Thai Journal of Mathematics Volume 17 (2019) Number 2 : 445–461

http://thaijmath.in.cmu.ac.th ISSN 1686-0209

On Convergence Theorems for Two Generalized Nonexpansive Multivalued Mappings in Hyperbolic Spaces

Preeyalak Chuadchawna[†], Ali Farajzadeh[‡] and Anchalee Kaewcharoen^{†,1}

[†]Department of Mathematics, Faculty of Science, Naresuan University Phitsanulok 65000, Thailand e-mail: Chuadchawna@hotmail.com (P. Chuadchawna) anchaleeka@nu.ac.th (A. Kaewcharoen)

[‡]Department of Mathematics, Razi University, Kermanshah 67149, Iran e-mail: A.Farajzadeh@razi.ac.ir; farajzadehali@gmail.com

Abstract : The purpose of this paper is to establish Δ -convergence and strong convergence theorems for the mixed Agarwal-O'Regan-Sahu type iterative scheme [1] to approximate a common fixed point for two generalized nonexpansive multivalued mappings in hyperbolic spaces. The results presented in this paper extend and improve some recent results in the literature.

Keywords : hyperbolic spaces; Δ -convergence theorems; strong convergence theorems; common fixed points; condition (E). 2010 Mathematics Subject Classification : 47H10; 54H25.

1 Introduction and Preliminaries

Fixed point theory has an important role for the various problems in Mathematics. A metric space embedded with a convex structure is a nonlinear framework for fixed point theory which one of convex structure is practicable in hyperbolic spaces.

Copyright \bigodot 2019 by the Mathematical Association of Thailand. All rights reserved.

¹Corresponding author.

The class of hyperbolic spaces contains normed linear spaces and convex subsets, Hadamard manifolds as well as CAT(0) spaces in the sense of Gromov [2] and the Hilbert ball equipped with the hyperbolic metric [3]. Strong convergence of modified viscosity implicit approximation methods for asymptotically nonexpansive mappings in complete CAT(0) spaces has been studied by Pakkaranang et al. [4]. Throughout in this paper we consider a hyperbolic space which is defined by Kohlenbach [5] in 2005.

A hyperbolic space [5] is a metric space (X, d) together with a mapping $W : X^2 \times [0, 1] \to X$ satisfying the following statements:

(W1) $d(u, W(x, y, \alpha)) \leq \alpha d(u, x) + (1 - \alpha)d(u, y);$

(W2) $d(W(x, y, \alpha), W(x, y, \beta)) = |\alpha - \beta| d(x, y);$

(W3) $W(x, y, \alpha) = W(y, x, (1 - \alpha));$

(W4) $d(W(x, z, \alpha), W(y, w, \alpha)) \le \alpha d(x, y) + (1 - \alpha) d(z, w),$

for all $x, y, z, w \in X$ and $\alpha, \beta \in [0, 1]$.

A hyperbolic space (X, d, W) is said to be *uniformly convex* [6] if for any r > 0and $\varepsilon \in (0, 2]$ there exists a $\delta \in (0, 1]$ such that for all $u, x, y \in X$, we have

$$d(W(x, y, \frac{1}{2}), u) \le (1 - \delta)r$$

provided $d(x, u) \leq r$, $d(y, u) \leq r$ and $d(x, y) \geq \varepsilon r$.

A mapping $\eta : (0, \infty) \times (0, 2] \to (0, 1]$ which provides such $\delta = \eta(r, \varepsilon)$ for given r > 0 and $\varepsilon \in (0, 2]$ is well known as a modulus of uniformly convexity of X. We call η monotone if it decreases with r (for a fixed ε), i.e., for any given $\varepsilon > 0$ and for any $r_2 \ge r_1 > 0$, we have $\eta(r_2, \varepsilon) \le \eta(r_1, \varepsilon)$.

A nonempty subset K of a hyperbolic space X is *convex* if $W(x, y, \alpha) \in K$ for any $x, y \in K$ and $\alpha \in [0, 1]$.

Let (X, d) be a metric space, K be a nonempty subset of X and T be a multivalued mapping of K into set of all subsets of K. The set of fixed points of T denoted by $F(T) = \{x \in K : x \in Tx\}.$

A nonempty subset K of X is said to be *proximal*, if for each $x \in X$, there exists an element $y \in K$ such that

$$d(x,y) = \operatorname{dist}(x,K) := \inf_{z \in K} d(x,z).$$

Remark 1.1. [7] It is well known that each weakly compact convex subset of Banach space is proximal.

Let CB(X) be the collection of all nonempty closed bounded subsets of X and P(X) be the collection of all nonempty proximal bounded subsets of X. The Hausdorff metric H on CB(X) is defined by

$$H(A,B) := \max\{\sup_{x \in A} \operatorname{dist}(x,B), \sup_{y \in B} \operatorname{dist}(y,A)\}, \text{ for all } A, B \in CB(X).$$

We need the following definitions, lemmas, propositions that will be used in the sequel.

446

Definition 1.2. [8] A multivalued mapping $T: K \to CB(K)$ is said to be

- (i) nonexpansive if $H(Tx, Ty) \leq d(x, y)$, for all $x, y \in K$;
- (ii) quasi-nonexpansive if $F(T) \neq \emptyset$ and $H(Tx, Tp) \leq d(x, p)$, for all $x \in K$ and $p \in F(T)$.

Definition 1.3. [9] A multivalued mapping $T : K \to CB(K)$ is said to satisfy *condition* (E_{μ}) provided that

$$dist(x, Ty) \le \mu dist(x, Tx) + d(x, y)$$
, for all $x, y \in K$.

We say that T satisfies condition (E) whenever T satisfies condition (E_{μ}) for some $\mu \geq 1$.

Proposition 1.4. [9] If $T: K \to CB(K)$ is multivalued mapping satisfying condition (E) with $F(T) \neq \emptyset$, then T is a multivalued quasi-nonexpansive mapping.

Lemma 1.5. [9] Let $T : K \to CB(K)$ be a multivalued nonexpansive mapping. Then T satisfies condition (E_1) .

