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1 Introduction

In 1996, Atouch [1] first introduced the viscosity method for solving minimiza-
tion problems.
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From the idea of Atouch [1], Moudafi [2] proposed the viscosity approxima-
tion method for solving fixed point problems of nonexpansive mappings in real
Hilbert spaces. Also, Moudafi [2] gave the strong convergence results of the vis-
cosity explicit method and the viscosity implicit method (in short, VEM and VIM,
respectively) for searching fixed points of a nonexpansive self-mapping on a closed
convex nonempty subset of a real Hilbert space.

In the recent years, the implicit midpoint rule (in short, IMR) have been
studied by many authors [3–7] and references therein. Here, we give some research
in this direction which is the main motivation of this paper. In 2015, Xu et al. [3]
proposed the viscosity implicit midpoint rule (in short, VIMR) for finding fixed
points of a nonexpansive self-mapping T on a nonempty closed convex subset C
of a real Hilbert space H as follows:

x1 ∈ C,

xn+1 = αnf (xn) + (1− αn)T

(
xn + xn+1

2

)
∀n ∈ N,

 (1.1)

where αn ∈ (0, 1) for all n ∈ N and f : C → C is a given contraction mapping. The
idea of contractions in this method is used to regularize a nonexpansive mappings
in Hilbert spaces for selecting the particular fixed points. Xu et al. [3] also proved
that the VIMR (1.1) converges strongly to a unique fixed point x∗ of T under some
appropriate assumption. Furthermore, this fixed point is also the unique solution
of the following variational inequality (in short, VI):

〈(I − f)x∗, x− x∗〉 ≥ 0, x ∈ Fix(T ), (1.2)

where I : H → H is the identity mapping and Fix(T ) := {x ∈ H : T (x) = x},
that is, the set of all fixed points of T .

Nowadays, many authors generalized and extended the idea of viscosity im-
plicit midpoint rule in different ways. Herein, we include some of them. In 2016,
Zhao et al. [6] improved the idea of Xu et al. [3] by introducing the following
iterative algorithm for finding fixed points of a asymptotically nonexpansive self-
mapping T on a nonempty closed convex subset C of a real Hilbert space:

x1 ∈ C,

xn+1 = αnf (xn) + (1− αn)Tn
(
xn + xn+1

2

)
∀n ∈ N,

 (1.3)

where αn ∈ (0, 1) for all n ∈ N and f : C → C is a given contraction mapping.
Recently, Naqvi and Khan [8] presented the following viscosity rule for finding

the common fixed points of two nonexpansive mappings S, T : C → C, where C is
a nonempty closed convex subset of a real Hilbert space:

x1 ∈ C,

xn+1 = αnf (xn) + βnS
(xn + xn+1

2

)
+ γnT

(xn + xn+1

2

)
∀n ∈ N,

 (1.4)
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where αn, βn, γn ∈ (0, 1) for all n ∈ N, f : C → C is a given contraction mapping.
Under some specific conditions, they proved that the sequence defined by (1.4)
converges strongly to a common fixed point of S and T , which is also solved the
VI (1.2).

The purposed of this paper is to present the viscosity implicit midpoint rule for
searching common fixed points of two asymptotically nonexpansive self-mappings
S and T on a nonempty closed convex subset C of a real Hilbert space H, which
is stated as follows:

x1 ∈ C,

xn+1 = αnf (xn) + βnT
n
(xn + xn+1

2

)
+ γnS

n
(xn + xn+1

2

)
∀n ∈ N,

 (1.5)

where αn ∈ (0, 1) for all n ∈ N, f : C → C is a contraction mapping and S, T :
C → C are two asymptotically nonexpansive mappings. Under some favorable
conditions imposed on the control parameters, we will show that the sequence
{xn} defined by (1.5) strongly converges to a point z ∈ Fix(T )∩Fix(S), which is
also the unique solution of the VI (1.2). Moreover, we provide some applications
which illustrate our result.

The rest of the paper is organized as follows. In Section 2, we recall some
definitions and the convergence lemmas which are necessary for proving our con-
vergence theorem. In Section 3, we present the strong convergence theorem of
common fixed points of two asymptotically nonexpansive mappings under some
favorable conditions. In the last Section, we give the applications which are derived
from the main results. These applications are related to the variational inequality
problems, constrained minimization problems, Fredholm integral equations and
nonlinear evolution equations.

2 Preliminaries

Throughout this paper, we assume that C is a nonempty closed and convex
subset of a real Hilbert space H. In this section, we recall some basic definitions
and convergence lemmas which are necessary for proving the convergence theorem.

Definition 2.1. A mapping T : C → C is said to be:

(i) α-inverse strongly monotone if there exists α > 0 satisfying

〈x− y, Tx− Ty〉 ≥ α‖ Ax−Ay ‖2

for all x, y ∈ C;

(ii) L-Lipschitz continuous if there exists L ≥ 0 satisfying

‖ Tx− Ty ‖≤ L ‖ x− y ‖

for all x, y ∈ C;
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(iii) nonexpansive if
‖ Tx− Ty ‖≤‖ x− y ‖

for all x, y ∈ C;

(iv) asymptotically nonexpansive if there exists a sequence {kn} ⊆ [1,∞) with
lim
n→∞

kn = 1 such that

‖ Tnx− Tny ‖≤ kn ‖ x− y ‖

for all x, y ∈ C and for all n ∈ N;

(v) contraction if there exists the contractive constant α ∈ [0, 1) such that

‖ Tx− Ty ‖≤ α ‖ x− y ‖

for all x, y ∈ C.

