THAI JOURNAL OF MIATHEMATICS
VOLUME 17 (2019) NUMBER 2 : 463-473

M
MB

(o)

h

http://thaijmath.in.cmu.ac.th i T Mt
ISSN 1686-0209

Generalized Hypersubstitutions
of Many-Sorted Algebras

Dawan Chumpungam’ and Sorasak Leeratanavalee!{]

TPh.D. Degree Program in Mathematics, Faculty of Science
Chiang Mai University, Chiang Mai 50200, Thailand
e-mail : dawan_c@cmu.ac.th

fResearch Centre in Mathematics and Applied Mathematics
Department of Mathematics, Faculty of Science
Chiang Mai University, Chiang Mai 50200, Thailand
e-mail : sorasak.l@cmu.ac.th

Abstract : The concept of many-sorted algebras or heterogeneous algebras is
useful for abstract data type specifications in Theoretical Computer Science. It is
used to explain for abstract data types. Modules and vector spaces are examples
of many-sorted algebras. In this paper we extend the concept of a generalized
hypersubstitution from one-sorted algebras or homogeneous algebras to many-
sorted algebras. We define the I-sorted set of all 3-generalized hypersubstitutions
on special type and define a binary operation on this set. We show that this set
together with the binary operation forms a monoid.
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sorted Y-algebras; -terms.
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1 Introduction

The concept of many-sorted algebras or heterogeneous algebras has been ex-
tended from one-sorted to many-sorted base structure of algebra by G. Birkhoff
and John D. Lipson [1] in 1970.
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Let I be a nonempty set and A := (4;);e; be an I-sorted set, an I-indexed
collection of sets, where A; is a set of element of sort i of A, for every ¢ € I. Let
I = U I" X CI*xIand X, := I"*t!. Forn € Nt, an I-sorted n-ary operation

n>1
on A is a mapping f:;‘ 2 Agy, X oo X A, — A; where v = (k1,...,kn,1) € X,
Let K, be a set of indices with respect to 7. The structure of a pair A :=
(4, ((fnf)k)keKw,veZ) is called an I-sorted ¥-algebra.

Example 1.1. A vector space over field F: Let V be a set of vectors and F' a
universe of a field F. The structure A := ({V, F},{+,-}) is an I-sorted X-algebra
with I = {1,2}, A1 =V, Ay = Fand ¥ = {(1,1,1),(2,1,1)}, that is there are
two binary operations, namely + (addition) and - (scalar multiplication), i.e.,

+i=fay VXV =V o and = fh,4: FxV =V

There are many papers study about many-sorted algebras. In 2008, K. Denecke
and S. Lekkoksung [2] introduced the concept of terms for I-sorted -algebras.

Definition 1.2. Let I be an indexed set and n € N*. A set X(™ := (X(™),¢,
be an I-sorted set of n variables, X (™ is called an n-element I-sorted alphabet,
where Xl-(n) = {zi1, %2, ., Tin},t € I. A set X = (X;)ier is an I-sorted set of
variables, X is called an I-sorted alphabet, where X; = {x;1, %2, %i3,...},4 € I.
Let ((fy)r)kek, yex be a X-sorted set of operation symbols. Then for each i € I,

an n-ary Y-term of sort i, is inductively defined as follows:
1.z € XZ-(") is an n-ary X-term of sort %,

2. fy(tkys - tr,,) is an n-ary 3-term of sort ¢ where v = (k1, ..., ki, 4) € ¥ and
ty, - - tk,, are n-ary X-terms of sorts ki, ..., ky,, respectively..

The set of all n-ary X-terms of sort 4 is denoted by W, (7) and W (i) := U W (2)

neNt
is called the set of all ¥-terms of sort . The set Wy (X) := (W (i));er is called an

I-sorted set of all Y-terms and its elements are called I-sorted X-terms.

2 Generalized Hypersubstitutions

In Universal algebra we use identities to classify algebras into collections called
varieties. Hyperidentities are used to classify varieties into collections called hyper-
varieties. The tool used to study hyperidentities is the concept of a hypersubstitu-
tion which was introduced by K. Denecke, D. Lau, R. Poschel, and D. Schweigert
[3]. In 2000, S. Leeratanavalee and K. Denecke extended the concept of a hypersub-
stitution to the concept of a generalized hypersubstitution [4]. A generalized hy-
persubstitution of type 7 = (n;);er is a mapping o : {f; | ¢ € I} — W, (X) which
assigns to every n;-ary operation symbol f; a term of the same type which does not
necessarily preserve arity. The set of all generalized hypersubstitutions of type 7
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is denoted by Hypg (7). To define a binary operation on Hypg(7), we define first
the concept of a generalized superposition of terms S™ : W, (X)™H — W, (X)
by the following steps:

for any term ¢t € W, (X),

(i) if t =2;,1 <j <m, then S"(z;,t1,...,tn) =1t;,
(if) if t =x;,m < j €N, then S™(z;,t1,...,tm) == x;,

(111) ift = fi(Sh . -75774)7 then
Sm(ﬁ,tl,...,tm) = fi(Sm(Sl,tl, ce ,tm), .- .,Sm(sm,tl, ce ,tm)).

