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1 Introduction

Censor et al. [1] introduced the multiple-sets feasibility problem (MSFP) which
is formulated as the problem of finding a point x∗ such that

x∗ ∈ C :=

t⋂
i=1

Ci, Ax
∗ ∈ Q :=

r⋂
j=1

Qj , (1.1)
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where t ≥ 1 and r ≥ 1 are given integers, A is a given M × N real matrix, and
{Ci}ti=1 and {Qj}rj=1 are closed convex subsets of RN and RM , respectively. If
t = r = 1, then (1.1) becomes the split feasibility problem (SFP) studied in [2].

In this work, we assume that the MSFP (1.1) is consistent i.e. its solution set,
denoted by S, is nonempty. We know that the MSFP is equivalent to the following
minimization problem:

min
1

2
‖x− PC(x)‖2 +

1

2
‖Ax− PQ(Ax)‖2, (1.2)

where PC and PQ are the orthogonal projections onto C and Q, respectively. How-
ever, it should be noted that the projections onto the sets C and Q are usually
difficult to be calculated in general.

In order to solve MSFP, Censor et al. [1] defined the following proximity func-
tion :

p(x) :=
1

2

t∑
i=1

li‖x− PCi
(x)‖2 +

1

2

r∑
j=1

λj‖Ax− PQj
(Ax)‖2, (1.3)

where li(i = 1, ..., t) and λj(j = 1, ..., r) are all positive constants such that

t∑
i=1

li+

r∑
j=1

λj = 1. In this case, they obtained the following:

∇p(x) :=

t∑
i=1

li(x− PCi(x)) +

r∑
j=1

λjA
∗(I − PQj )Ax, (1.4)

where ∇p(x) is a gradient of p at x. They considered the following problem:

find x∗ ∈ Ω such that x∗ solves (1.1), (1.5)

where Ω ⊆ RN is a nonempty, closed and convex set such that Ω
⋂
S 6= ∅. They

proposed the following projection algorithm:

xn+1 = PΩ(xn − s∇p(xn)), (1.6)

where s is a step size. It was proved that if 0 < sL ≤ s ≤ sU < 2
L , with L being

the Lipschitz constant of ∇p, then the sequence (xn) converges to a solution of
(1.5). However, in general the Lipschitz constant L may be computed very hard.

Subsequently, MSFP and SFP are investigated in a more general setting (see
[3]- [18]) for example, Zhang et al. [19] proposed a self-adaptive projection method
for solving the MSFP in Hilbert spaces. Recently, López et al. [20] proposed
the iterative scheme for the split feasibility problem without prior knowledge of
operator norms.

Set fn(x) =
1

2
‖(I − PQn

)Ax‖2 and ∇fn(x) = A∗(I − PQn
)Ax. Define

τn =
ρnfn(xn)

‖∇fn(xn)‖2
, 0 < ρn < 4. (1.7)
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Algorithm 1.1. Choose an arbitrary initial guess x0. Assume xn has been con-
structed. If ∇fn(xn) = 0, then stop; otherwise, continue and construct xn+1 by
the following manner:

xn+1 = PCn
(xn − τn∇fn(xn)), (1.8)

where Cn = {x ∈ H : c(xn) ≤ 〈ξn, xn−x〉}, ξn ∈ ∂c(xn); Qn = {y ∈ K : q(Axn) ≤
〈ζn, Axn−y〉}, ζn ∈ ∂q(Axn). Let H and K be real Hilbert spaces and A : H → K
a bounded linear operator and A∗ denotes its adjoint.

López et al. [20] proved that the sequence (xn) generated by Algorithm 1.1
converges weakly to a solution of the SFP under some certain conditions. We
observe that the projections onto half-spaces Cn and Qn have closed forms and
τn is obtained adaptively via the formula (1.7). Hence the above relaxed CQ
Algorithm 1.1 is implementable.

Recently, He et al. [21] introduced a new relaxed CQ algorithm for solving
the MSFP (1.1), and proved the strong convergence by using the Halpern-type
algorithm in real Hilbert spaces.

Algorithm 1.2. Let u ∈ H, and start an initial guess x0 ∈ H arbitrarily. Assume
that the nth iterate (xn) has been constructed. If ∇pn(xn) = 0, then stop (xn)
is a approximate solution of MSFP(1.1). Otherwise continue and calculate the
(n+ 1)th iterate xn+1 by the following manner:

xn+1 = αnu+ (1− αn)(xn − τn∇pn(xn)), (1.9)

where (αn) ⊂ (0, 1),∇pn is given as (1.4), τn =
ρnpn(xn)

‖∇pn(xn)‖2
, 0 < ρn < 4.