We need the following definition of convergence in hyperbolic spaces [10] which is called Δ -convergence. It plays an important role in the main results and we recall some definitions and lemmas.

Let $\{x_n\}$ be a bounded sequence in a hyperbolic space X. We can define a function $r(\cdot, \{x_n\}) : X \to [0, \infty)$ by

$$r(x, \{x_n\}) = \limsup_{n \to \infty} d(x, x_n), \text{ for all } x \in X.$$

The asymptotic radius of a bounded sequence $\{x_n\}$ with respect to a nonempty subset K of X is defined and denoted by

$$r_K(\{x_n\}) = \inf\{r(x, \{x_n\}) : x \in K\}.$$

The asymptotic center of a bounded sequence $\{x_n\}$ with respect to a nonempty subset K of X is defined and denoted by

$$AC_K(\{x_n\}) = \{x \in X : r(x, \{x_n\}) \le r(y, \{x_n\}), \text{ for all } y \in K\}.$$

Recall that a sequence $\{x_n\}$ in X is said to Δ -converge to $x \in X$ if x is the unique asymptotic center of $\{u_n\}$ for every subsequence $\{u_n\}$ of $\{x_n\}$. In this case, we write Δ -lim_{$n\to\infty$} $x_n = x$ and call x the Δ -lim of $\{x_n\}$.

Lemma 1.6. [11] Let (X, d, W) be a complete uniformly convex hyperbolic space with a monotone modulus of uniform convexity η . Then every bounded sequence $\{x_n\}$ in X has a unique asymptotic center with respect to any nonempty closed convex subset K of X. **Lemma 1.7.** [12] Let (X, d, W) be a complete uniformly convex hyperbolic space with a monotone modulus of uniform convexity η . Let $x \in X$ and $\{\alpha_n\}$ be a sequence in [a, b] for some $a, b \in (0, 1)$. If $\{x_n\}$ and $\{y_n\}$ are sequences in X such that $\limsup_{n\to\infty} d(x_n, x) \leq c$, $\limsup_{n\to\infty} d(y_n, x) \leq c$, $\lim_{n\to\infty} d(W(x_n, y_n, \alpha_n), x) = c$ for some $c \geq 0$, then

$$\lim_{n \to \infty} d(x_n, y_n) = 0.$$

Lemma 1.8. [7] Let (X, d, W) be a complete uniformly convex hyperbolic space with a monotone modulus of uniform convexity η , then X possesses the Opial property, i.e., for any sequence $\{x_n\} \subset X$ with $\Delta\operatorname{-lim}_{n\to\infty} x_n = x$ and for any $y \in X$ with $x \neq y$, then

$$\limsup_{n \to \infty} d(x_n, x) < \limsup_{n \to \infty} d(x_n, y).$$

Lemma 1.9. [7] Let (X, d, W) be a complete uniformly convex hyperbolic space with a monotone modulus of uniform convexity η , K be a subset of X and $\{x_n\}$ be a bounded sequence in X with $AC(\{x_n\}) = \{p\}$. Suppose that $\{u_n\}$ is a subsequence of $\{x_n\}$ with $AC(\{u_n\}) = \{u\}$, and the sequence $\{d(x_n, u)\}$ is convergent, then p = u.

In 2016, Kim et al. [9] established the existence of a fixed point for generalized nonexpansive multivalued mappings in hyperbolic spaces as the following lemma.

Lemma 1.10. [9] Let (X, d, W) be a complete uniformly convex hyperbolic space with monotone modulus of uniform convexity η , K be a nonempty closed convex subset of X, and $T: K \to P(K)$ be a multivalued mapping satisfying the condition (E) with convex values. If $\{x_n\}$ is a sequence in K such that Δ - $\lim_{n\to\infty} x_n = z$ and $\lim_{n\to\infty} dist(x_n, Tx_n) = 0$, then z is a fixed point of T.

Moreover, they [9] established Δ -convergence and strong convergence theorems for the iterative sequence induced by Chang et al. [1].

Theorem 1.11. [9] Let (X, d, W) be a complete uniformly convex hyperbolic space with monotone modulus of uniform convexity η , K be a nonempty closed convex subset of X, and $T : K \to P(K)$ be a multivalued mapping satisfing the condition (E) with convex values. Suppose that $F(T) \neq \emptyset$ and $Tp = \{p\}$ for each $p \in F(T)$. For arbitrarily chosen $x_0 \in K$, sequence $\{x_n\}$ is defined by

$$x_{n+1} = W(u_n, v_n, \alpha_n), \tag{1.1}$$

$$y_n = W(x_n, u_n, \beta_n),$$

where $v_n \in Ty_n, u_n \in Tx_n$, $\{\alpha_n\}$ and $\{\beta_n\}$ are real sequences satisfying the following condition:

(C1) there exist constants $a, b \in (0, 1)$ with $0 < b(1-a) \le \frac{1}{2}$ such that $\{\alpha_n\} \subset [a, b]$ and $\{\beta_n\} \subset [a, b]$.

Then the sequence $\{x_n\}$ defined by (1.1) is Δ -convergent to a point in F(T).

Lemma 1.12. [9] Let (X, d, W) be a complete uniformly convex hyperbolic space, K be a nonempty closed convex subset of X. Let $T : K \to P(K)$ be a multivalued mapping with $F(T) \neq \emptyset$ and let $P_T : K \to 2^k$ be a multivalued mapping defined by

$$P_T(x) := \{ y \in Tx : d(x, y) = \text{dist}(x, Tx) \}, x \in K.$$
(1.2)

Then the following conclusions hold:

- (1) $F(T) = F(P_T);$
- (2) $P_T(p) = \{p\}, \text{ for each } p \in F(T);$
- (3) for each $x \in K$, $P_T(x)$ is a closed subset of T(x) and so it is compact;
- (4) $d(x,Tx) = d(x,P_T(x))$ for each $x \in K$.

On the other hand, in the case of a single-valued mapping $T: K \to K$, we known that Mann and Ishikawa iteration processes are defined as:

$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T x_n, \quad n \in \mathbb{N}$$

and

$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T y_n,$$

$$y_n = (1 - \beta_n)x_n + \beta_n T x_n, \quad n \in \mathbb{N}$$

respectively.

