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1 Introduction

In 1996, Atouch [1] first introduced the viscosity method for solving minimiza-
tion problems.
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From the idea of Atouch [1], Moudafi |2] proposed the viscosity approxima-
tion method for solving fixed point problems of nonexpansive mappings in real
Hilbert spaces. Also, Moudafi [2] gave the strong convergence results of the vis-
cosity explicit method and the viscosity implicit method (in short, VEM and VIM,
respectively) for searching fixed points of a nonexpansive self-mapping on a closed
convex nonempty subset of a real Hilbert space.

In the recent years, the implicit midpoint rule (in short, IMR) have been
studied by many authors [3H7] and references therein. Here, we give some research
in this direction which is the main motivation of this paper. In 2015, Xu et al. [3]
proposed the viscosity implicit midpoint rule (in short, VIMR) for finding fixed
points of a nonexpansive self-mapping 7" on a nonempty closed convex subset C
of a real Hilbert space H as follows:

x1 € C,

Tpt1 = anf () + (1 —ap)T ( (1.1)

Tp + Tn+1

5 ) Vn € N,

where o, € (0,1) for alln € Nand f : C — C is a given contraction mapping. The
idea of contractions in this method is used to regularize a nonexpansive mappings
in Hilbert spaces for selecting the particular fixed points. Xu et al. [3] also proved
that the VIMR ([1.1]) converges strongly to a unique fixed point z* of 7' under some
appropriate assumption. Furthermore, this fixed point is also the unique solution
of the following variational inequality (in short, VI):

((I-fa*yz—z*)y > 0, x € Fix(T), (1.2)

where I : H — H is the identity mapping and Fiz(T) := {z € H : T(z) = x},
that is, the set of all fixed points of T'.

Nowadays, many authors generalized and extended the idea of viscosity im-
plicit midpoint rule in different ways. Herein, we include some of them. In 2016,
Zhao et al. [6] improved the idea of Xu et al. |3] by introducing the following
iterative algorithm for finding fixed points of a asymptotically nonexpansive self-
mapping T on a nonempty closed convex subset C' of a real Hilbert space:

:Clgc,

Tnt1 = anf () + (1 —apy)T" ( (1.3)

Tn + Tn41

5 ) Vn € N,

where «,, € (0,1) for alln € Nand f: C — C is a given contraction mapping.

Recently, Naqvi and Khan [§] presented the following viscosity rule for finding
the common fixed points of two nonexpansive mappings 5,7 : C — C, where C is
a nonempty closed convex subset of a real Hilbert space:

x1 € C,

1.4
Tpy1 = anf (Tn) + ,BnS( (1.4)

Ty + Tn+1
2

Tp + Tn+1

)+%T( - )vneN,
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where oy, Bn,7n € (0,1) for alln € N, f: C — C' is a given contraction mapping.
Under some specific conditions, they proved that the sequence defined by (|1.4))
converges strongly to a common fixed point of S and T, which is also solved the
VI (T2).

The purposed of this paper is to present the viscosity implicit midpoint rule for
searching common fixed points of two asymptotically nonexpansive self-mappings
S and T on a nonempty closed convex subset C' of a real Hilbert space H, which
is stated as follows:

mleC,

1.5
Tn41 = anf (xn) + ﬂnTn( ( )

Tn + Tn+1
2

) + %S”(%) Vn €N,
where a,, € (0,1) for alln € N, f: C — C is a contraction mapping and S, T :
C — C are two asymptotically nonexpansive mappings. Under some favorable
conditions imposed on the control parameters, we will show that the sequence
{z,} defined by strongly converges to a point z € Fiz(T) N Fiz(S), which is
also the unique solution of the VI . Moreover, we provide some applications
which illustrate our result.

The rest of the paper is organized as follows. In Section 2, we recall some
definitions and the convergence lemmas which are necessary for proving our con-
vergence theorem. In Section 3, we present the strong convergence theorem of
common fixed points of two asymptotically nonexpansive mappings under some
favorable conditions. In the last Section, we give the applications which are derived
from the main results. These applications are related to the variational inequality
problems, constrained minimization problems, Fredholm integral equations and
nonlinear evolution equations.

2 Preliminaries

Throughout this paper, we assume that C' is a nonempty closed and convex
subset of a real Hilbert space H. In this section, we recall some basic definitions
and convergence lemmas which are necessary for proving the convergence theorem.