Every generalized hypersubstitution o can be extended to a mapping & :
W, (X) — W, (X) by the following steps:

(i) [z] =z € X,
(ii) &[fi(t1, ... tn,)] == S™(o(fi),6[t1],-..,6[tn,]), for any n,;-ary operation
symbol f;.

Then we can define a binary operation og on Hypg(7) by 01 oG 09 := &1 009
where o denotes the usual composition of mappings and o1,02 € Hypg(7). Let
0iq be the hypersubstitution which maps each n;-ary operation symbol f; to the
term fi(x1,...,Zn,).

We have the following proposition.

Proposition 2.1. [4] For arbitrary terms t,t1,...,t, € W.(X) and for arbitrary
generalized hypersubstitutions o, 01,09 we have

(i) S*(6[t),o[t1], ..., 8[ta]) = G[S™(t,ta, .-, t0)],
(i1) (610 09) =610 69.

It turns out that Hypg () := (Hypg(T),0G,0i4) is a monoid with ;4 as the
identity element. For more details of generalized hypersubstitutions, see [5Hg].

3 [I-Sorted X-Generalized Hypersubstitution

In this section, we extend the concept of generalized hypersubstitutions from
one-sorted algebras to many-sorted algebras. We first introduce the definition of
superposition for >-terms and give some properties of -generalized hypersubsti-
tutions.

For v € I*, let v(j) denote the j-th component of 7. Then for any ¢ € I, we
set

An(i) = {a e I"™ |a(n+1) =i}

and A(i) := ) An(i) and A := [ JA(i). Let S (i) := {y € S | y(m + 1) = i}
n=1

= i€l
and X(i) := ) S (d).
i€l
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Definition 3.1. The superposition operation
Sg W (1) x W(ky) x ... x W(ky,) — W(3),

for 8 = (k1,...,kn,1) € A, is defined inductively by the following steps:
1. If t= Tij € Xi, then

(1.1) Sﬁ(l‘ij,tl, ...,tn) = Tjj if 4 7é k‘j,Vj and,
(1.2) Sg(xij,tl,...,tn) :tj if’i:k‘j,l S] Snand,
(1.3) Sﬁ(.’L‘ij,tl, ...,tn) = Tij; if 7> n.
2. If t=fy(s1,..,5m) € W(i), for v = (i1, ..., Im, %) € X and s, € W (iy),

1 < ¢ < m, and assume that S, (sq,t1,...,tn) With 8, = (k1,...,kn,iq) €
A(iq) are already defined, then

Sﬁ(f’}’(slﬂ (X3) Sm)atla atn) = f’Y(Sﬁl (517t17 "'7tn)7 ooy SBm (5m7t17 "'7tn))7
for t; € W(k;), 1 <j<mn.
Example 3.2. Let I = {1,2,3} and f(;,1,1) with (1,1,1) € X(1). We consider
m =4, n = 2 and calculate
Sp(w14, Sp, (T12, f(1,1,1)(T11, T12), T23, T31, T11),
Sp, (w23, f(1,1,1)($1179€12),3323, r31,711)) = T14,
SV(SQ($147$12,$23),f(1,1,1)($11,if12),$237$3179€11)
= Sy(214, f(1,1,1) (211, T12), T23, T31, T11) = T11.
where g = (1,2,1),v= 1 = (1,2,3,1,1) and 2 = (1,2,3,1,2). We see that
Sp(r14, Sp, (212, f(1,1,1)(T11, T12), T23, T31, T11),
Sﬁz(xz?nf(1,1,1)($117$12),$237963173?11))
# 8,(Sp(x14, 712, w23), f(1,1,1)(T11, T12), T23, T31, T11).
Lemma 3.3. Let m,n € NT withm < n, B = (i1, ..., in,5) € M (i), = (i1, v, im, 1)

€ Ay (i) and B = (i1, im,1j) € Apn(ij),1 < j < n. Then for any X-terms
seW@), l; € W(ij), tqy € W(iy) where 1 < j <mn and 1 < g <m, we have

Sg(s, 551 (lhtl, ...,tm), ey Sﬁn (ln,tl, ...,tm)) = S,Y(Sg(s, l1,..., ln)7t1, ...,tm).