In 2007, Agarwal-O'Regan-Sahu [13] introduced the iteration process:

$$x_{n+1} = (1 - \alpha_n)Tx_n + \alpha_nTy_n,$$

$$y_n = (1 - \beta_n)x_n + \beta_nTx_n, \quad n \in \mathbb{N}.$$

They presented that their process is dependent of Mann and Ishikawa and converges faster than of these, for more details see [13].

In 2014, Chang et al. [1] introduced the mixed Agarwal-O'Regan-Sahu type iterative scheme for the multivalued nonexpansive in the setting of hyperbolic spaces as follows:

$$x_{n+1} = W(u_n, v_n, \alpha_n),$$

$$y_n = W(x_n, u_n, \beta_n),$$
(1.3)

where $v_n \in T_1 y_n, u_n \in T_2 x_n, \{\alpha_n\}$ and $\{\beta_n\}$ are real sequences.

The purpose of this paper is to establish Δ -convergence and strong convergence theorems for the mixed Agarwal-O'Regan-Sahu type iterative scheme [1] to approximate a common fixed point for two generalized nonexpansive multivalued mappings in hyperbolic spaces. The results presented in this paper extend and improve some recent results in the literature.

2 Main Results

In this section, we establish Δ -convergence and strong convergence theorems for the mixed Agarwal-O'Regan-Sahu type iterative scheme [1] to approximate a common fixed point for two generalized nonexpansive multivalued mappings in hyperbolic spaces.

Theorem 2.1. Let (X, d, W) be a complete uniformly convex hyperbolic space with monotone modulus of uniform convexity η , K be a nonempty closed convex subset of X, and $T_i : K \to P(K)$ (i = 1, 2) be a multivalued mapping satisfying the condition (E) with convex values. Suppose that $F = \bigcap_{i=1}^{2} F(T_i) \neq \emptyset$ and $T_i p = \{p\}$ for each $p \in F$ (i = 1, 2). For arbitrarily chosen $x_1 \in K$, sequence $\{x_n\}$ is the Agarwal-O'Regan-Sahu type sequence defined by (1.3) where $\{\alpha_n\}$ and $\{\beta_n\}$ are real sequences satisfying the following condition:

(C1) there exist constants $a, b \in (0, 1)$ such that $\{\alpha_n\} \subset [a, b]$ and $\{\beta_n\} \subset [a, b]$.

Then the sequence $\{x_n\}$ defined by (1.3) is Δ -convergent to a point in F.

Proof. We divide the proof into 3 steps as follows:

Step 1: First, we prove that $\lim_{n\to\infty} d(x_n, p)$ exists for $p \in F$. By using Proposition 1.4 we obtain that each multivalued mapping T satisfying condition (E) with $F(T) \neq \emptyset$ is a multivalued quasi-nonexpansive mapping. Hence for each $p \in F$, by (1.3), we have

$$d(y_n, p) = d(W(x_n, u_n, \beta_n), p)$$

$$\leq (1 - \beta_n)d(x_n, p) + \beta_n d(u_n, p)$$

$$\leq (1 - \beta_n)d(x_n, p) + \beta_n \text{dist}(u_n, T_2p)$$

$$\leq (1 - \beta_n)d(x_n, p) + \beta_n H(T_2x_n, T_2p)$$

$$\leq (1 - \beta_n)d(x_n, p) + \beta_n d(x_n, p)$$

$$\leq d(x_n, p).$$
(2.1)

This implies that

$$d(x_{n+1}, p) = d(W(u_n, v_n, \alpha_n), p)$$

$$\leq (1 - \alpha_n)d(u_n, p) + \alpha_n d(v_n, p)$$

$$\leq (1 - \alpha_n)dist(u_n, T_2p) + \alpha_n dist(v_n, T_1p)$$

$$\leq (1 - \alpha_n)H(T_2x_n, T_2p) + \alpha_n H(T_1y_n, T_1p)$$

$$\leq (1 - \alpha_n)d(x_n, p) + \alpha_n d(y_n, p)$$

$$\leq (1 - \alpha_n)d(x_n, p) + \alpha_n d(x_n, p)$$

$$\leq d(x_n, p). \qquad (2.2)$$

Therefore that sequence $\{d(x_n, p)\}$ is non-increasing and bounded below. It follows that $\lim_{n\to\infty} d(x_n, p)$ exists for each $p \in F$. Step 2: We now prove that

$$\lim_{n \to \infty} \operatorname{dist}(x_n, T_i x_n) = 0, \text{ for each } i = 1, 2.$$
(2.3)

By Step 1, we know that $\lim_{n\to\infty} d(x_n, p)$ exists for each $p \in F$. Suppose that $\lim_{n\to\infty} d(x_n, p) = c \ge 0$. If c = 0, then we obtain that

$$dist(x_n, T_i x_n) \leq d(x_n, p) + dist(T_i x_n, p)$$

$$\leq d(x_n, p) + H(T_i x_n, T_i p)$$

$$\leq d(x_n, p) + d(x_n, p)$$

$$\leq 2d(x_n, p).$$

This implies that $\lim_{n\to\infty} \operatorname{dist}(x_n, T_i x_n) = 0$, for each i = 1, 2. Therefore (2.3) is true. If c > 0, then by using (2.1), we obtain that

$$\limsup_{n \to \infty} d(y_n, p) \le \limsup_{n \to \infty} d(x_n, p) = c.$$
(2.4)

Since

$$d(v_n, p) = \operatorname{dist}(v_n, T_1 p) \le H(T_1 y_n, T_1 p) \le d(y_n, p),$$

we have

$$\limsup_{n \to \infty} d(v_n, p) \le c. \tag{2.5}$$

Similarly, since

$$d(u_n, p) = \operatorname{dist}(u_n, T_2 p) \le H(T_2 x_n, T_2 p) \le d(x_n, p),$$

we obtain that

$$\limsup_{n \to \infty} d(u_n, p) \le c.$$
(2.6)