In this paper, we introduce a new relaxed CQ algorithm for solving the multiple-
sets feasibility problem and the fixed point problem in Hilbert spaces. We prove its
weak and strong convergence theorems under some suitable conditions. Finally, we
provide numerical experiments to show the efficiency of the proposed algorithm.

2 Preliminaries

Let H and K be real Hilbert spaces. In what follows, we will use the following
notations:
• → denotes strong convergence.
• ⇀ denotes weak convergence.
• ωw(xn) = {x|∃(xnk

) ⊂ (xn) such that xnk
⇀ x} denotes the weak ω− limit

set of (xn).

Recall that a mapping T : H → H is said to be nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ H. (2.1)
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A mapping T : H → H is said to be firmly nonexpansive if, for all x, y ∈ H,

‖Tx− Ty‖2 ≤ ‖x− y‖2 − ‖(I − T )x− (I − T )y‖2. (2.2)

A point x ∈ H is said to be a fixed point of T if

T (x) = x. (2.3)

We denote its solutions set by F (T ).
A mapping f : H → H is said to be a contraction on H if there exists a constant
a ∈ (0, 1) such that

‖f(x)− f(y)‖ ≤ a‖x− y‖, ∀x, y ∈ H. (2.4)

Recall that a function f : H → R is convex if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y), ∀λ ∈ (0, 1),∀x, y ∈ H. (2.5)

A differentiable function f is convex if and only if there holds the inequality:

f(z) ≥ f(x) + 〈∇f(x), z − x〉, ∀z ∈ H. (2.6)

Recall that an element g ∈ H is said to be a subgradient of f : H → R at x if

f(z) ≥ f(x) + 〈g, z − x〉, ∀z ∈ H. (2.7)

This relation is called the subdifferentiable inequality.
A function f : H → R is said to be subdifferentiable at x, if it has at least

one subgradient at x. The set of subgradients of f at the point x is called the
subdifferentiable of f at x, and it is denoted by ∂f(x). A function f is called
subdifferentiable, if it is subdifferentiable at all x ∈ H. If a function f is differen-
tiable and convex, then its gradient and subgradient coincide.

A function f : H → R is said to be weakly lower semi-continuous (w-lsc)
at x if xn ⇀ x implies

f(x) ≤ lim inf
n→∞

f(xn). (2.8)

A mapping T : H → H is demiclosed (at y) if T (x) = y whenever (xn) ⊂ H
with xn ⇀ x and T (xn) → y. It is well-known that if T is nonexpansive, then it
is demiclosed in real Hilbert spaces.

We know that the orthogonal projection PC from H onto a nonempty closed
convex subset C ⊂ H is a typical example of a firmly nonexpansive mapping,
which is defined by

PCx := arg min
y∈C
‖x− y‖2, x ∈ H. (2.9)

We know that PCx satisfies the following inequality (for x ∈ H)

〈x− PCx, y − PCx〉 ≤ 0, ∀y ∈ C. (2.10)
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Lemma 2.1. [1] Let {Ci}ti=1 and {Qj}rj=1 be closed convex subsets of H and K,
respectively and A : H → K a bounded linear operator. Let p(x) be the function de-

fined as in (1.3). Then ∇p(x) is Lipschitz continuous with L :=

t∑
i=1

li+‖A‖2
r∑
j=1

λj

as the Lipschitz constant.

Lemma 2.2. [22] Let T : H → H be an operator. The following statements are
equivalent.

(i) T is firmly nonexpansive;
(ii) ‖Tx− Ty‖2 ≤ 〈x− y, Tx− Ty〉 ∀x, y ∈ H;
(iii) I − T is firmly nonexpansive.

Lemma 2.3. [23, 24] Let (an) and (cn) be sequences of nonnegative real numbers
such that

an+1 ≤ (1− δn)an + bn + cn, n ≥ 1, (2.11)

where (δn) is a sequence in (0, 1) and (bn) is a real sequence. Assume

∞∑
n=1

cn <∞.

Then the following results hold:
(i) If bn ≤ δnM for some M ≥ 0, then (an) is a bounded sequence.

(ii) If

∞∑
n=1

δn =∞ and lim sup
n→∞

bn/δn ≤ 0, then lim
n→∞

an = 0.

