boundary conditions in spatial direction. Given the initial condition
u(0, x) = sin(x), x ∈ [0, 2π] and the right-hand side f(t, x) = 5 sin(x − t) cos(x −
t)− cos(x− t), we have that the exact solution is given by u(t, x) = sin(x− t).

We run the simulation at tmax = 1 using ∆t = 0.001. The values of θ and η
are fixed at 1/2. The errors and orders of accuracy are shown in Table 1.
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k N
θ = 1/2, η = 1/2

‖u− uh‖1 order ‖u− uh‖2 order ‖w − wh‖∞ order

1 5 8.6661e-01 4.2031e-01 4.6340e-01
10 3.7600e-01 1.2046 2.0017e-01 1.0703 2.7131e-01 0.7723
20 1.8139e-01 1.0517 9.7873e-02 1.0322 1.3801e-01 0.9751
40 8.9612e-02 1.0173 4.8620e-02 1.0094 7.5370e-02 0.8727

2 5 3.4386e-01 1.6822e-01 2.7631e-01
10 3.5604e-03 6.5936 1.9376e-03 6.4399 4.0843e-03 6.0801
20 3.5137e-04 3.3410 1.8256e-04 3.4079 2.9395e-04 3.7965
40 4.2357e-05 3.0523 2.1833e-05 3.0638 3.1790e-05 3.2089

3 5 8.8794e-03 4.8249e-03 5.7403e-03
10 1.1972e-03 2.8908 7.0118e-04 2.7826 1.7062e-03 1.7503
20 1.4708e-04 3.0250 9.0346e-05 2.9563 2.4536e-04 2.7978
40 1.8845e-05 2.9643 1.1478e-05 2.9765 4.2798e-05 2.5193

4 5 4.3616e-03 2.3620e-03 4.4082e-03
10 9.0941e-06 8.9057 4.9966e-06 8.8849 1.1177e-05 8.6235
20 1.1445e-07 6.3122 6.0476e-08 6.3684 1.5722e-07 6.1516
40 3.4958e-09 5.0329 1.7270e-09 5.1300 3.0889e-09 5.6696

Table 1: Errors and orders of accuracy for the test problem.

Example 3.2. Test on problem with exact solution.

We also test the proposed scheme on the exact solution of the Burgers-Poisson
system. It has been shown in [2] that the periodic solution of the system (1.4)-(1.5)
is given by

u(t, x) = U(x− u0t) + u0, where

U(x) =
4

3

(
cosh

(
x
2

)
cosh

(
p
2

) − 1

)
, x ∈ [−p, p].

The parameters used in the simulation are: u0 = 0, p = 2, ∆t = 0.001,
tmax = 1, θ = 1/2, and η = 1/2. The errors and orders of accuracy are shown in
Table 2. It is shown in Figure 1 that the errors behave according to their respective
orders. For example, when k = 1 the graphs of errors are linear, when k = 2, 3 the
graphs have parabola shape, and when k = 4, the graphs exhibit the behavior of
a polynomial of higher degree. We also plot the exact solution and the numerical
solution with k = 4 in Figure 2.
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k N
θ = 1/2, η = 1/2

‖u− uh‖1 order ‖u− uh‖2 order ‖u− uh‖∞ order

1 5 5.9583e-02 3.5475e-02 4.7052e-02
10 2.9768e-02 1.0011 1.7505e-02 1.0190 2.3282e-02 1.0150
20 1.4904e-02 0.9981 8.7248e-03 1.0045 1.1611e-02 1.0037
40 7.4700e-03 0.9965 4.3589e-03 1.0012 5.7909e-03 1.0037

2 5 1.0530e-03 7.4286e-04 1.7019e-03
10 9.6554e-04 0.1251 5.7714e-04 0.3642 1.0886e-03 0.6447
20 1.2174e-04 2.9876 7.2933e-05 2.9843 1.4418e-04 2.9165
40 1.5239e-05 2.9979 9.1399e-06 2.9963 1.8626e-05 2.9525