Definition 2.1. A mapping T : C' — C is said to be:

(i) a-inverse strongly monotone if there exists a > 0 satisfying
(@ —y, Tz —Ty) > of| Az — Ay ||*

for all z,y € C,

(ii) L-Lipschitz continuous if there exists L > 0 satisfying
| Tz =Ty l|[<L|z-yl

for all z,y € C;
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(iii) monezxpansive if
[Tz =Ty ||<|lz -yl
for all z,y € C;
(iv) asymptotically nonexpansive if there exists a sequence {k,} C [1,00) with

lim &, = 1 such that

n—oo
[Tz =Ty < kn [z —y |
for all z,y € C and for all n € N;

(v) contraction if there exists the contractive constant a € [0,1) such that
[Te =Ty l|[<allz—yll
for all z,y € C.

Remark 2.2. If T is an a-inverse strongly monotone mapping, then T is a é—
Lipschitz mapping. Moreover, if T is a asymptotically nonexpansive mapping, then
Fix(T) is always closed and convez, if in addition, C' is bounded then Fix(T) is
nonempty.

Definition 2.3. An operator Po : H — C that assigns every point € H to its
unique nearest point in C' is called the metric projection onto C, defined by:

Po(z) :=argmin | z — z ||, = € H.
z2€C

It is denoted by Pe.
Remark 2.4. Note that Pcx is characterized as follows:
Pox € C and (x — Pox,z — Pox) <0, VzeC. (2.1)

The next lemma is the demiclosedness principle of asymptotically nonexpan-
sive mappings which is quite helpful in the proof of the convergence result of our
algorithm for finding the common fixed point of two asymptotically nonexpansive
mappings.

Lemma 2.5 (The demiclosedness principle [9]). Let H be a Hilbert space, C
be a monempty closed convexr subset of H, and T : C — C be a asymptotically
nonezpansive mapping with Fix(T) # 0. If {x,} is a sequence in C such that {z,}
weakly converges to x and {(I —T)x,} converges strongly to 0, then x = T'(x).

Next, we give the famous lemma for using in the proof of many convergence
theorems.

Lemma 2.6 ([10]). Assume that {a,} is a sequence of nonnegative real numbers
such that

Ap+1 S (1 - )\n>an + 671
for all n € N, where {\,} C (0,1) and {6,} C R are two sequences satisfying the
following conditions:
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. oo
(Z) Z An = 00;
n=1
oo
(11) limsup% <0or > |6y |< o0.
n—oo " n=1

Then lim a, = 0.
n—oo

3 Main Results

In this section, we prove the strong convergence theorem of the viscosity im-
plicit midpoint rule for two asymptotically nonexpansive mappings.

Theorem 3.1. Let C be a nonempty closed convex subset a real Hilbert space H,

T:C—Cand S:C — C be two asymptotically nonexpansive mappings with the

same sequence {k,} C [1,00) such that lim k, =1, U := Fiz(T) N Fiz(S) # 0
n—oo

and f: C — C be a contraction mapping with the contractive constant a € [0,1).
Define a sequence {x,,} in C as follows:

x1 € C,

3.1
Tt = an f(xn) + BT (W) + ¥, S™ (Jin—|-2$n+1) VYn € N, (8:1)

where {an}t, {Bn}, {n} C (0,1) are sequences satisfying the following conditions:

(AI) ap + B+ =1;

(A2) lim %=1 —o;

n— oo
(A3) > a, = oo;
n=1

(A4) lim v, =1 and lim o, = lim 8, = 1.
n— o0 n— o0 n— o0
Suppose that (1 — ap)k, <2 for alln € N and

lim |[|[T"%, —2z,| = lim ||S"x, —z,] =0. (3.2)
n—oo n—oo

Then the sequence {x,} strongly converges to a common fixed point z of S and T,
which is also the unique solution of the following variational inequality

(I=flz,y—2z)>0 VyeU.

In other word, z is the unique fized point of the contraction Py f, that is, Py f(z) =
z.
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Proof. First, we will show the existence of a sequence {x,,} defined by (3.1). Con-
sider the mapping W,, : C — C by

Wyha = 057Lf(w) +ﬂnTn (w +$> ‘1"7715" <w+x>

2 2

for all z € C. We want to show that W,, is a contraction mapping for all n € N.
For each n € N and z,y € C, we have

Han_ WnyH = H [ﬁnTﬂ <w—2’_x> + Y S™ (w+x>]

2
n w+y n w+y
i (52) + e (%57
nf W+ n{W+y nfW+T nfW+Y
r(555) - (50 s (55) - (5

kn
< (B + )2 lle =l

< Bn

kn
= (1-an) 2z — yll

It follows from (1 — ayp)k, < 2 for all n € N that W, is a contraction mapping
for all n € N. By using the Banach contraction principle, W,, has a unique fixed
point for all n € N. This yields the existence of a sequence {z,} defined by (3.1)).