Lemma 2.4. [25] Let (sn) be a sequence of real numbers that does not decrease
at infinity in the sense that there exists a subsequence (sni) of (sn) which satisfies
sni < sni+1 for all i ∈ N. Define the sequence (ψ(n))n≥n0 of integers as follows:

ψ(n) = max{k ≤ n : sk < sk+1}, (2.12)

where n0 ∈ N such that {k ≤ n0 : sk < sk+1} 6= ∅. Then, the following hold:
(i) ψ(n0) ≤ ψ(n0 + 1) ≤ ... and ψ(n)→∞;
(ii) sψ(n) ≤ sψ(n)+1 and sn ≤ sψ(n)+1, ∀n ≥ n0.

Recall that a sequence (xn) ⊂ H is said to be Fejér monotone with respect to
a nonempty closed convex subset C in H if

‖xn+1 − z‖ ≤ ‖xn − z‖, ∀n ≥ 1, ∀z ∈ C. (2.13)

Lemma 2.5. [20] Let C be a nonempty closed convex subset in H. If the sequence
(xn) is F éjer monotone with respect to C, then the following hold:

(i) xn ⇀ x∗ ∈ C if and only if ωw(xn) ⊂ C;
(ii) the sequence (PCxn) converges strongly;
(iii) if xn ⇀ x∗ ∈ C, then x∗ = lim

n→∞
PCxn.
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3 Main Results

3.1 Strong Convergence Theorem

In this section, we prove strong convergence theorem for the MSFP and the
fixed point problem for nonexpansive mappings. Let Ci(i = 1, . . . , t) and Qj(j =
1, . . . , r) be defined by

Ci = {x ∈ H : ci(x) ≤ 0}, Qj = {y ∈ K : qj(y) ≤ 0}, (3.1)

where ci : H → R, i = 1, . . . , t, and qj : K → R, j = 1, . . . , r, are convex functions.
We assume that ci(i = 1, . . . , t) and qj(j = 1, . . . , r) are subdifferentiable on H
and K, respectively, and that ∂ci(i = 1, . . . , t) and ∂qj(j = 1, . . . , r) are bounded
operators (i.e. bounded on bounded sets). By the way, we mention that every
convex function defined on a finite-dimensional Hilbert space is subdifferentible
and its subdifferential operator is a bounded operator (see [26]).

Set

Cni = {x ∈ H : ci(xn) ≤ 〈ξni , xn − x〉}, (3.2)

where ξni ∈ ∂ci(xn) for i = 1, . . . , t, and

Qnj = {y ∈ K : qj(Axn) ≤ 〈ζnj , Axn − y〉}, (3.3)

where ζnj ∈ ∂qj(Axn) for j = 1, . . . , r.

We see that Cni (i = 1, . . . , t) and Qnj (j = 1, . . . , r) are half-spaces. We define
the following function:

pn(x) :=
1

2

t∑
i=1

li‖x− PCn
i

(x)‖2 +
1

2

r∑
j=1

λj‖Ax− PQn
j
Ax‖2, (3.4)

where Cni (i = 1, . . . , t) and Qnj (j = 1, . . . , r) are given as in (3.2) and (3.3),
respectively. So we have

∇pn(x) :=

t∑
i=1

li
(
x− PCn

i
(x)
)

+

r∑
j=1

λjA
∗(I − PQn

j

)
Ax, (3.5)

where A∗ is the adjoint operator of A.
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Algorithm 3.1. Let f : H → H be a contraction, T : H → H be a nonexpansive
mapping and start an initial guess x1 ∈ H arbitrarily. Assume that the nth iterate
xn has been constructed. If ∇pn(xn) = 0 and xn = Txn then stop. Otherwise
continue and calculate the (n+ 1)th iterate xn+1 by the following manner:

yn = αnf(xn) + (1− αn)(xn − τn∇pn(xn)),

xn+1 = βnyn + (1− βn)Tyn, n ≥ 1, (3.6)

where the sequences (αn), (βn) ⊂ (0, 1),∇pn is given as (1.4),

τn =
ρnpn(xn)

‖∇pn(xn)‖2 + ‖xn − Txn‖2
, 0 < ρn < 4.

We are now ready to prove the strong convergence theorem.

Theorem 3.2. Assume that (αn), (βn) and (ρn) satisfy the assumptions:

(a1) lim
n→∞

αn = 0 and

∞∑
n=1

αn =∞;

(a2) inf
n
ρn(4− ρn) > 0;

(a3) inf
n
βn(1− βn) > 0.