Remark 2.2. If T is an α-inverse strongly monotone mapping, then T is a 1
α -

Lipschitz mapping. Moreover, if T is a asymptotically nonexpansive mapping, then
Fix(T ) is always closed and convex, if in addition, C is bounded then Fix(T ) is
nonempty.

Definition 2.3. An operator PC : H → C that assigns every point x ∈ H to its
unique nearest point in C is called the metric projection onto C, defined by:

PC(x) := arg min
z∈C
‖ x− z ‖2, x ∈ H.

It is denoted by PC .

Remark 2.4. Note that PCx is characterized as follows:

PCx ∈ C and 〈x− PCx, z − PCx〉 ≤ 0, ∀z ∈ C. (2.1)

The next lemma is the demiclosedness principle of asymptotically nonexpan-
sive mappings which is quite helpful in the proof of the convergence result of our
algorithm for finding the common fixed point of two asymptotically nonexpansive
mappings.

Lemma 2.5 (The demiclosedness principle [9]). Let H be a Hilbert space, C
be a nonempty closed convex subset of H, and T : C → C be a asymptotically
nonexpansive mapping with Fix(T ) 6= ∅. If {xn} is a sequence in C such that {xn}
weakly converges to x and {(I − T )xn} converges strongly to 0, then x = T (x).

Next, we give the famous lemma for using in the proof of many convergence
theorems.

Lemma 2.6 ([10]). Assume that {an} is a sequence of nonnegative real numbers
such that

an+1 ≤ (1− λn)an + δn

for all n ∈ N, where {λn} ⊆ (0, 1) and {δn} ⊆ R are two sequences satisfying the
following conditions:
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(i)
∞∑
n=1

λn =∞;

(ii) lim sup
n→∞

δn
λn
≤ 0 or

∞∑
n=1
| δn |<∞.

Then lim
n→∞

an = 0.

3 Main Results

In this section, we prove the strong convergence theorem of the viscosity im-
plicit midpoint rule for two asymptotically nonexpansive mappings.

Theorem 3.1. Let C be a nonempty closed convex subset a real Hilbert space H,
T : C → C and S : C → C be two asymptotically nonexpansive mappings with the
same sequence {kn} ⊆ [1,∞) such that lim

n→∞
kn = 1, U := Fix(T ) ∩ Fix(S) 6= ∅

and f : C → C be a contraction mapping with the contractive constant α ∈ [0, 1).
Define a sequence {xn} in C as follows:

x1 ∈ C,

xn+1 = αnf(xn) + βnT
n

(
xn + xn+1

2

)
+ γnS

n

(
xn + xn+1

2

)
∀n ∈ N,

 (3.1)

where {αn}, {βn}, {γn} ⊆ (0, 1) are sequences satisfying the following conditions:

(A1) αn + βn + γn = 1;

(A2) lim
n→∞

k2n−1
αn

= 0;

(A3)
∞∑
n=1

αn =∞;

(A4) lim
n→∞

γn = 1 and lim
n→∞

αn = lim
n→∞

βn = 1.

Suppose that (1− αn)kn ≤ 2 for all n ∈ N and

lim
n→∞

‖Tnxn − xn‖ = lim
n→∞

‖Snxn − xn‖ = 0. (3.2)

Then the sequence {xn} strongly converges to a common fixed point z of S and T ,
which is also the unique solution of the following variational inequality

〈(I − f)x, y − x〉 ≥ 0 ∀y ∈ U .

In other word, z is the unique fixed point of the contraction PUf , that is, PUf(z) =
z.
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Proof. First, we will show the existence of a sequence {xn} defined by (3.1). Con-
sider the mapping Wn : C → C by

Wnx = αnf(w) + βnT
n

(
w + x

2

)
+ γnS

n

(
w + x

2

)
for all x ∈ C. We want to show that Wn is a contraction mapping for all n ∈ N.
For each n ∈ N and x, y ∈ C, we have

‖Wnx−Wny‖ =

∥∥∥∥∥
[
βnT

n

(
w + x

2

)
+ γnS

n

(
w + x

2

)]

−
[
βnT

n

(
w + y

2

)
+ γnS

n

(
w + y

2

)]∥∥∥∥∥
≤ βn

∥∥∥∥Tn(w + x

2

)
− Tn

(
w + y

2

)∥∥∥∥+ γn

∥∥∥∥Sn(w + x

2

)
− Sn

(
w + y

2

)∥∥∥∥
≤ (βn + γn)

kn
2
‖x− y‖

= (1− αn)
kn
2
‖x− y‖.

It follows from (1 − αn)kn ≤ 2 for all n ∈ N that Wn is a contraction mapping
for all n ∈ N. By using the Banach contraction principle, Wn has a unique fixed
point for all n ∈ N. This yields the existence of a sequence {xn} defined by (3.1).

Next, we will prove that the sequence {xn} defined by (3.1) converges to
y ∈ U 6= ∅. We will divide the proof into six steps.