Next, we will prove that the sequence {z,} defined by (3.1) converges to
y € U # (). We will divide the proof into six steps.

Step (I): We will show that {z, } is bounded. For all n € N, we have

anlan) + 6,17 (I ) g (Tt e )

n Tp + Tpt1
< |/ @a) = yll + Bu |T (2+) _yH

gn (:vn +2:cn+1> N yH

< an[lf(zn) = FWI + anllf(Y) =yl + Bukn

[€nt1 =yl =

+

xn+xn+1
s Y

2
Yk || T L +2x"+1 - H
< ana|zn =yl + anll f(y) =yl
+ A0 4 s — o)

2
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It implies that

2—(1—ap)ky
2

20y, + (1 — ap)ky,
2

”xn - yH + an”f(y) - yH
(3.3)

[Zn1 —yll <

for all n € N. From the condition (A2), for any given positive number ¢
with 0 < € < 1 — a, there exists a sufficient large positive integer N € N
such that for any n > N, we have k?l — 1 < 2eq,, and so

kn+1 k2 -1
nt (kp—1) = 22— < eay. (3.4)

kn_lg 2

Since k,, € [1,00), k2 — 1 < 2eqy,, and k,, — 1 < e, for all n > N, we have

2—(1—ap)ky, >1—cean+ank, =14 (kn — €)an > 14 (1 — €)auy, (3.5)
2can, + (1 — an)k, <200, + 14+ ey —ay, =1— (1 —€ —2a)ay,. '

Substituting (3.5) into (3.3), we have

1-(1-€e—20)a, 20,
—_ql < — &m0 —
foms =l € 5 T T =yl + e 1)
21 —e—a)a,
= ]_ S — n —
S o~
20 —e—a)ay, 1

< max { o~ ol ;=170 ol

—

for all n > N. By the mathematical induction, we obtain

1
_ < _ I _
[Zn41 — yl| < max {leo Ul P FAC)) yll}

for all n > N. Hence {z,} is bounded. Consequently, {f(z,)}, {T"2n},
{T" (L?”O}, {S"z,} and {S" (%)} are also bounded.

Step (II): In this step, we will show that

Jim [z 41 — 2] = 0. (3.6)
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For each n € N, we obtain

[Zn+1 — @nll
_ (a Flan) + BT (x”+x”+1) + 70" (x”“””*l)

2 2
_(an + Bn + ’Yn)Tnxn +T"x, —z,

ot o o (2552)
+¥n (5" (W) - S”xn) H
+||'7nsnxn - 'YnTnxn +T"x, — xn”
T+ T, .
< anl[f(@n) = T 2|l + B || T" (2+1) —T"x,
Ty + Ty . .
+n || S™ <2“> = 8" % || + Y0 1S 0 — |
+ vnan = T a0 + T xn — 24|
n Ty +T
< anllf (@n) = T"2nll + (Bu + )k <2+1) o
+n 18" T — x|l + (1 — ) | T" @0 — x|
1—a,)kn,
< apMi + ! ||xn+1 — Tpl| + Y HS”mn |

2
(1 = 3n) [Tz, — z0][,

where My = sup {||f(zn) — T™(z,)]|} < oo. It implies that

neN
2—(1—ay)kn, ”
<(2)) lnss = Zall < @nMy + o 5" — 2l
+(1 = 7) [T 20 — zn | (3.7)
for all n € N. It follows from (3.5)) that
1+(1—¢)

o
2 annle — x| < My 4y, [|S" 0 — 4|

+ (1 =790) [Tz — 24|

for all n > N and so

20, My 29n
n — 4n < Sn n - 4n
Hx‘f‘l x||_1+(1—e)an+1+(1—e)an” € l'H
2(17’)%)

o 4 N Tn'l'Li n
(e 1T =l

for all n > N. Using (A4) and (3.2)), we obtain nlgl;o |€n+1 — zn] = 0.
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Step (III): We will show that lim ||z, —T(z,)|| =0and lim ||z, —S(x,)| =0.
n—oo n—oo
For each n € N with n > 2, we have

IN

IN

IA

lon =T ()

‘ an—lf(xn—l) + Bn—ljjn_1 (
""Yn—lsn_l <xn12+ xn) — Tn_l(l'n)
[e77s} Hf(xnfl) - Tn_l(xnfl)H

VA <m”12+ x") —T" N(zn1)

()

Tp—1+ Tn
2

"'ﬁnfl

+'Yn—l 9

+ H(an—l + 6n—1) Tnil(xn—l) + ’Yn—lSnil(xn—l) - Tnil(xn)H

Tp—1+ T g
9 n—1

+ H(l ~ Y1) T H(@no1) + a1 8" (@) — Tnil(zn)H
(1 - an—l)kn—l

an_1 My + (Bn—1 + Yn—1) kn—1

ap—1 My + D) ”xn - xanH

F[[ T @no1) = T @) + 1 (8" H@nm1) = T Han—)) |
My + S0 e — 2l
1 | ST (@n1) = Tz

a1 My + % 20 —

+'Yn—1 ||Sn71(xn—1) - Tnil(mn—l)H .