Then the sequence (xn) generated by Algorithm 3.1 converges strongly to
PS∩F (T )f(z).

Proof. We set z = PS∩F (T )f(z). Then

‖xn+1 − z‖2 = ‖βnyn + (1− βn)Tyn − z‖2

= βn‖yn − z‖2 + (1− βn)‖Tyn − z‖2

−βn(1− βn)‖(yn − z)− (Tyn − z)‖2

= βn‖yn − z‖2 + (1− βn)‖Tyn − z‖2 − βn(1− βn)‖yn − Tyn‖2

= ‖yn − z‖2 − βn(1− βn)‖yn − Tyn‖2. (3.7)

Note that I−PCn
i
, (i = 1, . . . , t) and I−PQn

j
, (j = 1, . . . , r) are firmly nonexpansive

and ∇pn(z) = 0. So by Lemma 2.2 we have

〈∇pn(xn), xn − z〉 = 〈
t∑
i=1

li(xn − PCn
i

(xn)) +

r∑
j=1

λjA
∗(I − PQn

j
)Axn, xn − z〉

=

t∑
i=1

li〈(I − PCn
i

)xn, xn − z〉

+

r∑
j=1

λj〈(I − PQn
j
)Axn, Axn −Az〉

≥
t∑
i=1

‖(I − PCn
i

)xn‖2 +

r∑
j=1

λj‖(I − PQn
j
)Axn‖2

= 2pn(xn), (3.8)
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which gives

‖xn − τn∇pn(xn)− z‖2

= ‖xn − z‖2 + ‖τn∇pn(xn)‖2 − 2τn〈∇pn(xn), xn − z〉

≤ ‖xn − z‖2 +
ρ2
np

2
n(xn)

(‖∇pn(xn)‖2 + ‖xn − Txn‖2)2
· ‖∇pn(xn)‖2

− 4ρnp
2
n(xn)

‖∇pn(xn)‖2 + ‖xn − Txn‖2

≤ ‖xn − z‖2 +
ρ2
np

2
n(xn)

‖∇pn(xn)‖2 + ‖xn − Txn‖2

− 4ρnp
2
n(xn)

‖∇pn(xn)‖2 + ‖xn − Txn‖2

= ‖xn − z‖2 − ρn(4− ρn)
p2
n(xn)

‖∇pn(xn)‖2 + ‖xn − Txn‖2
. (3.9)

Using (3.9), we have the following estimation:

‖yn − z‖2 = ‖(αnf(xn) + (1− αn)(xn − τn∇pn(xn)))− z‖2

= 〈αnf(xn) + (1− αn)(xn − τn∇pn(xn))− z, yn − z〉
= αn〈f(xn)− f(z), yn − z〉+ αn〈f(z)− z, yn − z〉

+(1− αn)〈(xn − τn∇pn(xn)− z), yn − z〉
≤ αn‖f(xn)− f(z)‖‖yn − z‖+ αn〈f(z)− z, yn − z〉

+(1− αn)‖xn − τn∇pn(xn)− z‖‖yn − z‖

≤ 1

2
αn(‖f(xn)− f(z)‖2 + ‖yn − z‖2) + αn〈f(z)− z, yn − z〉

+
1

2
(1− αn)(‖xn − τn∇pn(xn)− z‖2 + ‖yn − z‖2)

=
1

2
αn‖f(xn)− f(z)‖2 +

1

2
αn‖yn − z‖2 + αn〈f(z)− z, yn − z〉

+
1

2
(1− αn)‖xn − τn∇pn(xn)− z‖2 +

1

2
(1− αn)‖yn − z‖2

≤ 1

2
αna‖xn − z‖2 +

1

2
αn‖yn − z‖2 + αn〈f(z)− z, yn − z〉

+
1

2
(1− αn)

(
‖xn − z‖2 − ρn(4− ρn)

p2
n(xn)

‖∇pn(xn)‖2 + ‖xn − Txn‖2

)
+

1

2
(1− αn)‖yn − z‖2

=
1

2
(1− αn(1− a))‖xn − z‖2 +

1

2
‖yn − z‖2 + αn〈f(z)− z, yn − z〉

−1

2
(1− αn)ρn(4− ρn)

p2
n(xn)

‖∇pn(xn)‖2 + ‖xn − Txn‖2
. (3.10)
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It follows that