Since $\lim_{n\to\infty} d(x_{n+1}, p) = c$, by using (2.5), (2.6) and Lemma 1.7, we have

$$\lim_{n \to \infty} d(u_n, v_n) = 0.$$
(2.7)

On the other hand, by (1.3), we have

$$d(x_{n+1}, p) = d(W(u_n, v_n, \alpha_n), p)$$

$$\leq (1 - \alpha_n)d(u_n, p) + \alpha_n d(v_n, p)$$

$$\leq (1 - \alpha_n)dist(u_n, T_2p) + \alpha_n dist(v_n, T_1p)$$

$$\leq (1 - \alpha_n)H(T_2x_n, T_2p) + \alpha_n H(T_1y_n, T_1p)$$

$$\leq (1 - \alpha_n)d(x_n, p) + \alpha_n d(y_n, p)$$

$$= d(x_n, p) - \alpha_n d(x_n, p) + \alpha_n d(y_n, p).$$

This implies that

$$d(x_n, p) \le \frac{d(x_n, p) - d(x_{n+1}, p)}{\alpha_n} + d(y_n, p) \le \frac{d(x_n, p) - d(x_{n+1}, p)}{a} + d(y_n, p).$$
(2.8)

Taking inferior limit to the both sides of the above inequality, we obtain that

$$c \le \liminf_{n \to \infty} d(y_n, p). \tag{2.9}$$

451

By using (2.4) and (2.8), we have

$$\lim_{n \to \infty} d(y_n, p) = c. \tag{2.10}$$

By Lemma 1.7, (2.6), (2.10) and $\lim_{n\to\infty} d(x_n, p) = c$, then we have

$$\lim_{n \to \infty} d(u_n, x_n) = 0. \tag{2.11}$$

Therefore

$$\operatorname{dist}(x_n, T_2 x_n) \le d(u_n, x_n) \to 0 \text{ as } n \to \infty.$$
(2.12)

On the other hand, it follows from (1.3) and (2.11) that

$$d(y_n, x_n) = d(W(x_n, u_n, \beta_n), x_n) \le \beta_n d(u_n, x_n),$$
(2.13)

and

$$dist(y_n, T_1y_n) \leq d(y_n, v_n)$$

$$= d(W(x_n, u_n, \beta_n), v_n)$$

$$\leq (1 - \beta_n)d(x_n, v_n) + \beta_n d(u_n, v_n)$$

$$\leq (1 - \beta_n)[d(x_n, u_n) + d(u_n, v_n)] + \beta_n d(u_n, v_n).$$

Taking limit $n \to \infty$ and using (2.7) and (2.11) in above inequality, we have

$$\lim_{n \to \infty} \operatorname{dist}(y_n, T_1 y_n) = 0.$$
(2.14)

Since T_1 satisfies the condition (E), we have

$$dist(x_n, T_1x_n) \leq d(x_n, y_n) + dist(y_n, T_1x_n)$$

$$\leq d(x_n, y_n) + \mu dist(y_n, T_1y_n) + d(y_n, x_n)$$

$$= 2d(x_n, y_n) + \mu dist(y_n, T_1y_n).$$

Taking limit $n \to \infty$ and using (2.13) and (2.14), we have

$$\lim_{n \to \infty} \operatorname{dist}(x_n, T_1 x_n) = 0.$$

This implies that, $\lim_{n\to\infty} \operatorname{dist}(x_n, T_ix_n) = 0$, i = 1, 2. Step 3: We finally prove that the sequence $\{x_n\}$ is Δ -convergent to a point in $F = \bigcap_{i=1}^2 F(T_i)$. Denote $W_{\Delta}(\{x_n\}) = \bigcup_{\{u_n\} \subset \{x_n\}} AC(\{u_n\})$. We now prove that $W_{\Delta}(\{x_n\}) \subset F$. Let $u \in W_{\Delta}(\{x_n\})$. Then there exists a subsequence $\{u_n\}$ of $\{x_n\}$ such that $AC(\{u_n\}) = \{u\}$. By applying Lemma 1.6, there exists a subsequence $\{v_n\}$ of $\{u_n\}$ such that Δ -lim_{n\to\infty} $v_n = p \in K$. Since $\lim_{n\to\infty} \operatorname{dist}(v_n, T_iv_n) = 0$ (i = 1, 2), it follows from Lemma 1.10, we have $p \in F$. Since $\{d(u_n, p)\}$ converges from Lemma 1.9, we have $u = p \in F$. It follows that $W_{\Delta}(\{x_n\}) \subset F$. We next prove that $W_{\Delta}(\{x_n\})$ consists of exactly one point. Let $\{u_n\}$ be a subsequence of $\{x_n\}$ such that $AC(\{u_n\}) = \{u\}$ and $AC(\{x_n\}) = \{x\}$. Since $u \in W_{\Delta}(\{x_n\}) \subset F$, we have $\lim_{n\to\infty} d(x_n, u)$ exists. By Lemma 1.9, we obtain that $x = u \in W_{\Delta}(\{x_n\})$. Therefore $W_{\Delta}(\{x_n\})$ consists of exactly one point. Hence the sequence $\{x_n\}$ is Δ -convergent to element of F.

We now illustrate the strong convergence theorems in the setting of complete uniformly convex hyperbolic spaces.

Theorem 2.2. Let (X, d, W) be a complete uniformly convex hyperbolic space with monotone modulus of uniform convexity η , K be a nonempty compact convex subset of X and $T_i : K \to CB(X)$ (i = 1, 2) be a multivalued mapping satisfying the condition (E) with convex values. Suppose that $F = \bigcap_{i=1}^{2} F(T_i) \neq \emptyset$ and $T_i p = \{p\}$ for each $p \in F$ (i = 1, 2). Then the sequence $\{x_n\}$ defined by (1.3) converges strongly to a point in F.