Using (3.2)), (3.6) and the condition (A4), we obtain

lim ||z, — T ! (x,)|| = 0. (3.8)

n—oo

Moreover, we have

lzn = T(@n)ll < |20 — T (@) || + [T (20) — T'() ||
<ln = T (@) || + E2[| T (20) — @

for all n € N.
By using (3.2) and (3.8)), we conclude that

lim |z, — T(x,)|| = 0. (3.9)

n—oo

Similarly, also we can obtain the following result.

Jim [z, — S(2n)] = 0. (3.10)
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Step (IV): In this step, we will show that wy,(z,) C Fiz(S) N Fiz(T), where
ww(xy) := {x € H : there exist a subsequence of {z,, converges weakly to x}.

Suppose that © € wy,(x,). Then there exists a subsequence {x,,} of {z,}
such that x,,, — = as i — oco. From ({3.9)), we have

lim ||(I = T)an,|| = lim ||xn, — Tan,|| = 0.
11— 00 n—oo

This implies that {(I — T)z,,} converges strongly to 0. By using Lemma
2.5 we have Tz = z and so z € Fiz(T). From (3.10)), we have

lim [[( = Sz, || = lim [y, — Sz, || = 0.
71— 00 n— oo

This implies that {(I — S)z,,} converges strongly to 0. By using Lemma
we have Sz = z and so « € Fiz(S). Therefore, we can conclude that
x € Fiz(S)N Fiz(T) and then wy,(x,) C Fiz(S) N Fiz(T).

Step (V): In this step, we will show that

limsup(z — f(2),z — ) <0, (3.11)

n—oo

where z € U is the unique fixed point of Py o f, that is, z = Py(f(2)).
Since {x,} is bounded, there exists a subsequence {x,,} of {z,} such that
ZTpn; — T as ¢ — oo for some z € H and

limsup(z — f(2), 2 — ) = llg(r)l()(Z — f(2), 2 — xn,). (3.12)

n—oo

From Step (IV), we get & € U. By using (2.1, we obtain

limsup(z — f(2), 2 — ) = il_i)m (z—=f(2),z —xp,) ={(2— f(2),z—1Z) <0.

n— 00 oo

Step (VI): In this step, we will show that x,, — z as n — oo, where z is the
common fixed point of S and T. Suppose that z € Fiz(S) N Fiz(T) and
then z is also the unique fixed point of the contraction mapping Py o f or
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in other words, z = Py f(z). For each n € N, we have

IA

IN

IN

IA

lnsn — 2
X A e e R |
Jn () =21+ o (27 (E2EL) =2 o (57 (B2 bty o) |

2 2
ai |l f(wa) =21 + B | T (%)_ZH b2 Sn(%)_zu
+200 B <f — T (%) _ Z>
+2Bn 0 (T (“/’ e A =
F2anYn { f(zn) — 2, 5" (%) *Z>

2 2

oo - i1 (24522) )

(s
- (2253

st (575) (4 )
2007 (F(on) = £(2),8" () - 2)
2007 (F(2) — 2, 5" (FEI) =)

02 | (wn) — 2% + (B2 +12) K2 %_z(f
+28,7nk2 %_HQ
200 B ) = S |77 () — o

420, B <f(z) —z,T" (m" + x"“) z>
)=

n xn+arn
+2an7n || (zn) = F) |57 (5

+2anYn <f(z) —z,8" (%) - z>

2
o 1 (a) = 2l + (1= )k [T |

2
B ] e
2 () = 2,17 (I < 2)
+2an ks, ||Tn — 2|| H% B ZH
P2 () = 2,87 () )
02 1 F () — 2| + (1 — )83 | En Tt )
200, (1 = auky [lo — 2] | 25

2
420, B <f(z) —z,T" (M) — z>

2
+20n <f(2) — 28" (%) _ z>
1— an)?k?
A0 (g, — 22 4+ 2 = 2] s — 21 + 2 = 217)