1

2
‖yn − z‖2 ≤

1

2
(1− αn(1− a))‖xn − z‖2 + αn〈f(z)− z, yn − z〉

− 1

2
(1− αn)ρn(4− ρn)

p2
n(xn)

‖∇pn(xn)‖2 + ‖xn − Txn‖2
. (3.11)

Hence

‖yn − z‖2 ≤(1− αn(1− a))‖xn − z‖2 + 2αn〈f(z)− z, yn − z〉

− (1− αn)ρn(4− ρn)
p2
n(xn)

‖∇pn(xn)‖2 + ‖xn − Txn‖2
. (3.12)

From (3.7) and (3.12), we obtain

‖xn+1 − z‖2 ≤ (1− αn(1− a))‖xn − z‖2 + 2αn〈f(z)− z, yn − z〉

−(1− αn)ρn(4− ρn)
p2
n(xn)

‖∇pn(xn)‖2 + ‖xn − Txn‖2

−βn(1− βn)‖yn − Tyn‖2. (3.13)

Next, we will show that (xn) is bounded. We see that

‖xn+1 − z‖ = ‖βn(yn − z) + (1− βn)(Tyn − z)‖
≤ βn‖yn − z‖+ (1− βn)‖Tyn − z‖
≤ βn‖yn − z‖+ (1− βn)‖yn − z‖
= ‖yn − z‖
= ‖αnf(xn) + (1− αn)(xn − τn∇pn(xn))− z‖
≤ αn‖f(xn)− z‖+ (1− αn)‖xn − τn∇pn(xn)− z‖
≤ αn(‖f(xn)− f(z)‖+ ‖f(z)− z‖) + (1− αn)‖xn − τn∇pn(xn)− z‖
≤ αna‖xn − z‖+ αn‖f(z)− z‖+ (1− αn)‖xn − z‖

= (1− αn(1− a))‖xn − z‖+ αn(1− a) · 1

1− a
‖f(z)− z‖. (3.14)

By induction, we can show that (xn) is bounded. Using conditions (a1), (a2) and
(a3), with no loss of generality, we can assume that there exist σ, γ > 0 such that
ρn(4− ρn)(1− αn) ≥ σ and βn(1− βn) ≥ γ for all n. Setting sn = ‖xn − z‖2 by
(3.13), we have

sn+1 ≤ (1− αn(1− a))sn + 2αn〈f(z)− z, yn − z〉

− σp2
n(xn)

‖∇pn(xn)‖2 + ‖xn − Txn‖2
− γ‖yn − Tyn‖2. (3.15)

We next consider the following two cases:
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Case1 (xn) is eventually decreasing, that is there exists k ≥ 0 such that sn >
sn+1 for all n ≥ k. In this case, (sn) must be convergent, from (3.15) and using
condition (a1), we have

σp2
n(xn)

‖∇pn(xn)‖2 + ‖xn − Txn‖2
+ γ‖yn − Tyn‖2

≤ 2αn〈f(z)− z, yn − z〉 − sn+1 + (1− αn(1− a))sn

≤ 2αn〈f(z)− z, yn − z〉 − sn+1 + sn. (3.16)

Since αn → 0 and (sn) is convergent,
p2
n(xn)

‖∇pn(xn)‖2 + ‖xn − Txn‖2
→ 0 and ‖yn −

Tyn‖2 → 0. To show that pn(xn) → 0, it suffices to show that (‖∇p(xn)‖) is
bounded. In fact, by Lemma 2.1, we see that

‖∇pn(xn)‖ = ‖∇pn(xn)−∇pn(z)‖ ≤ L‖xn − z‖, (3.17)

where L =

t∑
i=1

li + ‖A‖2
r∑
j=1

λj . This implies that (‖∇pn(xn)‖) is bounded and

consequently pn(xn) → 0. Hence ‖(I − PCn
i

)xn‖ → 0(i = 1, . . . , t), and ‖(I −
PQn

j
)Axn‖ → 0(j = 1, . . . , r).

Next, we show that lim
n→∞

‖xn − Txn‖ = 0. Consider

‖xn − yn‖ = ‖xn − (αnf(xn) + (1− αn)(xn − τn∇pn(xn)))‖ (3.18)

≤ αn‖xn − f(xn)‖+ (1− αn)

∥∥∥∥ ρnpn(xn)

‖∇pn(xn)‖2 + ‖xn − Txn‖2
· ∇pn(xn)

∥∥∥∥
= αn‖xn − f(xn)‖+ (1− αn)ρnpn(xn)

(
‖∇pn(xn)‖

‖∇pn(xn)‖2 + ‖xn − Txn‖2

)
.