Step (I): We will show that {xn} is bounded. For all n ∈ N, we have

‖xn+1 − y‖ =

∥∥∥∥αnf(xn) + βnT
n

(
xn + xn+1

2

)
+ γnS

n

(
xn + xn+1

2

)
− y
∥∥∥∥

≤ αn ‖f(xn)− y‖+ βn

∥∥∥∥Tn(xn + xn+1

2

)
− y
∥∥∥∥

+ γn

∥∥∥∥Sn(xn + xn+1

2

)
− y
∥∥∥∥

≤ αn ‖f(xn)− f(y)‖+ αn‖f(y)− y‖+ βnkn

∥∥∥∥xn + xn+1

2
− y
∥∥∥∥

+ γnkn

∥∥∥∥xn + xn+1

2
− y
∥∥∥∥

≤ αnα ‖xn − y‖+ αn‖f(y)− y‖

+
(1− αn)kn

2
(‖xn − y‖+ ‖xn+1 − y‖) .
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It implies that

2− (1− αn)kn
2

‖xn+1 − y‖ ≤
2ααn + (1− αn)kn

2
‖xn − y‖+ αn‖f(y)− y‖

(3.3)

for all n ∈ N. From the condition (A2), for any given positive number ε
with 0 < ε < 1 − α, there exists a sufficient large positive integer N ∈ N
such that for any n ≥ N , we have k2n − 1 ≤ 2εαn and so

kn − 1 ≤ kn + 1

2
(kn − 1) =

k2n − 1

2
≤ εαn. (3.4)

Since kn ∈ [1,∞), k2n − 1 ≤ 2εαn and kn − 1 ≤ εαn for all n ≥ N , we have

2− (1− αn)kn ≥ 1− εαn + αnkn = 1 + (kn − ε)αn ≥ 1 + (1− ε)αn,
2ααn + (1− αn)kn ≤ 2ααn + 1 + εαn − αn = 1− (1− ε− 2α)αn.

}
(3.5)

Substituting (3.5) into (3.3), we have

‖xn+1 − y‖ ≤
1− (1− ε− 2α)αn

1 + (1− ε)αn
‖xn − y‖+

2αn
1 + (1− ε)αn

‖f(y)− y‖

= 1− 2(1− ε− α)αn
1 + (1− ε)αn

‖xn − y‖

+
2(1− ε− α)αn
1 + (1− ε)αn

(
1

1− ε− α
‖f(y)− y‖

)
≤ max

{
‖xn − y‖,

1

1− ε− α
‖f(y)− y‖

}
for all n ≥ N . By the mathematical induction, we obtain

‖xn+1 − y‖ ≤ max

{
‖x0 − y‖,

1

1− ε− α
‖f(y)− y‖

}

for all n ≥ N . Hence {xn} is bounded. Consequently, {f(xn)}, {Tnxn},{
Tn
(
xn+xn+1

2

)}
, {Snxn} and

{
Sn
(
xn+xn+1

2

)}
are also bounded.

Step (II): In this step, we will show that

lim
n→∞

‖xn+1 − xn‖ = 0. (3.6)
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For each n ∈ N, we obtain

‖xn+1 − xn‖

=
∥∥∥αnf(xn) + βnT

n

(
xn + xn+1

2

)
+ γnS

n

(
xn + xn+1

2

)
−(αn + βn + γn)Tnxn + Tnxn − xn

∥∥∥
≤

∥∥∥αn (f(xn)− Tnxn) + βn

(
Tn
(
xn + xn+1

2

)
− Tnxn

)
+γn

(
Sn
(
xn + xn+1

2

)
− Snxn

)∥∥∥
+‖γnSnxn − γnTnxn + Tnxn − xn‖

≤ αn ‖f(xn)− Tnxn‖+ βn

∥∥∥∥Tn(xn + xn+1

2

)
− Tnxn

∥∥∥∥
+γn

∥∥∥∥Sn(xn + xn+1

2

)
− Snxn

∥∥∥∥+ γn ‖Snxn − xn‖

+ ‖γnxn − γnTnxn + Tnxn − xn‖

≤ αn ‖f(xn)− Tnxn‖+ (βn + γn)kn

∥∥∥∥(xn + xn+1

2

)
− xn

∥∥∥∥
+γn ‖Snxn − xn‖+ (1− γn) ‖Tnxn − xn‖

≤ αnM1 +
(1− αn)kn

2
‖xn+1 − xn‖+ γn ‖Snxn − xn‖

+(1− γn) ‖Tnxn − xn‖ ,

where M1 := sup
n∈N
{‖f(xn)− Tn(xn)‖} <∞. It implies that

(
2− (1− αn)kn

2

)
‖xn+1 − xn‖ ≤ αnM1 + γn ‖Snxn − xn‖

+(1− γn) ‖Tnxn − xn‖ (3.7)

for all n ∈ N. It follows from (3.5) that

1 + (1− ε)αn
2

‖xn+1 − xn‖ ≤ αnM1 + γn ‖Snxn − xn‖

+ (1− γn) ‖Tnxn − xn‖

for all n ≥ N and so

‖xn+1 − xn‖ ≤
2αnM1

1 + (1− ε)αn
+

2γn
1 + (1− ε)αn

‖Snxn − xn‖

+
2(1− γn)

1 + (1− ε)αn
‖Tnxn − xn‖

for all n ≥ N . Using (A4) and (3.2), we obtain lim
n→∞

‖xn+1 − xn‖ = 0.
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Step (III): We will show that lim
n→∞

‖xn−T (xn)‖ = 0 and lim
n→∞

‖xn−S(xn)‖ = 0.