Proof. We will prove by induction on the complexity of the ¥-term s € W(i).
If s = Tij € AXv(Z)7
Case 1: ¢ #4;. Then

Sg(S,Sﬁl(ll,tl,...,tm),...,Sﬂn(ln,tl,...,tm))
= S,@(xij, Ss, (I, 1, eyt )y ooy Ss, (Inyt1y ey tm))
= S,y(il?ij,tl,...,tm)
= S’Y(Sﬂ(xiﬁ lla ey ln)7t17 ---7t7n)~
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Case 2: ¢ =1;,1 < j <n. Then
S (S 5,31 (ll7t17 ’ ) Sﬁw( natlv atm))

= Sp(ij, S5, (Lot coostm)s oo S (s Fs eoos )
= S, (L, t1, oo )

= S5, (S5(@ijs s oo In)y ty oo )

= S (S5 11y o)t oo )

Case 3: j > n. Then
S (S Sﬁl (ll7t1, ) Sﬁn( ny 1, -~atm))

_Sﬁ(xw,sﬁl(llvtlv 7 ) Sﬁn(natla"'7tm))
= T

- S ('le7 7"'7t1’n)

= 5,(Ss(@ij, i, ln), te, ooy tim)-

If s = fo(S1,...y8n) € W (i) with « = (p1,...,pn, %) € X(i) and s, € W(p,),

1 < r < h. We assume that S, (sr, S8, (I, t1,...,tm), ..; S8, (In, t1, .y tin)) =
S (S, (8o 11, oy ln), b, oy t) Where o = (i1, ..., 00, pr) € A(pr) and

Yr = (i1y ooy b, Dr) € A(pr), 1 <17 < h, then

Sp(s, 9, (I, 1, oy tm)s -y S, (Tns t1s s tn))

= S3(fa(S1s5n), S8 (L1 t1s ey tim)s oy S8, (Lns b1y o tn))
= fa(Sa, (51,88, (L, t1, oo tim), s
S5, (Lnyt1y oo tim))s ooy Sap (S, Sy (s t1s vy tn )y ooy S5, (Lns t1s oo tm)))
= fa(Sy, (Sar (51,01, oy 1n) b1y oy tn)y ooy S (Sa (Shy iy oy In) sty ey )
=5y (fa(Sar (51,115 s ln)y ooy Sa (Shy Ly ooy 1) )ty oy T
= S, (S8(fal(s1, s 8h)sliy oo ln), try ooy tn)- O

Lemma 3.4. Fort € W(i),i € I, let = (k1,...,kn,7) € Ay(7) and zi,1 €
Xiys ooy Thopn € Xk, we have

SB(Ll'kll, ey (Eknn) = 1.

Proof. We will prove by induction on the complexity of the ¥-term ¢ € W (i).
Ift= Tij € X(Z),
Case 1: i # k;. Then Sg(t, k1, s Thpn) = S8(Tij, Thy1, ooy Thpn) = Tij-
Case 2: i =£k;,1 <j <n. Then

Sg(t,xkll, oy Thoym) = Sg(xij7$k11, oy Tl ) = Th;5 = Tij-
Case 3: j > n. Then Sg(t, Tky1, s Thyn) = S8(Xijy Thy1y s Thpn) = Tij-
Ift = fy(s1,...,8m) € W(i) with v = (i1, ..., %m, 1) € X(3) and s, € W (i),
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1 <7 < m. Assume that Sg_(sy,Tky1,-.s Thyn) = S Where B, = (k1, ..., kn,ir) €

Aliy).

Sﬁ(t,xkll, ~-~71'knn) = Sﬁ(f,y(sl, ey Sm), Thyl, ...,xk.nn)
= fV(Sﬁ1 (Slaxlﬁlv "'7xknn)’ ) Sﬂm (vaxhh B3] xknn))

= fy(51,...,8m)
=t. O

For each ¢ € I, an arbitary mapping

i Afy [y e (@)} = W)

is called a Y-generalized hypersubstitution of sort i. The set of all 3-generalized
hypersubstitutions of sort 4 is denoted by X(i)-Hypg-.

The I-sorted mapping o := (0;);er is said to be an I-sorted Y-generalized
hypersubstitution and let ¥-Hype = (X(4)-Hypa)ier be the I-sorted set of all
Y-generalized hypersubstitutions.

Any Y-generalized hypersubstitution o; of sort i can be extended to a mapping
&; : W(i) — W (i) definded by

1. &[xu] = iy, for Tij € X,

2. &[f’Y(tla' ) )

| := Sy(0i(fy), Ok, [t1]), -, Ok, [tn]) where v = (K1, ..., kp, i) and
tjeW(k;),1<j<n

, assume that oy, [t;] are already defined.