Hence ‖xn − yn‖ → 0 and we obtain

‖xn − Txn‖ ≤ ‖xn − yn‖+ ‖yn − Tyn‖+ ‖Tyn − Txn‖
≤ ‖xn − yn‖+ ‖yn − Tyn‖+ ‖yn − xn‖. (3.19)

Thus lim
n→∞

‖xn − Txn‖ = 0.

Since ∂qj (j = 1, . . . , r) are bounded on bounded sets, there exists a constant
η > 0 such that ‖ζnj ‖ ≤ η(j = 1, . . . , r) for all n ≥ 0. From (3.3) and PQn

j
(Axn) ∈

Qnj (j = 1, . . . , r), it follows that

qj(Axn) ≤ 〈ζnj , Axn − PQn
j
(Axn)〉 ≤ η‖(I − PQn

j
)Axn‖ → 0. (3.20)

If x∗ ∈ ωw(xn), and (xnk
) is a subsequence of (xn) such that xnk

⇀ x∗, then the
w − lsc of qj and (3.20) implies that

qj(Ax
∗) ≤ lim inf

k→∞
qj(Axnk

) ≤ 0. (3.21)
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This shows that Ax∗ ∈ Qj(j = 1, . . . , r). Next we prove that x∗ ∈ Ci(i = 1, . . . , t).
By the definition of Cni (i = 1, . . . , t), we have

ci(xn) ≤ 〈ζni , xn − PCn
i

(xn)〉 ≤ δ‖xn − PCn
i
xn‖ → 0, (n→∞), (3.22)

where δ is a constant such that ‖ζni ‖ ≤ δ(i = 1, . . . , t) for all n ≥ 0. The w − lsc
of ci(i = 1, . . . , t) also implies that

ci(x
∗) ≤ lim inf

k→∞
ci(xnk

) = 0. (3.23)

So, x∗ ∈ Ci(i = 1, . . . , t). By the demiclosedness principle, we can show that
ωw(xn) ⊂ F (T ). Hence ωw(xn) ⊂ S ∩ F (T ). Moreover, by (2.10), we obtain

lim sup
n→∞

〈f(z)− z, yn − z〉 = lim sup
n→∞

〈f(z)− z, xn − z〉

= lim
k→∞

〈f(z)− z, xnk
− z〉

= 〈f(z)− PS∩F (T )f(z), x∗ − PS∩F (T )f(z)〉
≤ 0. (3.24)

From (3.15), we have

sn+1 ≤ (1− (αn(1− a)))sn + 2αn〈f(z)− z, yn − z〉. (3.25)

By Lemma 2.3 (ii), (3.24) and (3.25), we conclude that sn → 0. Hence (xn)
converges strongly to z.

Case2 Suppose that there exists a subsequence (sni
) of the sequence (sn) such

that sni
< sni+1 for all i ∈ N. In this case, we define ψ : N → N as in (2.12).

Then, by Lemma 2.4, we have sψ(n) ≤ sψ(n)+1. From (3.16), it follows that

σp2
ψ(n)(xψ(n))

‖∇pψ(n)(xψ(n))‖2 + ‖xψ(n) − Txψ(n)‖2
+ γ‖yψ(n) − Tyψ(n)‖2

≤ 2αψ(n)〈f(z)− z, yψ(n) − z〉 − sψ(n)+1 + sψ(n) (3.26)

≤ 2αψ(n)〈f(z)− z, yψ(n) − z〉+ ‖xψ(n) − xψ(n)+1‖(
√
sψ(n) +

√
sψ(n)+1).

Hence
σp2

ψ(n)(xψ(n))

‖∇pψ(n)(xψ(n))‖2 + ‖xψ(n) − Txψ(n)‖2
→ 0 and ‖yψ(n) − Tyψ(n)‖2 → 0.