Proof. For all $x \in K$ and for all i = 1, 2, by the assumption, we obtain that $T_i x$ is a bounded closed and convex subset K. Since K is compact and $T_i x$ is a nonempty compact and convex subset of K, we have $T_i x$ is a bounded proximal subset in K. This implies that $T_i : K \to P(K)$ for all i = 1, 2. Therefore all conditions of Theorem 2.1 are satisfied. From (2.2) and (2.3) we obtain that

$$\lim_{n \to \infty} d(x_n, p) \text{ exists and } \lim_{n \to \infty} \operatorname{dist}(x_n, T_i x_n) = 0,$$

for all $p \in F$ and for all i = 1, 2. Since K is compact, there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ converging strong to $q \in K$. Since T_1 satisfies the condition (E), there exists $\mu \geq 1$ and then

$$\begin{aligned} \operatorname{dist}(q, T_1 q) &\leq d(q, x_{n_k}) + \operatorname{dist}(x_{n_k}, T_1 q) \\ &\leq d(q, x_{n_k}) + \mu \operatorname{dist}(x_{n_k}, T_1 x_{n_k}) + d(x_{n_k}, q) \\ &\leq 2d(q, x_{n_k}) + \mu \operatorname{dist}(x_{n_k}, T_1 x_{n_k}). \end{aligned}$$

By taking the limit as $k \to \infty$, we have $\operatorname{dist}(q, T_1q) = 0$ and it follows that $q \in T_1q$. Similarly, we can prove that $q \in T_2q$. This implies that $q \in F$. Since $\lim_{n\to\infty} d(x_n, q)$ exists, we have

$$\lim_{n \to \infty} d(x_n, q) = \lim_{k \to \infty} d(x_{n_k}, q) = 0.$$

This show that $\{x_n\}$ converges strongly to a point in F.

Theorem 2.3. Let (X, d, W) be a complete uniformly convex hyperbolic space with monotone modulus of uniform convexity η , K be a nonempty compact convex subset of X and $T_i : K \to CB(X)$ (i = 1, 2) be a multivalued mapping satisfying the condition (E) with convex values. Suppose that $F = \bigcap_{i=1}^{2} F(T_i) \neq \emptyset$ and $T_i p = \{p\}$ for each $p \in F$ (i = 1, 2). Then the sequence $\{x_n\}$ defined by (1.3) converges strongly to a point in F if and only if $\liminf_{n\to\infty} dist(x_n, F) = 0$.

Proof. Assume that $\lim_{n\to\infty} d(x_n, p) = 0$ for some $p \in F$. Since

$$\operatorname{dist}(x_n, F) \leq d(x_n, p), \text{ for all } n \in \mathbb{N}.$$

By taking limit inferior $n \to \infty$ in the above inequality, we have

$$\liminf_{n \to \infty} \operatorname{dist}(x_n, F) = 0$$

Conversely, suppose that $\liminf_{n\to\infty} \operatorname{dist}(x_n, F) = 0$. From (2.2), we have

$$d(x_{n+1}, p) \le d(x_n, p)$$
, for all $p \in F$.

It follows that $dist(x_{n+1}, F) \leq dist(x_n, F)$ for all $n \in \mathbb{N}$.

Therefore $\lim_{n\to\infty} \operatorname{dist}(x_{n+1}, F)$ exists and $\lim_{n\to\infty} \operatorname{dist}(x_{n+1}, F) = 0$. This implies that, we can choose a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ and sequence $\{p_k\}$ in F such that

$$d(x_{n_k}, p_k) < \frac{1}{2^k},$$

for all $k \in \mathbb{N}$. From (2.2), we have

$$d(x_{n_{k+1}}, p_k) \le d(x_{n_k}, p_k) < \frac{1}{2^k}.$$

Therefore

$$d(p_{k+1}, p_k) \leq d(p_{k+1}, x_{n_{k+1}}) + d(x_{n_{k+1}}, p_k)$$

$$< \frac{1}{2^{k+1}} + \frac{1}{2^k} < \frac{1}{2^{k-1}}.$$

It follows that $\{p_k\}$ is a Cauchy sequence in K and it converges to some $w \in K$. Since

$$\operatorname{dist}(p_k, T_i w) \le H(T_i p_k, T_i w) \le d(p_k, w)$$

and $p_k \to w$ as $k \to \infty$, we have $\operatorname{dist}(w, T_i w) = 0$. Therefore $w \in T_i w$ for each i = 1, 2. This yields $w \in F$. Since $\{x_{n_k}\}$ converges strongly to w and $\lim_{n\to\infty} d(x_n, w)$ exists, we have $\{x_n\}$ converges strongly to w. Therefore the proof is complete.

Theorem 2.4. Let (X, d, W) be a complete uniformly convex hyperbolic space with monotone modulus of uniform convexity η , K be a nonempty compact convex subset of X and $T_i : K \to CB(X)$ (i = 1, 2) be a multivalued mapping satisfying the condition (E) with convex values. Suppose that $F = \bigcap_{i=1}^{2} F(T_i) \neq \emptyset$ and $T_i p = \{p\}$ for each $p \in F$ (i = 1, 2). Let $\{x_n\}$ be defined by (1.3). Suppose that there exists an increasing function $f : [0, \infty) \to [0, \infty)$ with f(0) = 0, where f(r) > 0 for all r > 0 such that

$$\operatorname{dist}(x_n, T_i x_n) \ge f(\operatorname{dist}(x_n, F)), \ i = 1, 2.$$

Then the sequence $\{x_n\}$ converges strongly to a point in F.

Proof. In the proof of Theorem 2.1, we obtain that $dist(x_n, T_ix_n) = 0$, i = 1, 2. By the assumption, we have

$$\lim_{n \to \infty} f(\operatorname{dist}(x_n, F)) \le \lim_{n \to \infty} \operatorname{dist}(x_n, T_i x_n) = 0, \, i = 1, 2.$$

It follows that

$$\lim_{n \to \infty} f(\operatorname{dist}(x_n, F)) = 0.$$

Since $f: [0, \infty) \to [0, \infty)$ is an increasing function with f(0) = 0, we can conclude that $\lim_{n\to\infty} \operatorname{dist}(x_n, F) = 0$. By Theorem 2.3, we obtain that $\{x_n\}$ converges strongly to a point in F. Therefore the proof is complete.