Since the extension of a Y-generalized hypersubstitution of sort ¢ is unique,
we can define a binary operation oy, on X(i)-Hypg by

(01)i 0 (02)i := (d1); © (02)s,

for (o1);, (o ) € 3(i)-Hypg and o is the usual composition of mapping.
Let (0iq): )-Hype which maps each operation symbol f, to the X-term

5(i
Fy(@hy1s ey Thpm), for v = (K1, ..., kn, 1) € 3(1), ie
(@i)i(f7) = f5(@ky15 oo Them)-
(2,1,1)}, i.e., there

1),
,1). Let 01,090,053 €
o9

(fy) = fs(w22,212)

Example 3.5. We consider ¢ = 1 and let (i) = {(1,1, 1,
are two operations f,, fg with v = (1,1,1,1),58 = (2,1
E(i)—HypG such that O’l(f,y) = .7311,0'1(f5) = (3321,3313),
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and o3(fy) = fy(z12,211,211), we have

) lo3(f4)]

02)" [fy(®12, 211, 711)]

o1 0 02)(f4), T12, T11, T11)

1lo2(f5)] 212, 211, 711)

1[f5(z22, 712)], T12, T11, T11)

S’v Sﬁ(Jl(fB),$22,$12),$12,$11,$11)

Sy (Sa(fa(w21, 13), T22, T12), T12, T11, T11)
Sy (fs(waz, x13), 12, T11, T11)

fa(xaz, z11),

((01 0 02) oG 03)(f5) = (01 OiG o2
(0106
S’Y
S
S’Y

| | I |
5)
Q>"\ o

((o
(
(o
(
(
(

o (62003))(f5)
2[o3(f5)]]
1[02[f (x12, 211, 711)]]

(01 0 (02 0 03))(f) = (61
6
[

1[57 Uz(f»y),fﬂlz,fn,xn)]
[
[

Q>’\

110

Il
Q

I
(o

(
1185 (fa (w22, 12), 12, 11, Z11)]
1[fa(222, 211)]
5(01(fp), w22, 711)
= Sﬁ(fﬁ(le,xls), T2, T11)
= fa(x22,13).

I
Q>

\
n

That is (0’1 OE 02) 06 g3 # 01 Oe (0'2 OiG 0'3).

From the previous example, it follows that (X(i)-Hypg, ok, (04)i) is non asso-
ciative (with identity). That is, the set X(i)-Hypg is closed but not associative
under binary operation of,. So we construct a set H(i) by o € H(i) if for f,
with v = (i1, ..., im, 1) € X(i), 05(fy) = 25 € X(i) or 0i(fy) = fa(s1, -, 8m) €
W (i) where § = (i1,...,1;,4) € X(i) such that arity(f,) < arity(fs). However, we
can find an example which show that H (i) C ¥(i)-Hyp¢ is not closed under such
operation.

Example 3.6. We consider ¢ = 1 and let X(¢) = {(1,2,3,1,1),(1,2,1)}, i.e
there are two operations f,, f3 with v = (1,2,3,1,1),8 = (1,2,1). Let 01,02 €
H (i) such that o1(f,) = ®11,02(f5) = f(fs(z11, ¥23), ¥22, T31, 213) and o1(fp) =
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fﬁ(xlla (E22)7 we get

(010G 02)(f5) = 01[02(fy

[ }
=o1[f5(fs

Z11, 3323), €22, T31, 3713)}

)
(

We see that ((01)1 o% (02)1) maps the operation symbol f, to fg(x11,z23) for
which arity(fz) < arity(f,), that is ((c1)1 o (02)1) ¢ H (7).

However, we consider the structure of many-sorted algebra whose all operation
symbols of sort ¢ have the same arity n (n > 2) and have the same structure, i.e.,
for each i € I, ¥(i) = {7} and each k € K, (f,)r is n-ary. We denote a type of
operation symbols by X111 (7). We will prove that (X117 (3)-Hypg, ofy, (7:a)) is
a monoid.