Then we have pψ(n)(xψ(n)) → 0 as n → ∞ since {‖∇pψ(n)(xψ(n))‖} is bounded.
By the same argument to the proof in Case1, we have ωw(xψ(n)) ⊂ S ∩F (T ). We
see that

‖xψ(n)+1 − xψ(n)‖ = ‖βψ(n)yψ(n) + (1− βψ(n))Tyψ(n) − xψ(n)‖
≤ βψ(n)‖yψ(n) − xψ(n)‖+ (1− βψ(n))‖Tyψ(n) − xψ(n)‖
≤ βψ(n)‖yψ(n) − xψ(n)‖+ (1− βψ(n))‖Tyψ(n) − yψ(n)‖

+ (1− βψ(n))‖yψ(n) − xψ(n)‖. (3.27)



486 Thai J. Math. 17 (2019)/ S. Kesornprom et al.

It follows that

lim
n→∞

‖xψ(n)+1 − xψ(n)‖ = 0. (3.28)

Moreover, we have

lim sup
n→∞

〈f(z)− z, yψ(n) − z〉 = lim sup
n→∞

〈f(z)− z, xψ(n) − z〉

= lim
k→∞

〈f(z)− z, xψ(nk) − z〉

= 〈f(z)− PS∩F (T )f(z), x∗ − PS∩F (T )f(z)〉
≤ 0. (3.29)

Since sψ(n) ≤ sψ(n)+1, and from (3.15) we have

αψ(n)(1− a)sψ(n) = 2αψ(n)〈f(z)− z, yψ(n) − z〉. (3.30)

It follows that

sψ(n) ≤
2

(1− a)
〈f(z)− z, yψ(n) − z〉, n > n0. (3.31)

From (3.29) and (3.31), we have

lim sup
n→∞

sψ(n) ≤ 0, (3.32)

consequently sψ(n) → 0, and (3.28) implies that

√
sψ(n)+1 ≤ ‖(xψ(n) − z) + (xψ(n)+1 − xψ(n))‖

≤ √sψ(n) + ‖xψ(n)+1 − xψ(n)‖
→ 0, as n→∞. (3.33)

From (3.28) and (3.33), we obtain sψ(n)+1 → 0. By (3.14), we conclude that
sn → 0. Therefore xn → z.

3.2 Weak Convergence Theorem

In this section, we prove the weak convergence theorem.

Algorithm 3.3. Let T : H → H be a nonexpansive mapping and start an initial
guess x1 ∈ H arbitrarily. Assume that the nth iterate xn has been constructed.
If ∇pn(xn) = 0 and xn = Txn then stop. Otherwise continue and calculate the
(n+ 1)th iterate xn+1 by the following manner:

yn = xn − τn∇pn(xn),

xn+1 = βnyn + (1− βn)Tyn, n ≥ 1, (3.34)

where (βn) ⊂ (0, 1),∇pn is given as (1.4), τn =
ρnpn(xn)

‖∇pn(xn)‖2 + ‖xn − Txn‖2
, 0 <

ρn < 4.
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Theorem 3.4. Assume that (βn) and (ρn) satisfy the assumptions:
(a1) inf

n
ρn(4− ρn) > 0;

(a2) inf
n
βn(1− βn) > 0.

Then the sequence (xn) generated by Algorithm 3.3 converges weakly to a point of
S ∩ F (T ).

Proof. Consider

‖xn+1 − z‖2 = ‖βnyn + (1− βn)Tyn − z‖2

= βn‖yn − z‖2 + (1− βn)‖Tyn − z‖2

−βn(1− βn)‖(yn − z)− (Tyn − z)‖2

≤ βn‖yn − z‖2 + (1− βn)‖yn − z‖2 − βn(1− βn)‖yn − Tyn‖2

= ‖yn − z‖2 − βn(1− βn)‖yn − Tyn‖2. (3.35)

From (3.9) we have

‖yn − z‖2 = ‖xn − τn∇pn(xn)− z‖2

≤ ‖xn − z‖2 − ρn(4− ρn)
p2
n(xn)

‖∇pn(xn)‖2 + ‖xn − Txn‖2
. (3.36)

It follows that, by (3.35) and (3.36)

‖xn+1 − z‖2 ≤‖xn − z‖2 − ρn(4− ρn)
p2
n(xn)

‖∇pn(xn)‖2 + ‖xn − Txn‖2

− βn(1− βn)‖yn − Tyn‖2. (3.37)

Thus (xn) is decreasing and hence lim
n→∞

‖xn − z‖ exists. So (xn) is a bounded

sequence. By our assumptions, there exist σ, γ > 0 such that ρn(4− ρn) ≥ σ and
βn(1− βn) ≥ γ for all n. Setting sn = ‖xn − z‖2 by (3.37) we have

σp2
n(xn)

‖∇pn(xn)‖2 + ‖xn − Txn‖2
+ γ‖yn − Tyn‖2 ≤ sn − sn+1. (3.38)

Since (sn) is convergent, so
p2
n(xn)

‖∇pn(xn)‖2 + ‖xn − Txn‖2
→ 0 and ‖yn−Tyn‖2 → 0.