(1 = an)kn l2n — 2 (len = 2| + [2ass — 2]) + b, (3.13)
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where

ho = a2 ||f(zn) — 2)|* + 208, <f(2) -2 T" (%4—;%1) - Z>

+20nYn <f(z) —z,8" (CC’LJFQSC"“) - z> : (3.14)

From ([3.13)) and the fact that
2lwn = 2lllznsr = 2l < lzn = 2l + et — 21
for all n € N, we obtain

1—a,)%k2
U= (3 — 2l 4 2 — 21)

+aan(l = ankn (ln = 2 + lan = 2l 2011 = 21) + Ao

< (1 —ay)?k2
- 2

[ ]

(ke = 2117 + llons1 — 21I7)
2 1 2 1 2
+ aan(l — an)ky, ( [z, — 2| +§ |zn — 2| Jri [Zns1 —2[I7 ) + hn

(1 — an)?k2 + 3aa, (1 — ap)k,
= ’ Iz — I
n (1 — apn)?k2 + aa, (1 — ay)

2

k
"N #pgr — 2||° + b

It implies that

2 — (1 —an)?k2 — aan (1 — ay)
2
< (1 — an)?k2 4+ 3aa, (1 — an)
- 2
for all m» € N. From , kn€[1,00), k2 —1 < 2eq,, and k,—1 <ea,
for all n > N, we have

k
- 2]

kn
Ho:nszQJrhn (3.15)

2—(1- an)2ki —aap(l —ap)ky, >2—(1— an)2(1 + 2ean) — aon(l — an)(l + eay),

}(3.16)

(1= an)’k2 + 300 (1 — an)kn < (1 — an)®(1+ 2can) + 3aan(l — an)(1 + o)

for all n > N. Substituting (3.16]) into (3.15]) then it turns out that

lnes — 2% < (1 — an)?(1 + 2ea,) + 3o, (1 — ) (1 + eay,)
s =2 (1= o) 2(1 + 2ean) — aan (1 — an) (1 + ean)
+ An (3.17)

llzn — Z||2

for all n > N, where

2%,

An = 2 — (1= an)?2(1 + 2ea) — aan (1 — an) (1 + €eay)’
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Let us consider the function g : (0,00) — R defined by

1{1 (1 —6)%(1 4 2et) + 3at(l — t)(1 + €t) }

90 = T I AP+ 2et) —at(l = )L+ )

for all ¢ > 0. After certain manipulations and simplification, we obtain
}ir%g(t) =4(1 —a—¢€) > 0. Let o > 0. There exists ¢g :=3(1 —a—¢€) >0
—

such that g(t) > ¢y, 0 <t < dg. Thus, we have

(1 —t)%(1+ 2¢t) + 3at(1 — t)(1 + €t)
2 — (1 —1)2(1+ 2¢t) — at(1 —t)(1 + et)

<l—ept, 0<t<dy (3.18)

Since a;, — 0 as n — oo, there exists an integer N; € N such that «,, < g

for all n > Nj. From (3.17) and (3.18) we obtain,
|Zni1 — 2)|* < (1 = eoan)||lzn — 2|2 + An. (3.19)

From the definition h,, of (3.14) and (3.11)), it turns out that lim sup Z—" <0,

n—oo

which implies that
A
limsup — < 0 (3.20)

n—oo an
Finally, we use the conditions (A3), (A4) and (3.20) to apply Lemma
to the inequality (3.19)), we conclude that lim ||z, — z||*> = 0, this implies
n—oo
that x, — z as n — oo. This completes the proof. O

The following result is derived from Theorem immediately.

Theorem 3.2. Let C be a nonempty closed convexr subset a real Hilbert space
H, T :C — C be a asymptotically nonexpansive mapping with Fiz(T) # 0 and
f: C = C be a contraction mapping with the contractive constant o € [0,1).
Define a sequence {x,} in C as follows:

T € O,

Tnt1 = @ f(zn) + (1 — ap)T" ( 5

) Vn € N,

where {a,} C (0,1) is a sequence satisfying the following conditions:

(A1) nh_}n;o ap, = 0;

(A2) io: ay, = 00.
n=0

Suppose that (1 — an)kn < 2 for alln € N and lim ||T"x, — x,|| = 0. Then the
n—oo

sequence {x,} defined by (3.21) strongly converges to a fized point z of T, which
is also the unique solution of the following variational inequality
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((I-fz,y—x)>0 Vyée Fizx(T).

In other word, z is the unique fized point of the contraction Ppiyr)f, that is,
Prior) f(2) = 2.

Proof. By taking S =T and 38, =0 and v, =1 — o, for all n € N in Theorem
1] we get this result. O

Next, we give the another obtained result from Theorem [3.1] which is the main
tool for applying various applications in the next section.