Lemma 3.7. For o; € 1" (3)-Hypg, let t € W(i),t; € W(k;),1 < j <n and
a=(ki,...,kn, 1) € A. We have
GilSa(t,t1, ... tn)] = Sa(Gilt], Ok, [t1], -, Ok, [tn])-

Proof. We will prove by induction on the complexity of the ¥-term ¢ of sort i € I.
Ift= Tij; € X(Z),

Case 1: i # k;. Then we get

641ty s s )] = (S (gt oo )]
= Gilrij] = @i
= Sa(Tij, O, [t1], -, O, [Tn])
= Sa(Gi[zij], Ok [t1], -y Ok, [En])-

Case 2: ¢ =k;,1 <j<n. Then
Gi[Sa(t t1, ... tn)] = 6i[Sa(ij, t1, ..., tn)]
= Gt;]
= 0, [t;]
= Sa(ij, 6, [t1], ... Ok, [tn])
= Sa(6i[xij], Ok [t1], -y Ok, [tn])-
Case 3: j > n. Then
Gi[Sa(t,t1y s tn)]

I
Q>

ilSa(@ij, t1, ... tn)]
ilzis] = i
Ot(xijv 6761 [tl}’ cey OA-kn [tnD

a(a'i[xij];a'kl [tl], veey (}kn [tn])

[T
N N »
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If t = fo(s1,..0s 8n) € W(i) with s, € W(k;,).

Assume that 6,[Sa, (55, t1,..,tn)] = Sa, (Gk,[55], 0k, [t1], -, Ok, [tn]) Where a; =
(K1, kn, k) € A(35),1 <r <n.
Gi[Sa(tyt1, oy tn)] =6:[Sa(fa(S1y s Sn)st1, oy tn)]
fa,[fa( Sey (81,15 ey tn)y ooy Say, (S 1y ey )]
Sa(0i(fa), 0k, [ al(sl,tl,...,tn)],...,&kn[San(sn,tl,...,tn)])
Sa(oi(fa), Say Gk, [51], 60y [t1], -, O, [n]) oo

San (6—kn [Sn], (}kl [tl]a ey &kn [tn]))
= Sa(Sa(0i(fa), Ok, [51]; - Ok, [sn]); O [ta], oo Ok, [E0])

= Sa(Gi[fa(s1ys s 80)]s ke [t1], oy Ok, [En])
= Sa(64[t], Ok, [t1] ooy Ok, [En])- O
Lemma 3.8. Let (01);, (02); € X7 (i)-Hypg. Then

((01)i o (02)i) "= (F1)i © (F2);.

Proof. We will give a proof by induction on the complexity of the ¥-term ¢.
Ift= Tij € Xi,

((01)i oG (02)i) " [wi5] = wij = (61)[xi]
= (61)i[(62)i[zs]]
= (01); © (02)i[ziy]
= (01)i o (d2)it]
Ift = fy(t1,.... tn) € W(i) with v = (i1, ..., 9n,%) € 3(i) and t; € W(i;). Suppose
that (1), o¢ (02)i,) "[t5] = (1), 0 (F2)s, [t5].1 < j < m.
((01)i o (02)i) " [t] = ((01)i oG (02)i) " [f (t1, s )]
= 5,(((01)i 0 (02)1)(f5), ((01)iy 0 (02)iy) " [ta]; -+,
( og (02)i,) " [tn])

Theorem 3.9. Let (01)i, (02)i, (03); € 217 (i)-Hypg. Then,
((01)i o (02):) o (03)i = (1) o ((02)i °G (03):)-
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Proof.

((01)i 0% (02)) o (03); =

Lemma 3.10. For X-term t € W (i), (6:q):[t] = t.

Proof. We will prove by induction on the complexity of the X-term ¢ € W (7).

If t = a;; € X(4), then (64a)i(t] = (Gia)i[zij] = xij =t

If t = fy(s1,..., $n) € W(i) with v = (41, ..., %,1) € X(4) and s, € W (i), 1 <7 <
n. Assume that (6;4):.[sr] = sr and v = (i1, ..., in, 4r) € A(7r).

(Gia)ilt] = (Gia)ilf(51, s 5n)]
= S,((0ia)i(f+): (Gia)is[s1]; s (Gid)i, [5n])
=S, (fy (@i 1, s Tinn)s S15 00y Sn)
= [y (S5, (@iy1, 81, s 8n)s ooy Sy (T S1, -4, 8n))
= fy(51, .- 5n)
=t. B

Lemma 3.11. For (o); € 2" (3)-Hypg,

(0)i oG (0ia)i = (7ia)i oG (0):i-
Proof. Let f, with v = (iy, ...,in, 1) € 27 (5),

((0)i oG (0ia)i) () = ((8)s © (0ia)i) (f) = (6)il(0ia)s(f)]
( )il fy(@igts e Tinn)]
0)i(fy) (6)ir[®ia]; -y ()i, [in])
) (f’Y) Tig1y .- 7xinn)
= G)z( )
)

Theorem 3.12. (X7 (i)-Hypg, o, (0i4):) forms a monoid.
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