For each n ∈ N with n ≥ 2, we have

‖xn − Tn−1(xn)‖

=
∥∥∥αn−1f(xn−1) + βn−1T

n−1
(
xn−1 + xn

2

)
+γn−1S

n−1
(
xn−1 + xn

2

)
− Tn−1(xn)

∥∥∥
≤ αn−1

∥∥f(xn−1)− Tn−1(xn−1)
∥∥

+βn−1

∥∥∥∥Tn−1(xn−1 + xn
2

)
− Tn−1(xn−1)

∥∥∥∥
+γn−1

∥∥∥∥Sn−1(xn−1 + xn
2

− Sn−1(xn−1)

)∥∥∥∥
+
∥∥(αn−1 + βn−1)Tn−1(xn−1) + γn−1S

n−1(xn−1)− Tn−1(xn)
∥∥

≤ αn−1M1 + (βn−1 + γn−1) kn−1

∥∥∥∥(xn−1 + xn
2

)
− xn−1

∥∥∥∥
+
∥∥(1− γn−1)Tn−1(xn−1) + γn−1S

n−1(xn−1)− Tn−1(xn)
∥∥

= αn−1M1 +
(1− αn−1) kn−1

2
‖xn − xn−1‖

+
∥∥Tn−1(xn−1)− Tn−1(xn) + γn−1

(
Sn−1(xn−1)− Tn−1(xn−1)

)∥∥
≤ αn−1M1 +

(1− αn−1) kn−1
2

‖xn − xn−1‖+ kn−1 ‖xn−1 − xn‖

+γn−1
∥∥Sn−1(xn−1)− Tn−1(xn−1)

∥∥
= αn−1M1 +

(3− αn−1) kn−1
2

‖xn − xn−1‖

+γn−1
∥∥Sn−1(xn−1)− Tn−1(xn−1)

∥∥ .
Using (3.2), (3.6) and the condition (A4), we obtain

lim
n→∞

‖xn − Tn−1(xn)‖ = 0. (3.8)

Moreover, we have

‖xn − T (xn)‖ ≤ ‖xn − Tn(xn)‖+ ‖Tn(xn)− T (xn)‖
≤ ‖xn − Tn(xn)‖+ k1‖Tn−1(xn)− xn‖

for all n ∈ N.

By using (3.2) and (3.8), we conclude that

lim
n→∞

‖xn − T (xn)‖ = 0. (3.9)

Similarly, also we can obtain the following result.

lim
n→∞

‖xn − S(xn)‖ = 0. (3.10)
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Step (IV): In this step, we will show that ωw(xn) ⊆ Fix(S) ∩ Fix(T ), where

ωw(xn) := {x ∈ H : there exist a subsequence of {xn}converges weakly to x}.

Suppose that x ∈ ωw(xn). Then there exists a subsequence {xni
} of {xn}

such that xni
⇀ x as i→∞. From (3.9), we have

lim
i→∞

‖(I − T )xni
‖ = lim

n→∞
‖xni

− Txni
‖ = 0.

This implies that {(I − T )xni} converges strongly to 0. By using Lemma
2.5, we have Tx = x and so x ∈ Fix(T ). From (3.10), we have

lim
i→∞

‖(I − S)xni‖ = lim
n→∞

‖xni − Sxni‖ = 0.

This implies that {(I − S)xni
} converges strongly to 0. By using Lemma

2.5, we have Sx = x and so x ∈ Fix(S). Therefore, we can conclude that
x ∈ Fix(S) ∩ Fix(T ) and then ωw(xn) ⊆ Fix(S) ∩ Fix(T ).

Step (V): In this step, we will show that

lim sup
n→∞

〈z − f(z), z − xn〉 ≤ 0, (3.11)

where z ∈ U is the unique fixed point of PU ◦ f , that is, z = PU (f(z)).
Since {xn} is bounded, there exists a subsequence {xni

} of {xn} such that
xni

⇀ x̄ as i→∞ for some x̄ ∈ H and

lim sup
n→∞

〈z − f(z), z − xn〉 = lim
i→∞
〈z − f(z), z − xni

〉. (3.12)

From Step (IV), we get x̄ ∈ U . By using (2.1), we obtain

lim sup
n→∞

〈z − f(z), z − xn〉 = lim
i→∞
〈z − f(z), z − xni〉 = 〈z − f(z), z − x̄〉 ≤ 0.