Theorem 3.3. Let C be a nonempty closed convex subset a real Hilbert space H,
T : C — C be a nonexpansive mapping with Fiz(T) # @ and f : C — C be a
contraction mapping with the contractive constant o € [0,1). Define a sequence
{zn} in C as follows:

{I?1€C,

Tns1 = anf(wn) + (1— an)T" ( (3.22)

T + Tn41

5 ) Vn € N,

where {a,} C (0,1) is a sequence satisfying the following conditions:
(A1) nh_}rr;oozn =0;

[ee]
(A2) > a, = oco.

n=0

Then the sequence {x,} defined by (3.22)) strongly converges to a fized point z of
T, which is also the unique solution of the following variational inequality

(I- flz,y—=x) >0 Vye€ Fiz(T).

In other word, z is the unique fized point of the contraction Ppiyr)f, that is,
Priyry f(2) = 2.

Proof. By taking S =T and 8, =0 and v, = 1 — ¢, for all n € N in Theorem
B.1] it is sufficient to prove that the following condition is satisfied:

lim |z, —T"zy| = 0.
n—oo

We can use the same technique of the Theorem [3.1] for proving ||z, 1 — 2| — 0
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asn — oo and {f(x,)}, {T™(x,)} are bounded. Therefore we have

|Zn = T"2nl| < |20 — Tp1ll + |01 — Ty

nf Tnt+x -
< ||33n — mn-&-l” + Oénf(ajn) + (1 — an)T (””'H> —T"z,

2

<lzn = zngall + an [f(2n) = T (20) ||

+(1-ap)|Tm (W) — T,
1—a,
<t — ol + i 1) = T )|+ T2 sy

3—a,
< B0l

where M := sup {||f(zn) — T"(xn)||} < co. By taking the limit as n — oo in the
neN

above inequality, we get lim ||z, — T"z,|| = 0. This completes the proof. O
n—oo

Now we give an open question whether Theorem [3.1 holds whenever we change
some condition, that is, we have the following;:

Open Question: Let C' be a nonempty closed convex subset a real Hilbert
space H, T : C' — C and S : C' — C be two asymptotically nonexpansive mappings
with the same sequence {k,} C [1,00) such that lim,_,o bk, = 1, U := Fiz(T) N
Fixz(S) # @ and f : C — C be a contraction mapping with the contractive constant
a € [0,1). Define a sequence {x,} in C as follows:

93160,

3.23
Tnt1 = n f(xn) + BT (W) + 1 S" (W) VYn € N, (8.23)

where {an}, {Bn}, {7} C (0,1) are sequences satisfying the following conditions:
(Al) ap + Bn+vm =1

(A2) lim %=l —;

n— oo n

(A3) > a, = oo
n=0
(A4) and lim ~, =1and lim a, = lim 3, =0.
n—o00 n—oo n— oo

Suppose that (1 — o)k, < 2 for all n € N and lim [|[T"x, — S™z,| = 0. Is it
n— oo

possible that the sequence {x,} defined by (3.23) converges strongly to a common
fixed point of S and T'7



510 Thai J. Math. 17 (2019)/ S. Dhakal and W. Sintunavarat

4 Applications

In this section, we present the applications of the results in the previous section.
These applications are related to variational inequality problems, constrained con-
vex minimization problems, Fredholm integral equations and nonlinear evolution
equations.

4.1 Variational Inequality Problems

Let C be a closed convex subset of a real Hilbert space H and A : C — H

be a given operator. Let us consider the variational inequality problem (in short,
VIP) as follows:

finding z* € C  such that (Az*,x —z*) >0 Vo € C. (4.1)

Note that the variational inequality problem is equivalent to the fixed point
problem
Tx* =z,

where T := Po(I — MA) and A > 0. If A is an L-Lipschitzian mapping and
A is a strongly monotone mapping, for small enough A > 0, T is a contraction
mapping. So we can apply the Picard iteration for finding the unique fixed point
of T which is also the unique solution of the VIP (4.1). However, if A is a 6-
inverse strongly monotone mapping and A is an L-Lipschitzian mapping, then
Po(I — MA) is a nonexpansive mapping provided that A € (0,26). Therefore, we
can apply Theorem for finding a solution of VIP (4.1)) as follows.