Theorem 2.5. Let (X, d, W) be a complete uniformly convex hyperbolic space with monotone modulus of uniform convexity η , K be a nonempty closed convex subset of X and $T_i: K \to CB(K)$ (i = 1, 2) be a multivalued mapping with convex values. Suppose that $F = \bigcap_{i=1}^{2} F(T_i) \neq \emptyset$. Let P_{T_i} be a multivalued mapping satisfying the condition (E) (i = 1, 2). For arbitrarily chosen $x_1 \in K$, sequence $\{x_n\}$ be a sequence defined by

$$x_{n+1} = W(u_n, v_n, \alpha_n),$$
(2.15)

$$y_n = W(x_n, u_n, \beta_n),$$

where $u_n \in P_{T_2}x_n, v_n \in P_{T_1}y_n = P_{T_1}(W(x_n, u_n, \beta_n))$. Let $\{\alpha_n\}$ and $\{\beta_n\}$ be real sequences satisfying the condition (C1). Then the sequence $\{x_n\}$ defined by (2.15) is Δ -convergent to a point in F.

Proof. By Lemma 1.12, we know that the mapping P_{T_i} , i = 1, 2 defined by (1.2) has the following property, for each $i = 1, 2, P_{T_i} : K \to P(K)$ is multivalued mappings with $\bigcap_{i=1}^2 F(P_{T_i}) = \bigcap_{i=1}^2 F(T_i) \neq \emptyset$ and

$$P_{T_i}(p) = \{p\}, \text{ for each } p \in F.$$

By replacing the mappings T_i by P_{T_i} in Theorem 2.1, i = 1, 2, we obtain that all the conditions in Theorem 2.1 are satisfied. This implies that $\{x_n\}$ is Δ -convergent to a point in F.

Using the result in Step 1 and Step 2 of Theorem 2.1 with the sequence $\{x_n\}$ defined by (2.15) and the same technique as in the proof of Theorem 18 and Theorem 19 of Kim et al. [9], we get the following strong convergence results for multivalued mappings P_{T_i} satisfying the condition (E), i = 1, 2 without proving.

Theorem 2.6. Let (X, d, W) be a complete uniformly convex hyperbolic space with monotone modulus of uniform convexity η , K be a nonempty closed convex subset of X and $T_i: K \to CB(K)$ (i = 1, 2) be a multivalued mapping with convex values. Suppose that $F = \bigcap_{i=1}^{2} F(T_i) \neq \emptyset$. Let P_{T_i} (i = 1, 2) be a multivalued mapping satisfying the condition (E) (i = 1, 2). For arbitrarily $x_1 \in K$, let $\{x_n\}$ be a sequence in K defined by (2.15). Then the sequence $\{x_n\}$ converges strongly to a point in F if and only if $\liminf_{n\to\infty} dist(x_n, F) = 0$. **Theorem 2.7.** Let (X, d, W) be a complete uniformly convex hyperbolic space with monotone modulus of uniform convexity η , K be a nonempty closed convex subset of X and $T_i: K \to CB(K)$ (i = 1, 2) be a multivalued mapping with convex values. Suppose that $F = \bigcap_{i=1}^{2} F(T_i) \neq \emptyset$. Let P_{T_i} (i = 1, 2) be a multivalued mapping satisfying the condition (E). Let $\{x_n\}$ be a sequence in K defined by (2.15). Suppose that there exists an increasing function $f : [0, \infty) \to [0, \infty)$ with f(0) = 0, where f(r) > 0 for all r > 0 such that

$$\operatorname{dist}(x_n, T_i x_n) \ge f(\operatorname{dist}(x_n, F), \ i = 1, 2)$$

Then the sequence $\{x_n\}$ converges strongly to a point in F.

3 Numerical Example

Let $X = \mathbb{R}$ with metric d(x, y) = |x - y| and K = [0, 4]. Define $W : X^2 \times [0, 1] \to X$ by $W(x, y, \alpha) := \alpha x + (1 - \alpha)y$ for all $x, y \in X$ and $\alpha \in [0, 1]$. Then (X, d, W) is a complete uniformly hyperbolic space with a monotone modulus of uniform convexity and K is a nonempty closed convex subset of X. Let $T_1, T_2 : K \to CB(K)$ be defined by

$$T_1 x = \begin{cases} [0, \frac{x}{4}], & x < 4; \\ \{1\}, & x = 4, \end{cases}$$

and

$$T_2 x = \left[\frac{x}{6}, \frac{x}{2}\right]$$

Set $\alpha_n = \beta_n = \frac{1}{2}$, for all $n \ge 1$. First, we will show that it satisfies the condition (C1). Choose $a = \frac{1}{5}$, $b = \frac{1}{2}$. Then we obtain that

$$\{\alpha_n\} = \{\beta_n\} = \{\frac{1}{2}\} \subseteq [\frac{1}{5}, \frac{1}{2}] = [a, b].$$

By definitions of T_1 and T_2 , it is clear that $F = F(T_1) \cap F(T_2) = \{0\}$. Next, we will show that T_1 and T_2 satisfy condition (E).

If x, y < 4, then $dist(x, T_1x) = dist(x, [0, \frac{x}{4}]) = |x - \frac{x}{4}| = |\frac{3}{4}x|$. Therefore

$$dist(x, T_1y) = dist(x, [0, \frac{y}{4}]) = |x - \frac{y}{4}| = |x - \frac{x}{4} + \frac{x}{4} - \frac{y}{4}|$$

$$\leq |x - \frac{x}{4}| + |\frac{x}{4} - \frac{y}{4}|$$

$$= |\frac{3}{4}x| + \frac{1}{4}|x - y|$$

$$\leq |\frac{3}{4}x| + |x - y| = dist(x, T_1x) + d(x, y).$$

If x, y = 4, then $dist(x, T_1x) = dist(x, \{1\}) = |x - 1|$. Therefore

$$dist(x, T_1y) = dist(x, \{1\}) = |x - 1|$$

$$\leq |x - 1| + |x - y|$$

$$= dist(x, T_1x) + d(x, y).$$

If x < 4 and y = 4, then $dist(x, T_1x) = dist(x, [0, \frac{x}{4}]) = |x - \frac{x}{4}| = |\frac{3}{4}x|$. Therefore