Step (VI): In this step, we will show that xn → z as n → ∞, where z is the
common fixed point of S and T . Suppose that z ∈ Fix(S) ∩ Fix(T ) and
then z is also the unique fixed point of the contraction mapping PU ◦ f or
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in other words, z = PUf(z). For each n ∈ N, we have

‖xn+1 − z‖2

=
∥∥∥αnf(xn) + βnT

n
(xn + xn+1

2

)
+ γnS

n
(xn + xn+1

2

)
− z
∥∥∥2

=
∥∥∥αn (f(xn)−z) + βn

(
Tn
(xn+xn+1

2

)
−z
)
+ γn

(
Sn
(xn+xn+1

2

)
−z
)∥∥∥2

≤ α2
n ‖f(xn)−z‖2 + β2

n

∥∥∥Tn (xn+xn+1

2

)
−z
∥∥∥2 + γ2

n

∥∥∥Sn (xn+xn+1

2

)
−z
∥∥∥2

+2αnβn
〈
f(xn)− z, Tn

(xn + xn+1

2

)
− z
〉

+2βnγn
〈
Tn
(xn + xn+1

2

)
− z, Sn

(xn + xn+1

2

)
− z
〉

+2αnγn
〈
f(xn)− z, Sn

(xn + xn+1

2

)
− z
〉

≤ α2
n ‖f(xn)− z‖2 + β2

nk
2
n

∥∥∥xn + xn+1

2
− z
∥∥∥2 + γ2

nk
2
n

∥∥∥xn + xn+1

2
− z
∥∥∥2

+2αnβn
〈
f(xn)− f(z), Tn

(xn + xn+1

2

)
− z
〉

+2αnβn
〈
f(z)− z, Tn

(xn + xn+1

2

)
− z
〉

+2βnγn

∥∥∥Tn (xn + xn+1

2

)
− z
∥∥∥ ∥∥∥Sn (xn + xn+1

2

)
− z
∥∥∥

+2αnγn
〈
f(xn)− f(z), Sn

(xn + xn+1

2

)
− z
〉

+2αnγn
〈
f(z)− z, Sn

(xn + xn+1

2

)
− z
〉

≤ α2
n ‖f(xn)− z‖2 +

(
β2
n + γ2

n

)
k2n

∥∥∥xn + xn+1

2
− z
∥∥∥2

+2βnγnk
2
n

∥∥∥xn + xn+1

2
− z
∥∥∥2

+2αnβn ‖f(xn)− f(z)‖
∥∥∥Tn (xn + xn+1

2

)
− z
∥∥∥

+2αnβn
〈
f(z)− z, Tn

(xn + xn+1

2

)
− z
〉

+2αnγn ‖f(xn)− f(z)‖
∥∥∥Sn (xn + xn+1

2

)
− z
∥∥∥

+2αnγn
〈
f(z)− z, Sn

(xn + xn+1

2

)
− z
〉

≤ α2
n ‖f(xn)− z‖2 + (1− αn)2k2n

∥∥∥xn + xn+1

2
− z
∥∥∥2

+2αnβnαkn ‖xn − z‖
∥∥∥xn + xn+1

2
− z
∥∥∥

+2αnβn
〈
f(z)− z, Tn

(xn + xn+1

2

)
− z
〉

+2αnγnαkn ‖xn − z‖
∥∥∥xn + xn+1

2
− z
∥∥∥

+2αnγn
〈
f(z)− z, Sn

(xn + xn+1

2

)
− z
〉

= α2
n ‖f(xn)− z‖2 + (1− αn)2k2n

∥∥∥xn + xn+1

2
− z
∥∥∥2

+2ααn(1− αn)kn ‖xn − z‖
∥∥∥xn + xn+1

2
− z
∥∥∥

+2αnβn
〈
f(z)− z, Tn

(xn + xn+1

2

)
− z
〉

+2αnγn
〈
f(z)− z, Sn

(xn + xn+1

2

)
− z
〉

≤ (1− αn)2k2n
4

(
‖xn − z‖2 + 2 ‖xn − z‖ ‖xn+1 − z‖+ ‖xn+1 − z‖2

)
+ααn(1− αn)kn ‖xn − z‖ (‖xn − z‖+ ‖xn+1 − z‖) + hn, (3.13)
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where

hn := α2
n ‖f(xn)− z‖2 + 2αnβn

〈
f(z)− z, Tn

(
xn + xn+1

2

)
− z
〉

+2αnγn

〈
f(z)− z, Sn

(
xn + xn+1

2

)
− z
〉
. (3.14)

From (3.13) and the fact that

2‖xn − z‖‖xn+1 − z‖ ≤ ‖xn − z‖2 + ‖xn+1 − z‖2

for all n ∈ N, we obtain

‖xn+1 − z‖2 ≤
(1− αn)2k2n

4

(
2 ‖xn − z‖2 + 2 ‖xn+1 − z‖2

)
+ ααn(1− αn)kn

(
‖xn − z‖2 + ‖xn − z‖ ‖xn+1 − z‖

)
+ hn

≤ (1− αn)2k2n
2

(
‖xn − z‖2 + ‖xn+1 − z‖2

)
+ ααn(1− αn)kn

(
‖xn − z‖2 +

1

2
‖xn − z‖2 +

1

2
‖xn+1 − z‖2

)
+ hn

=
(1− αn)2k2n + 3ααn(1− αn)kn

2
‖xn − z‖2

+
(1− αn)2k2n + ααn(1− αn)kn

2
‖xn+1 − z‖2 + hn.