This implies that pn(xn)→ 0 since (xn) is bounded.
Next we show that lim

n→∞
‖xn − Txn‖ = 0. Consider

‖yn − xn‖ = ‖xn − τn∇pn(xn)− xn‖
= τn‖∇pn(xn)‖ → 0, as n→∞. (3.39)

Hence ‖yn − xn‖ → 0 and by (3.19) we obtain lim
n→∞

‖xn − Txn‖ = 0. As the

same proof in Theorem 3.2 and by the demiclosedness principle, we can show that
ωw(xn) ⊂ S∩F (T ). Hence, by Lemma 2.5 (i), the sequence (xn) converges weakly
to a point in S ∩ F (T ).
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4 Numerical Examples

In this section, we provide some numerical examples and illustrate its per-
formance by using Algorithm 3.1 in Theorem 3.2. We present numerical results
for solving the MSFP and the fixed point problem for nonexpansive mappings in
Hilbert spaces.

Example 4.1. Let H1 = H2 = R3, r = t = 2 and l1 = l2 = λ1 = λ2 =
1

2
. Define

C1 = {x = (a, b, c)T ∈ R3 : a2 + b2 − c ≤ 0},
C2 = {x = (a, b, c)T ∈ R3 : a2 + b2 + c− 9 ≤ 0},
Q1 = {x = (a, b, c)T ∈ R3 : a2 + b2 + c2 − 9 ≤ 0},

Q2 = {x = (a, b, c)T ∈ R3 :
a2

9
+
b2

4
+
c2

4
− 3 ≤ 0}

and

A =

 2 1 0
−7 2 0
8 9 1

. Find x∗ ∈ C1 ∩ C2 such that Ax∗ ∈ Q1 ∩Q2.

Let T : H → H be defined by Tx = (x1,−x2, 4− x3) where x = (x1, x2, x3) ∈ R3.

Choose αn =
1

n
, βn =

n

3n+ 1
for all n ∈ N and f(x) =

1

2
x where x ∈ R3. We

choose the sequence {pn} as follows:

Case 1: ρn =
0.2n

n+ 1
; Case 2: ρn =

1.5n

n+ 1
; Case 3: ρn =

2n

n+ 1
; Case 4: ρn =

3.5n

n+ 1
.

The stopping criterion is defined by

En =
1

2

(
‖xn − PCn

1
xn‖2 + ‖xn − PCn

2
xn‖2

)
+

1

2

(
‖Axn − PQn

1
Axn‖2 + ‖Axn − PQn

2
Axn‖2

)
+‖xn − Txn‖2 < 10−2.

We choose different choices of x1 as
Choice 1 : x1 = (−11, 6,−10)T ;
Choice 2 : x1 = (2,−5, 1)T ;
Choice 3 : x1 = (8, 3, 12)T ;
Choice 4 : x1 = (4,−1, 6)T .

The numerical experiments, using our Algorithm 3.1 for each choice are re-
ported in the following Table 1.
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Table 1: Algorithm 3.1 with different cases of ρn and different choices of x1

ρn =
0.2n

n+ 1
ρn =

1.5n

n+ 1
ρn =

2n

n+ 1
ρn =

3.5n

n+ 1

Choice 1 No. of Iter. 39 10 8 6
cpu (Time) 0.037197 0.007181 0.006680 0.004980

Choice 2 No. of Iter. 27 8 7 6
cpu (Time) 0.019552 0.006403 0.005182 0.003835

Choice 3 No. of Iter. 59 13 10 7
cpu (Time) 0.063695 0.014288 0.011978 0.005490

Choice 4 No. of Iter. 43 11 9 6
cpu (Time) 0.036036 0.009403 0.007173 0.006262

The convergence behavior of the error En for each choice of ρn and x1 is shown
in Figure 1-4, respectively.

Figure 1: Error plotting En for Choice 1 in Example 4.1
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Figure 2: Error plotting En for Choice 2 in Example 4.1

Figure 3: Error plotting En for Choice 3 in Example 4.1
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Figure 4: Error plotting En for Choice 4 in Example 4.1
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