3 5 1.3366e-03 8.1221e-04 1.7354e-03
10 1.6740e-04 2.9972 1.0340e-04 2.9736 2.5114e-04 2.7887
20 2.0917e-05 3.0005 1.2987e-05 2.9931 3.5173e-05 2.8360
40 2.6106e-06 3.0023 1.6254e-06 2.9982 4.7803e-06 2.8793

4 5 1.5839e-06 9.6701e-07 2.4079e-06
10 8.8775e-07 0.8353 5.8124e-07 0.7344 1.8080e-06 0.4134
20 2.7775e-08 4.9983 1.8359e-08 4.9846 6.5268e-08 4.7919
40 8.6647e-10 5.0025 5.7511e-10 4.9965 2.2649e-09 4.8488

Table 2: Errors and orders of accuracy for the problem with exact solution.

Figure 1: Errors of the problem with exact solution plotted against ∆x for
when k = 1, 2, 3, 4.
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Figure 2: Comparison between the exact solution and numerical solution
at t = 1 using k = 4,∆t = 0.001, θ = 1/2, η = 1/2.

From the result in Table 2, we can see that the optimal order of convergence
can be achieved when the order of the polynomials used for the approximation is
even. This agrees with the behavior of the numerical solutions of the viscous and
inviscous Burgers systems obtained from the LDG framework. See [7] and [8].

Example 3.3. Test on problem with a corner point.

We test the scheme on the exact solution [2] of the form

u(t, x) = V (x− u0t) + u0, where

V (x) =
4

3

(
e−|x|/2 − 1

)
, x ∈ [−∞,∞].

In the numerical simulation, we impose periodic boundary condition on the re-
stricted domain [−20, 20]. The parameters used in the simulation are: u0 = 1,
∆t = 0.001, tmax = 1, θ = 1/2, and η = 1/2. We can see from Table 3 that the
order of convergence is not optimal. This is to be expected because the solution
has a kink at the symmetry axis.

We also run a long-time simulation to test the stability-preserving ability of
the scheme. To make a comparison, we replace the flux in (2.11) with the Lax-
Friedrich flux [9]

û2h =
1

2

[
(u−h )2 + (u+h )2 − σ(u+h − u

−
h )
]
, σ = 2 max |u| (3.2)
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Using N = 160, k = 4, u0 = 1, ∆t = 0.001, θ = 1/2, and η = 1/2, we get
the numerical approximations at tmax = 40 and 400. In Figure 3, we see that the
two schemes hardly make any difference in the short time simulation at tmax = 40.
However, when tmax = 400, we can see that the presented scheme performs better
because the numerical solution obtained from our scheme does not shift from the
exact solution as much as the other numerical solution.

Figure 3: Comparison between the proposed scheme and the scheme with
Lax-Friedrichs flux in a long time simulation.

k N
θ = 1/2, η = 1/2

‖u− uh‖1 order ‖u− uh‖2 order ‖u− uh‖∞ order

1 40 2.2790e-01 1.2262e-01 1.9844e-01
80 1.2383e-01 0.8801 6.7529e-02 0.8607 1.0553e-01 0.9110

160 6.5519e-02 0.9184 3.7553e-02 0.8466 5.8564e-02 0.8496
320 3.4390e-02 0.9299 2.1566e-02 0.8001 4.9671e-02 0.2376

2 40 9.1294e-02 5.7252e-02 1.0684e-01
80 4.8582e-02 0.9101 3.9776e-02 0.5254 1.0822e-01 -0.0185

160 2.6871e-02 0.8543 2.3354e-02 0.7682 8.4802e-02 0.3518
320 1.0320e-02 1.3806 9.2260e-03 1.3399 3.2238e-02 1.3953

3 40 6.3505e-02 4.9491e-02 1.4760e-01
80 3.2563e-02 0.9636 2.7606e-02 0.8422 8.9635e-02 0.7195

160 9.9228e-03 1.7144 9.3720e-03 1.5586 4.6763e-02 0.9387
320 2.6627e-03 1.8979 2.9899e-03 1.6482 2.1931e-02 1.0924

4 40 5.0777e-02 4.1715e-02 1.4126e-01
80 1.2886e-02 1.9783 1.0732e-02 1.9586 3.9485e-02 1.8390

160 3.2848e-03 1.9720 2.6463e-03 2.0199 8.1308e-03 2.2798
320 1.0379e-03 1.6621 9.0915e-04 1.5414 3.3071e-03 1.2978

Table 3: Errors and orders of accuracy for the problem with kink.
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Example 3.4. Variable tests.