It implies that

2− (1− αn)2k2n − ααn(1− αn)kn
2

‖xn+1 − z‖2

≤ (1− αn)2k2n + 3ααn(1− αn)kn
2

‖xn − z‖2 + hn (3.15)

for all n ∈ N. From (3.12), kn ∈ [1,∞), k2n− 1 ≤ 2εαn and kn− 1 ≤ εαn
for all n ≥ N , we have

2 − (1 − αn)
2
k
2
n − ααn(1 − αn)kn ≥ 2 − (1 − αn)

2
(1 + 2εαn) − ααn(1 − αn)(1 + εαn),

(1 − αn)
2
k
2
n + 3ααn(1 − αn)kn ≤ (1 − αn)

2
(1 + 2εαn) + 3ααn(1 − αn)(1 + εαn)

}
(3.16)

for all n ≥ N . Substituting (3.16) into (3.15) then it turns out that

‖xn+1 − z‖2 ≤
(1− αn)2(1 + 2εαn) + 3ααn(1− αn)(1 + εαn)

2− (1− αn)2(1 + 2εαn)− ααn(1− αn)(1 + εαn)
‖xn − z‖2

+ λn (3.17)

for all n ≥ N , where

λn :=
2hn

2− (1− αn)2(1 + 2εαn)− ααn(1− αn)(1 + εαn)
.
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Let us consider the function g : (0,∞)→ R defined by

g(t) :=
1

t

{
1− (1− t)2(1 + 2εt) + 3αt(1− t)(1 + εt)

2− (1− t)2(1 + 2εt)− αt(1− t)(1 + εt)

}
for all t > 0. After certain manipulations and simplification, we obtain
lim
t→0

g(t) = 4(1− α− ε) > 0. Let δ0 > 0. There exists ε0 := 3(1− α− ε) > 0

such that g(t) > ε0, 0 < t < δ0. Thus, we have

(1− t)2(1 + 2εt) + 3αt(1− t)(1 + εt)

2− (1− t)2(1 + 2εt)− αt(1− t)(1 + εt)
< 1− ε0t, 0 < t < δ0 (3.18)

Since αn → 0 as n→∞, there exists an integer N1 ∈ N such that αn < δ0
for all n ≥ N1. From (3.17) and (3.18) we obtain,

‖xn+1 − z‖2 ≤ (1− ε0αn)‖xn − z‖2 + λn. (3.19)

From the definition hn of (3.14) and (3.11), it turns out that lim sup
n→∞

hn

αn
≤ 0,

which implies that

lim sup
n→∞

λn
αn
≤ 0 (3.20)

Finally, we use the conditions (A3), (A4) and (3.20) to apply Lemma 2.6
to the inequality (3.19), we conclude that lim

n→∞
‖xn − z‖2 = 0, this implies

that xn → z as n→∞. This completes the proof.

The following result is derived from Theorem 3.1 immediately.

Theorem 3.2. Let C be a nonempty closed convex subset a real Hilbert space
H, T : C → C be a asymptotically nonexpansive mapping with Fix(T ) 6= ∅ and
f : C → C be a contraction mapping with the contractive constant α ∈ [0, 1).
Define a sequence {xn} in C as follows:

x1 ∈ C,

xn+1 = αnf(xn) + (1− αn)Tn
(
xn + xn+1

2

)
∀n ∈ N,

 (3.21)

where {αn} ⊆ (0, 1) is a sequence satisfying the following conditions:

(A1) lim
n→∞

αn = 0;

(A2)
∞∑
n=0

αn =∞.

Suppose that (1− αn)kn ≤ 2 for all n ∈ N and lim
n→∞

‖Tnxn − xn‖ = 0. Then the

sequence {xn} defined by (3.21) strongly converges to a fixed point z of T , which
is also the unique solution of the following variational inequality
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〈(I − f)x, y − x〉 ≥ 0 ∀y ∈ Fix(T ).

In other word, z is the unique fixed point of the contraction PFix(T )f , that is,
PFix(T )f(z) = z.

Proof. By taking S = T and βn = 0 and γn = 1 − αn for all n ∈ N in Theorem
3.1, we get this result.

Next, we give the another obtained result from Theorem 3.1 which is the main
tool for applying various applications in the next section.

Theorem 3.3. Let C be a nonempty closed convex subset a real Hilbert space H,
T : C → C be a nonexpansive mapping with Fix(T ) 6= ∅ and f : C → C be a
contraction mapping with the contractive constant α ∈ [0, 1). Define a sequence
{xn} in C as follows:

x1 ∈ C,

xn+1 = αnf(xn) + (1− αn)Tn
(
xn + xn+1

2

)
∀n ∈ N,

 (3.22)

where {αn} ⊆ (0, 1) is a sequence satisfying the following conditions:

(A1) lim
n→∞

αn = 0;

(A2)
∞∑
n=0

αn =∞.

Then the sequence {xn} defined by (3.22) strongly converges to a fixed point z of
T , which is also the unique solution of the following variational inequality

〈(I − f)x, y − x〉 ≥ 0 ∀y ∈ Fix(T ).

In other word, z is the unique fixed point of the contraction PFix(T )f , that is,
PFix(T )f(z) = z.

Proof. By taking S = T and βn = 0 and γn = 1 − αn for all n ∈ N in Theorem
3.1, it is sufficient to prove that the following condition is satisfied:

lim
n→∞

‖xn − Tnxn‖ = 0.