$$dist(x, T_1y) = dist(x, \{1\}) = |x - 1| = |x - \frac{x}{4} + \frac{x}{4} - 1|$$

$$\leq |x - \frac{x}{4}| + |\frac{x}{4} - 1|$$

$$= |x - \frac{x}{4}| + \frac{1}{4}|x - 4|$$

$$= |\frac{3}{4}x| + \frac{1}{4}|x - y|$$

$$\leq |\frac{3}{4}x| + |x - y| = dist(x, T_1x) + d(x, y).$$

If x = 4 and y < 4, then $dist(x, T_1x) = dist(x, \{1\}) = |x - 1|$. Therefore

$$dist(x, T_1y) = dist(x, [0, \frac{y}{4}]) = |x - \frac{y}{4}| = |x - 1 + 1 - \frac{y}{4}|$$

$$\leq |x - 1| + |1 - \frac{y}{4}|$$

$$= |x - 1| + \frac{1}{4}|4 - y|$$

$$= |x - 1| + \frac{1}{4}|x - y|$$

$$\leq |x - 1| + |x - y|$$

$$= dist(x, T_1x) + d(x, y).$$

Then we can conclude that, for all $x, y \in K$,

$$\operatorname{dist}(x, T_1 y) \le \mu \operatorname{dist}(x, T_1 x) + d(x, y), \text{ for some } \mu = 1.$$

We observe that

dist
$$(x, T_2 x)$$
 = dist $(x, [\frac{x}{6}, \frac{x}{2}])$ = $|x - \frac{x}{2}|$ = $|\frac{x}{2}|$

and

$$\operatorname{dist}(x, T_2 y) = \operatorname{dist}(x, [\frac{y}{6}, \frac{y}{2}]).$$

If $dist(x, T_2y) = |x - \frac{y}{6}|$, then we have

$$dist(x, T_2 y) = |x - \frac{y}{6}| = |x - \frac{x}{6} + \frac{x}{6} - \frac{y}{6}|$$

$$\leq |x - \frac{x}{6}| + |\frac{x}{6} - \frac{y}{6}|$$

$$= |\frac{5}{6}x| + \frac{1}{6}|x - y|$$

$$\leq \frac{5}{3}|\frac{x}{2}| + |x - y| = \frac{5}{3}dist(x, T_2 x) + d(x, y).$$

If $dist(x, T_2y) = |x - \frac{y}{2}|$, then we have

$$dist(x, T_2 y) = |x - \frac{y}{2}| = |x - \frac{x}{2} + \frac{x}{2} - \frac{y}{2}|$$

$$\leq |x - \frac{x}{2}| + |\frac{x}{2} - \frac{y}{2}|$$

$$= |\frac{x}{2}| + \frac{1}{2}|x - y|$$

$$\leq |\frac{x}{2}| + |x - y|$$

$$\leq \frac{5}{3}|\frac{x}{2}| + |x - y| = \frac{5}{3}dist(x, T_2 x) + d(x, y).$$

Then for $x, y \in K$, we have

$$\operatorname{dist}(x, T_2 y) \le \mu \operatorname{dist}(x, T_2 x) + d(x, y), \text{ for some } \mu = \frac{5}{3}.$$

Hence T_1 and T_2 are multivalued quasi-nonexpansive mappings. From $\{\alpha_n\} = \{\beta_n\} = \{\frac{1}{2}\}$, for $x_0 = \frac{3}{4}$ and using (1.3), we have $T_2x_0 = [\frac{1}{8}, \frac{3}{8}]$, taking $u_0 = \frac{1}{4} \in T_2x_0$, we obtain that

$$y_0 = W(x_0, u_0, \frac{1}{2}) = \frac{1}{2}x_0 + (1 - \frac{1}{2})u_0$$

= $\frac{1}{2} \cdot \frac{3}{4} + \frac{1}{2} \cdot \frac{1}{4}$
= $\frac{3}{8} + \frac{1}{8} = \frac{1}{2^3}(1 + 3) = \frac{1}{2^3}(4).$

Now we compute $T_1y_0 = [0, \frac{\frac{1}{2^3}(4)}{4}]$, taking $v_0 = \frac{1}{2^3} \in T_1y_0$, then

$$\begin{aligned} x_1 &= W(u_0, v_0, \frac{1}{2}) &= \frac{1}{2}u_0 + (1 - \frac{1}{2})v_0 \\ &= \frac{1}{2} \cdot \frac{1}{4} + \frac{1}{2} \cdot \frac{1}{2^3} = \frac{1}{2^3} + \frac{1}{2^4} \\ &= \frac{1}{2^3}[1 + \frac{1}{2}]. \end{aligned}$$

From definition of T_2 , we have $T_2x_1 = [\frac{\frac{1}{2^3}(1+\frac{1}{2})}{6}, \frac{\frac{1}{2^3}(1+\frac{1}{2})}{2}]$, taking $u_1 = \frac{1}{2^4} \in T_2x_1$, then

$$y_1 = W(x_1, u_1, \frac{1}{2}) = \frac{1}{2} \cdot \frac{1}{2^3} [1 + \frac{1}{2}] + \frac{1}{2} \cdot \frac{1}{2^4}$$
$$= \frac{1}{2^4} + \frac{1}{2^5} + \frac{1}{2^5} = \frac{1}{2^4} [1 + \frac{1}{2} + \frac{1}{2}].$$

Hence $T_1y_1 = [0, \frac{\frac{1}{2^4}(1+\frac{1}{2}+\frac{1}{2})}{4}]$, taking $v_1 = \frac{1}{2^5} \in T_1y_1$, then

$$\begin{aligned} x_2 &= W(u_1, v_1, \frac{1}{2}) &= \frac{1}{2}u_1 + (1 - \frac{1}{2})v_1 \\ &= \frac{1}{2} \cdot \frac{1}{2^4} + \frac{1}{2} \cdot \frac{1}{2^5} = \frac{1}{2^5} + \frac{1}{2^6} = \frac{1}{2^5}[1 + \frac{1}{2}] \end{aligned}$$