Theorem 4.1. Let C be a nonempty closed convex subset C' of a real Hilbert space
H, A:C — H be a 6-inverse strongly monotone maping for some 6 >0, A is an
L-Lipschitzian mapping and X € (0,20). Suppose that f : C — C' is a contraction
mapping with the contractive constant o € [0,1). A sequence {x,} define by as
follows:

x1 € C,

Enis = 0 f(n) + (1 — o) [Po(l — Ad)]" (

Tn + Tn+1

5 ) Vn € N,

where {an} C (0,1) is a sequence satisfying the conditions (A1) and (A2) of
Theorem . Then the sequence {x,} strongly convergence to a solution x* of the
VIP (4.1). Also, x* solves the following variational inequality

(I-flz*,z—2")>0 Vo € A7H(0).

4.2 Constrained Convex Minimization Problems

Consider the following constrained convex minimization problem:

min ¢(z), (4.2)
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where C' is a closed convex subset of a real Hilbert space H and ¢ : C — R is a
lower semicontinuous convex function and it is Frechet differentiable. Note that
the constrained convex minimization problem (4.2)) to the fixed point problem

Tx* = 2%,

where T := Po(I — AV¢) and A > 0. Furthermore, Po (I —AV¢) is a nonexpansive
mapping provided that V¢ is an L-Lipschitzian mapping, V¢ is a #-inverse strongly
monotone mapping and A € (0,26). Thus, we can apply Theorem to find the
solution of the constrained convex minimization problem as follows.

Theorem 4.2. Let C be a nonempty closed conver subset of a real Hilbert space
H. Assume that ¢ : C — R is Frechet differentiable, V¢ is an L-Lipschitzian
mapping, V¢ is a O-inverse strongly monotone mapping and A € (0,20). Suppose
that f : C — C is a contraction mapping with the contractive constant o € [0,1).
Define a sequence {x,} as follows:

13160,

o1 = anf(2n) + (1= on)[Po(I = AVE)]" <xn+xn+1

2 ) Vn € N,

where {a, } C (0,1) is a sequence satisfying the conditions (A1) and (A2) of Theo-
rem . Then the sequence {x,,} strongly converges to a solution x* of constrained
conver minimization problem . Also, x* solves the following variational in-
equality

(I- fa*,z—2*) >0 Vr € (Vé)1(0).
4.3 Fredholm Integral Equations

Consider the Fredholm integral equation

x(t) = g(¢) —l—/o F(t,s,z(s))ds, t €10,1], (4.3)

where x € L?[0,1] is an unknown function, g is a continuous function on [0, 1] and
F:]0,1] x [0,1] x R — R is continuous and satisfies the following condition:
|F(t,s,a) — F(t,s,b)] <|a—Db|

for all t,s € [0,1] and a,b € R. Define a mapping 7 : L2[0,1] — L?[0, 1] by

(Tz)(t) = g(t) —|—/O F(t,s,z(s))ds, t€10,1]

for all x € L?[0,1]. It is easy to see that T is a nonexpansive mapping. Further-
more, the solution of an integral equation is equivalence to a fixed point of
nonexpansive mapping 7. Therefore, we can apply Theorem for finding the
solution of an integral equation as follows.
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Theorem 4.3. Let us consider g, F, T and L?[0, 1] define same as above. Suppose
that f : L2[0,1] — L2[0,1] is a contraction mapping with the contractive constant
a € [0,1). Define a sequence {x,} in L*[0,1] as follows:

x, € L*0,1],

Tnt1 = W f(zn) + (1 — )T ((M‘ZETLH

5 ) Vn € N,

where {an} C (0,1) is a sequence satisfying the conditions (A1) and (A2) of
Theorem . Then the sequence {x,} strongly converges to a solution x* of the
Fredholm integral equation (4.3). Also, x* solves the following variational inequal-
ity

(I—=fla*,z—a*) >0 Vo € Fiz(T).

4.4 Nonlinear Evolution Equations

Let us consider the time-dependent nonlinear evolution equation in a real
Hilbert space H as follows:
du
T + A(t)u = f(t,u), t>0, (4.4)
where A(t) is a family of closed linear operators in H and f : Rx H — H is a
given operator. The following existence result of a periodic solution of a nonlinear
evolution equation (4.4)) is proved by Browder [11] in 1965.

Theorem 4.4. Consider the time-dependent nonlinear equation of the evolution
(4.4). Assume that A(t) and f(t,u) are periodic in t with a common period & > 0
and the following assumptions hold.

(i) For each t and each pair v and v in H, we get

(f(t,u) = f(t,v),u —v) <0.

(i) For each t and u in D(A(t)), we have (A(t)u,u) > 0.