We can use the same technique of the Theorem 3.1 for proving ‖xn+1 − xn‖ → 0
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as n→∞ and {f(xn)}, {Tn(xn)} are bounded. Therefore we have

‖xn − Tnxn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − Tnxn‖

≤ ‖xn − xn+1‖+

∥∥∥∥αnf(xn) + (1− αn)Tn
(
xn + xn+1

2

)
− Tnxn

∥∥∥∥
≤ ‖xn − xn+1‖+ αn ‖f(xn)− Tn(xn)‖

+ (1− αn)

∥∥∥∥Tn(xn + xn+1

2

)
− Tnxn

∥∥∥∥
≤ ‖xn − xn+1‖+ αn ‖f(xn)− Tn(xn)‖+

(1− αn)

2
‖xn+1 − xn‖

≤ (3− αn)

2
‖xn+1 − xn‖+ αnM,

where M := sup
n∈N
{‖f(xn)− Tn(xn)‖} <∞. By taking the limit as n→∞ in the

above inequality, we get lim
n→∞

‖xn − Tnxn‖ = 0. This completes the proof.

Now we give an open question whether Theorem 3.1 holds whenever we change
some condition, that is, we have the following:

Open Question: Let C be a nonempty closed convex subset a real Hilbert
space H, T : C → C and S : C → C be two asymptotically nonexpansive mappings
with the same sequence {kn} ⊆ [1,∞) such that limn→∞ kn = 1, U := Fix(T ) ∩
Fix(S) 6= ∅ and f : C → C be a contraction mapping with the contractive constant
α ∈ [0, 1). Define a sequence {xn} in C as follows:

x1 ∈ C,

xn+1 = αnf(xn) + βnT
n

(
xn + xn+1

2

)
+ γnS

n

(
xn + xn+1

2

)
∀n ∈ N,

(3.23)

where {αn}, {βn}, {γn} ⊆ (0, 1) are sequences satisfying the following conditions:

(A1) αn + βn + γn = 1;

(A2) lim
n→∞

k2n−1
αn

= 0;

(A3)
∞∑
n=0

αn =∞;

(A4) and lim
n→∞

γn = 1 and lim
n→∞

αn = lim
n→∞

βn = 0.

Suppose that (1 − αn)kn ≤ 2 for all n ∈ N and lim
n→∞

‖Tnxn − Snxn‖ = 0. Is it

possible that the sequence {xn} defined by (3.23) converges strongly to a common
fixed point of S and T?
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4 Applications

In this section, we present the applications of the results in the previous section.
These applications are related to variational inequality problems, constrained con-
vex minimization problems, Fredholm integral equations and nonlinear evolution
equations.

4.1 Variational Inequality Problems

Let C be a closed convex subset of a real Hilbert space H and A : C → H
be a given operator. Let us consider the variational inequality problem (in short,
VIP) as follows:

finding x∗ ∈ C such that 〈Ax∗, x− x∗〉 ≥ 0 ∀x ∈ C. (4.1)

Note that the variational inequality problem (4.1) is equivalent to the fixed point
problem

Tx∗ = x∗,

where T := PC(I − λA) and λ > 0. If A is an L-Lipschitzian mapping and
A is a strongly monotone mapping, for small enough λ > 0, T is a contraction
mapping. So we can apply the Picard iteration for finding the unique fixed point
of T which is also the unique solution of the VIP (4.1). However, if A is a θ-
inverse strongly monotone mapping and A is an L-Lipschitzian mapping, then
PC(I − λA) is a nonexpansive mapping provided that λ ∈ (0, 2θ). Therefore, we
can apply Theorem 3.3 for finding a solution of VIP (4.1) as follows.

Theorem 4.1. Let C be a nonempty closed convex subset C of a real Hilbert space
H, A : C → H be a θ-inverse strongly monotone maping for some θ > 0, A is an
L-Lipschitzian mapping and λ ∈ (0, 2θ). Suppose that f : C → C is a contraction
mapping with the contractive constant α ∈ [0, 1). A sequence {xn} define by as
follows:

x1 ∈ C,

xn+1 = αnf(xn) + (1− αn)[PC(I − λA)]n
(
xn + xn+1

2

)
∀n ∈ N,


where {αn} ⊆ (0, 1) is a sequence satisfying the conditions (A1) and (A2) of
Theorem 3.3. Then the sequence {xn} strongly convergence to a solution x∗ of the
VIP (4.1). Also, x∗ solves the following variational inequality

〈(I − f)x∗, x− x∗〉 ≥ 0 ∀x ∈ A−1(0).

4.2 Constrained Convex Minimization Problems

Consider the following constrained convex minimization problem:

min
x∈C

φ(x), (4.2)
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where C is a closed convex subset of a real Hilbert space H and φ : C → R is a
lower semicontinuous convex function and it is Frechet differentiable. Note that
the constrained convex minimization problem (4.2) to the fixed point problem

Tx∗ = x∗,

where T := PC(I−λ∇φ) and λ > 0. Furthermore, PC(I−λ∇φ) is a nonexpansive
mapping provided that∇φ is an L-Lipschitzian mapping,∇φ is a θ-inverse strongly
monotone mapping and λ ∈ (0, 2θ). Thus, we can apply Theorem 3.3 to find the
solution of the constrained convex minimization problem (4.2) as follows.