Finally, we run the simulation on different values of θ and γ. In Tables 4 - 6,
we show the L2 errors from simulation using θ, η ∈ {0, 1/2, 1}. Here, we use the
same setting as in Example 3.2.

k N
θ = 0, η = 0 θ = 0, η = 1/2 θ = 0, η = 1

‖u− uh‖2 order ‖u− uh‖2 order ‖u− uh‖2 order

2 5 9.3632e-04 3.6803e-04 3.0285e-03
10 9.6907e-05 3.2723 3.3928e-05 3.4392 3.8756e-04 2.9661
20 9.5045e-06 3.3499 3.6181e-06 3.2292 4.1047e-05 3.2391
40 9.2381e-07 3.3629 4.3720e-07 3.0488 3.9615e-06 3.3731

3 5 7.2904e-05 3.2481e-05 1.8785e-04
10 7.8427e-06 3.2166 1.9832e-06 4.0337 1.1400e-05 4.0424
20 9.2159e-07 3.0891 1.1143e-07 4.1536 7.7874e-07 3.8718
40 1.1284e-07 3.0298 6.8896e-09 4.0156 7.4330e-08 3.3891

Table 4: Errors and orders of accuracy for when θ = 0.

k N
θ = 1/2, η = 0 θ = 1/2, η = 1/2 θ = 1/2, η = 1

‖u− uh‖2 order ‖u− uh‖2 order ‖u− uh‖2 order

2 5 1.6900e-03 7.4286e-04 1.3618e-03
10 1.5765e-04 3.4223 5.7714e-04 0.3642 1.3910e-04 3.2913
20 1.5805e-05 3.3183 7.2933e-05 2.9843 2.0043e-05 2.7949
40 1.1966e-06 3.7233 9.1399e-06 2.9963 1.6207e-06 3.6285

3 5 1.5677e-02 8.1221e-04 2.0261e-04
10 NaN NaN 1.0340e-04 2.9736 2.7043e-05 2.9053
20 NaN NaN 1.2987e-05 2.9931 5.2243e-06 2.3720
40 NaN NaN 1.6254e-06 2.9982 NaN NaN

Table 5: Errors and orders of accuracy for when θ = 1/2.

From the results in Tables 4 - 6, we can see that the scheme gives optimal
result when θ = 0 or when η = 1/2. It should be noted that in some cases, the
optimal order of convergence occurs only when the order of polynomial is even.
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k N
θ = 1, η = 0 θ = 1, η = 1/2 θ = 1, η = 1

‖u− uh‖2 order ‖u− uh‖2 order ‖u− uh‖2 order

2 5 1.7732e-02 4.3296e-04 8.9090e-04
10 4.6448e-03 1.9327 3.3900e-05 3.6749 9.4656e-05 3.2345
20 1.2931e-02 -1.4771 3.6405e-06 3.2191 9.4029e-06 3.3315
40 5.9441e-01 -5.5226 4.3825e-07 3.0543 9.1944e-07 3.3543

3 5 2.8080e-02 3.3181e-05 7.1123e-05
10 7.0719e-02 -1.3326 2.1566e-06 3.9435 7.6028e-06 3.2257
20 NaN NaN 1.2129e-07 4.1523 9.0346e-07 3.0730
40 NaN NaN 7.2524e-09 4.0638 1.1163e-07 3.0167

Table 6: Errors and orders of accuracy for when θ = 1.

4 Conclusion

In this work, we design a of local discontinuous Galerkin method for approx-
imating the solution of the reduced Burgers-Poission equation. From numerical
evidences, it is shown that we can achieve an optimal order of accuracy when using
even-order polynomials for the approximation as long as the parameters are chosen
appropriately. This behavior is similar to the previous results on related equations.
The proposed scheme also performs better than the scheme with Lax-Friedrichs
flux in a long-time simulation.
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