(i1i) There exists a mild solution u of an equation (4.4) on RT with the initial
value v € H. Recall that u is a mild solution of an equation (4.4) on R
with the initial value w(0) = v if and only if for each t > 0, we have

u(t) =U(t,0)v + /0 Ul(t, s)f(s,u(s))ds,

where {U(t,s) }i>s>0 15 the evolution system for the homogeneous linear sys-

tem d

U
— 4+ A = .
dt+ (t)u=0, (t>s)

(iv) There exists R > 0 such that (f(t,u),u) <0 for| u||=R and allt in [0,&].



The Viscosity Implicit Midpoint Rule ... 513

Then there exists an element v of H with || w ||< R such that the mild solution of
nonlinear evolution equation (4.4) with initial condition u(0) = v, is periodic of
period &.

Consider the time-dependent nonlinear evolution equation (4.4). If we define
a mapping T : H — H by

T(v) =u(&) for all v € H,

where u is the solution of which satisfy u(0) = v. From [11], T is a nonex-
pansive mapping. Also, if (iv) holds, then T is a self mapping on the closed ball
B :={v e H:| v| < R}. Consequently, T has a fixed point in B which we denote
by v and the corresponding solution of u of with u(0) = v is the desired pe-
riodic solution of with period £. In other word, to find a periodic solution of
the time-dependent nonlinear evolution equation is equivalent to find a fixed
point of T'. Therefore, we can use Theorem for finding the periodic solution
of a nonlinear evolution equation . Thus, the following algorithm:

’U1€B7

Unt1 = anf(vn) + (1 — an)[Po(I — ANA)]™ ( (4.5)

Un + Un+1

5 ) Vn € N,

where {a;,} is a sequence satisfying the conditions (A1) and (A2) of Theorem (3.3
converges weakly to a fixed point v of T and then the corresponding mild solution

u of ({.4) with w(0) = ¢ is a periodic solution of (4.4)).

Acknowledgements : The second author would like to thank the Thailand
Research Fund and Office of the Higher Education Commission under grant no.
MRG6180283 for financial support during the preparation of this manuscript.

References

[1] H. Attouch, Viscosity approximation methods for minimization problems,
STAM J. Optim. 6 (3) (1996) 769-806.

[2] A. Moudafi, Viscosity approximation methods for fixed-points problems, J.
Math. Anal. Appl. 241 (1) (2000) 46-55.

[3] HK. Xu, M.A. Alghamdi, N. Shahzad, The viscosity technique for the im-
plicit midpoint rule of nonexpansive mappings in Hilbert spaces, Fixed Point
Theory Appl. 41 (2015).

. Ke, C. Ma, The generalized viscosity implicit rules of nonexpansive map-
4] Y. Ke, C. Ma, Th lized viscosity implicit rules of i
pings in Hilbert spaces, Fixed Point Theory and Appl. 190 (2015).

[5] M.A. Alghamdi, N. Shahzad, H.K. Xu, The implicit midpoint rule for nonex-
pansive mappings, Fixed Point Theory and Appl. 96 (2014).



514

[6]

Thai J. Math. 17 (2019)/ S. Dhakal and W. Sintunavarat

L.-C. Zhao, S.-S. Chang, C.-F. Wen, Viscosity approximation methods for the
implicit midpoint rule of asymptotically nonexpansive mappings in Hilbert
spaces, J. Nonlinear Sci. Appl. 9 (6) (2016) 4478-4488.

S. He, Y. Mao, Z. Zhou, J.Q. Zhang, The generalized viscosity implicit rules
of asymptotically nonexpansive mappings in Hilbert spaces, Applied Mathe-
matical Science 11 (12) (2017) 549-560.

S.F.A. Naqvi, M.S. Khan, On the viscosity rule for common fixed points of
two nonexpansive mappings in Hilbert spaces, Open J. Math. Sci. 1 (1) (2017)
111-125.

K. Goebel, W.A. Kirk, Topics in Metric Fixed Point Theory, Cambridge
Studies in Advanced Mathematics, vol. 28. Cambridge University Press, Cam-
bridge (1990).

H.K. Xu, Iterative algorithms for nonlinear operators, J. Lond. Math. Soc.
66 (2) (2002) 240-256.

F.E. Browder, Existence of periodic solutions for nonlinear equations of evo-
lution, Proc. Natl. Acad. Sci. USA 53 (5) (1965), 1100-1103.

(Received 26 August 2018)
(Accepted 14 March 2019)

THAI J. MATH. Online @ http://thaijmath.in.cmu.ac.th


http://thaijmath.in.cmu.ac.th

	Introduction
	Preliminaries
	Main Results
	Applications
	Variational Inequality Problems
	Constrained Convex Minimization Problems
	Fredholm Integral Equations
	Nonlinear Evolution Equations