Theorem 4.2. Let C be a nonempty closed convex subset of a real Hilbert space
H. Assume that φ : C → R is Frechet differentiable, ∇φ is an L-Lipschitzian
mapping, ∇φ is a θ-inverse strongly monotone mapping and λ ∈ (0, 2θ). Suppose
that f : C → C is a contraction mapping with the contractive constant α ∈ [0, 1).
Define a sequence {xn} as follows:

x1 ∈ C,

xn+1 = αnf(xn) + (1− αn)[PC(I − λ∇φ)]n
(
xn + xn+1

2

)
∀n ∈ N,


where {αn} ⊆ (0, 1) is a sequence satisfying the conditions (A1) and (A2) of Theo-
rem 3.3. Then the sequence {xn} strongly converges to a solution x∗ of constrained
convex minimization problem (4.2). Also, x∗ solves the following variational in-
equality

〈(I − f)x∗, x− x∗〉 ≥ 0 ∀x ∈ (∇φ)−1(0).

4.3 Fredholm Integral Equations

Consider the Fredholm integral equation

x(t) = g(t) +

∫ 1

0

F (t, s, x(s))ds, t ∈ [0, 1], (4.3)

where x ∈ L2[0, 1] is an unknown function, g is a continuous function on [0, 1] and
F : [0, 1]× [0, 1]× R→ R is continuous and satisfies the following condition:

|F (t, s, a)− F (t, s, b)| ≤ |a− b|

for all t, s ∈ [0, 1] and a, b ∈ R. Define a mapping T : L2[0, 1]→ L2[0, 1] by

(Tx)(t) = g(t) +

∫ 1

0

F (t, s, x(s))ds, t ∈ [0, 1]

for all x ∈ L2[0, 1]. It is easy to see that T is a nonexpansive mapping. Further-
more, the solution of an integral equation (4.3) is equivalence to a fixed point of
nonexpansive mapping T . Therefore, we can apply Theorem 3.3 for finding the
solution of an integral equation (4.3) as follows.
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Theorem 4.3. Let us consider g, F, T and L2[0, 1] define same as above. Suppose
that f : L2[0, 1]→ L2[0, 1] is a contraction mapping with the contractive constant
α ∈ [0, 1). Define a sequence {xn} in L2[0, 1] as follows:

x1 ∈ L2[0, 1],

xn+1 = αnf(xn) + (1− αn)Tn
(
xn + xn+1

2

)
∀n ∈ N,


where {αn} ⊆ (0, 1) is a sequence satisfying the conditions (A1) and (A2) of
Theorem 3.3. Then the sequence {xn} strongly converges to a solution x∗ of the
Fredholm integral equation (4.3). Also, x∗ solves the following variational inequal-
ity

〈(I − f)x∗, x− x∗〉 ≥ 0 ∀x ∈ Fix(T ).

4.4 Nonlinear Evolution Equations

Let us consider the time-dependent nonlinear evolution equation in a real
Hilbert space H as follows:

du

dt
+A(t)u = f(t, u), t > 0, (4.4)

where A(t) is a family of closed linear operators in H and f : R × H → H is a
given operator. The following existence result of a periodic solution of a nonlinear
evolution equation (4.4) is proved by Browder [11] in 1965.

Theorem 4.4. Consider the time-dependent nonlinear equation of the evolution
(4.4). Assume that A(t) and f(t, u) are periodic in t with a common period ξ > 0
and the following assumptions hold.

(i) For each t and each pair u and v in H, we get

〈f(t, u)− f(t, v), u− v〉 ≤ 0.

(ii) For each t and u in D(A(t)), we have 〈A(t)u, u〉 ≥ 0.

(iii) There exists a mild solution u of an equation (4.4) on R+ with the initial
value v ∈ H. Recall that u is a mild solution of an equation (4.4) on R+

with the initial value u(0) = v if and only if for each t > 0, we have

u(t) = U(t, 0)v +

∫ t

0

U(t, s)f(s, u(s))ds,

where {U(t, s)}t≥s≥0 is the evolution system for the homogeneous linear sys-
tem

du

dt
+A(t)u = 0, (t > s).

(iv) There exists R > 0 such that 〈f(t, u), u〉 < 0 for ‖ u ‖= R and all t in [0, ξ].
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Then there exists an element v of H with ‖ u ‖< R such that the mild solution of
nonlinear evolution equation (4.4) with initial condition u(0) = v, is periodic of
period ξ.

Consider the time-dependent nonlinear evolution equation (4.4). If we define
a mapping T : H → H by

T (v) = u(ξ) for all v ∈ H,

where u is the solution of (4.4) which satisfy u(0) = v. From [11], T is a nonex-
pansive mapping. Also, if (iv) holds, then T is a self mapping on the closed ball
B := {v ∈ H :‖ v ‖≤ R}. Consequently, T has a fixed point in B which we denote
by v and the corresponding solution of u of (4.4) with u(0) = v is the desired pe-
riodic solution of (4.4) with period ξ. In other word, to find a periodic solution of
the time-dependent nonlinear evolution equation (4.4) is equivalent to find a fixed
point of T . Therefore, we can use Theorem 3.22 for finding the periodic solution
of a nonlinear evolution equation (4.4). Thus, the following algorithm:

v1 ∈ B,

vn+1 = αnf(vn) + (1− αn)[PC(I − λA)]n
(
vn + vn+1

2

)
∀n ∈ N,

 (4.5)

where {αn} is a sequence satisfying the conditions (A1) and (A2) of Theorem 3.3,
converges weakly to a fixed point v of T and then the corresponding mild solution
u of (4.4) with u(0) = ξ is a periodic solution of (4.4).
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