From definition of T_2 , we have $T_2 x_2 = [\frac{\frac{1}{2^5}(1+\frac{1}{2})}{6}, \frac{\frac{1}{2^5}(1+\frac{1}{2})}{2}]$, taking $u_2 = \frac{1}{2^6} \in T_2 x_2$, then

$$y_{2} = W(x_{2}, u_{2}, \frac{1}{2}) = \frac{1}{2} \cdot \frac{1}{2^{5}} [1 + \frac{1}{2}] + \frac{1}{2} \cdot \frac{1}{2^{6}}$$
$$= \frac{1}{2^{7}} + \frac{1}{2^{6}} + \frac{1}{2^{7}} = \frac{1}{2^{6}} [1 + \frac{1}{2} + \frac{1}{2}].$$

Hence $T_1y_2 = [0, \frac{\frac{1}{26}(1+\frac{1}{2}+\frac{1}{2})}{4}]$, taking $v_2 = \frac{1}{2^7} \in T_1y_2$, then

$$\begin{aligned} x_3 &= W(u_2, v_2, \frac{1}{2}) &= \frac{1}{2}u_2 + (1 - \frac{1}{2})v_2 \\ &= \frac{1}{2} \cdot \frac{1}{2^6} + \frac{1}{2} \cdot \frac{1}{2^7} \\ &= \frac{1}{2^7} + \frac{1}{2^8} = \frac{1}{2^7}[1 + \frac{1}{2}]. \end{aligned}$$

Inductively, we have $x_{n+1} = \frac{1}{2^{2n+3}}(1+\frac{1}{2})$. Therefore all conditions of Theorem 2.2 are satisfied. Then the sequence $\{x_n\}$ converges strongly to a point in F which is 0.

Using the algorithm (1.3) with the initial point $x_0 = \frac{3}{4}$, $u_0 = \frac{1}{4}$ we have numerical result appeared in Table 1.

n	x_n
1	0.187500
2	0.046875
3	0.011718
4	0.002929
5	0.000732
6	0.000183
7	0.000045
8	0.000011
9	0.000002
10	0.000000

Table 1: The values of the sequence $\{x_n\}$

4 Conclusion Remarks

Theorem 2.1, Theorem 2.2, Theorem 2.3, Theorem 2.4, Theorem 2.5, Theorem 2.6 and Theorem 2.7, are improvements and extensions of the corresponding results in the following senses:

- Our results propose for two generalized nonexpansive mappings instead of one generalized nonexpansive mapping in Kim et al. [9] (Theorem 12, Theorem 13, Theorem 14, Theorem 15, Theorem 17, Theorem 18 and Theorem 19).
- (2) We suppose that $T_i: K \to P(K)$ insteads of $T_i: K \to C(K)$, (i = 1, 2) in Chang et al. [1] (Theorem 2.1), where K is a nonempty closed convex subset of X, where P(K) is the collection of all nonempty proximal bounded and closed subsets of K and C(K) is the collection of all nonempty compact subset of K.
- (3) We suppose that a mapping T_i is a multivalued mapping satisfying the condition (E) (i = 1, 2) insteads of multivalued nonexpansive mappings in Chang et al. [1] (Theorem 2.1).

Acknowledgements : The first and the third authors would like to express their deep thanks to Naresuan University for supporting this research.

References

- S.S. Chang, G. Wang, L. Wang, Y.K. Tang, Z.L. Ma, Δ-Convergence theorems for multivalued nonexpansive mappings in hyperbolic spaces, Appl. Math. Comp. 249 (2014) 535-540.
- [2] K. Goebel, S. Reich, Uniform Convexity, Hyperbolic Geometry and Nonexpansive Mappings, Dekker, New York, 1984.
- [3] S. Reich, I. Shafrir, Nonexpansive iterations in hypernolic spaces, Nonlinear Anal. Theory Method Appl. 15 (1990) 537-558.
- [4] N. Pakkaranang, P. Kumam, Y.J. Cho, P. Saipara, A. Padcharoen, C. Khaofong, Strong convergence of modified viscosity implicit approximation methods for asymptotically nonexpansive mappings in complete CAT(0) spaces, J. Math. Computer Sci. 17 (2017) 345-354.
- [5] U. Kohlenbach, Some logical metatheorems with applications in functional analysis, Trans. Am. Math. Soc. 357 (2005) 89-128.
- [6] L. Leustean, A quadratic rate of asymptotic regularity for CAT(0) spaces, Math. Anal. Appl. 235 (2007) 386-399.
- [7] S. Chang, R.P. Agarwal, L. Wang, Existence and convergence theorems for multi-valued SCC-SKC-KSC-SCS-C-type mappings in hyperbolic spaces, Fixed Point Theory Appl. 2015:83 (2015).
- [8] J.T. Markin, Continuous depence of fixed point sets, Proc. Am. Math. Soc. 38 (1973) 545-547.

- [9] J.K. Kim, R.P. Pathak, S. Dashputre, S.D. Diwan, R. Gupta, Convergence theorems for generalized nonexpansive multivalued mappings in hyperbolic spaces, SpringerPlus 5:912 (2016).
- [10] S. Dompongsa, B. Panyanak, On Δ -convergence theorem in CAT(0) spaces, Comput. Math. Appl. 56 (10) (2008) 2572-2579.
- [11] L. Leustean, Nonexpansive iteration in uniformly convex W-hyperbolic spaces, In: A. Leizarowitz, BS. Mordukhovich, I. Shafrir, A. ZAslarski, Nonlinear Analysis and Optimization I : Nonlinear Analysis, Contemporary Mathematics, Am. Math. Soc. 513 (2010) 193-209.
- [12] A.R. Khan, H. Fukhar-ud-din, M.A. Kuan, An implicit algorithm for two finite families of nonexpansive map in hyperbolic spaces, Fixed Point Theory Appl. 54 (2012).
- [13] R.P. Agarwal, D. O'Regan, D.R. Sahu, Iterative construction of fixed points of nearly asymptotically nonexpansive mappings, Nonlinear Convex Anal. (2007) 61-79.

(Received 9 January 2018) (Accepted 8 June 2019)

THAI J. MATH. Online @ http://thaijmath.in.cmu.ac.th