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1 Introduction and Preliminaries

Fixed point theory has an important role for the various problems in Mathe-
matics. A metric space embedded with a convex structure is a nonlinear framework
for fixed point theory which one of convex structure is practicable in hyperbolic
spaces.
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The class of hyperbolic spaces contains normed linear spaces and convex sub-
sets, Hadamard manifolds as well as CAT(0) spaces in the sense of Gromov [2]
and the Hilbert ball equipped with the hyperbolic metric [3]. Strong convergence
of modified viscosity implicit approximation methods for asymptotically nonex-
pansive mappings in complete CAT(0) spaces has been studied by Pakkaranang et
al. [4]. Throughout in this paper we consider a hyperbolic space which is defined
by Kohlenbach [5] in 2005.

A hyperbolic space [5] is a metric space (X, d) together with a mapping W :
X2 × [0, 1]→ X satisfying the following statements:

(W1) d(u,W (x, y, α)) ≤ αd(u, x) + (1− α)d(u, y);

(W2) d(W (x, y, α),W (x, y, β)) = |α− β|d(x, y);

(W3) W (x, y, α) = W (y, x, (1− α));

(W4) d(W (x, z, α),W (y, w, α)) ≤ αd(x, y) + (1− α)d(z, w),

for all x, y, z, w ∈ X and α, β ∈ [0, 1].
A hyperbolic space (X, d,W ) is said to be uniformly convex [6] if for any r > 0

and ε ∈ (0, 2] there exists a δ ∈ (0, 1] such that for all u, x, y ∈ X, we have

d(W (x, y,
1

2
), u) ≤ (1− δ)r,

provided d(x, u) ≤ r, d(y, u) ≤ r and d(x, y) ≥ εr.
A mapping η : (0,∞)× (0, 2]→ (0, 1] which provides such δ = η(r, ε) for given

r > 0 and ε ∈ (0, 2] is well known as a modulus of uniformly convexity of X. We
call η monotone if it decreases with r (for a fixed ε), i.e., for any given ε > 0 and
for any r2 ≥ r1 > 0, we have η(r2, ε) ≤ η(r1, ε).

A nonempty subset K of a hyperbolic space X is convex if W (x, y, α) ∈ K for
any x, y ∈ K and α ∈ [0, 1].

Let (X, d) be a metric space, K be a nonempty subset of X and T be a multi-
valued mapping of K into set of all subsets of K. The set of fixed points of T
denoted by F (T ) = {x ∈ K : x ∈ Tx}.

A nonempty subset K of X is said to be proximal, if for each x ∈ X, there
exists an element y ∈ K such that

d(x, y) = dist(x,K) := inf
z∈K

d(x, z).

Remark 1.1. [7] It is well known that each weakly compact convex subset of
Banach space is proximal.

Let CB(X) be the collection of all nonempty closed bounded subsets of X
and P (X) be the collection of all nonempty proximal bounded subsets of X. The
Hausdorff metric H on CB(X) is defined by

H(A,B) := max{sup
x∈A

dist(x,B), sup
y∈B

dist(y,A)}, for all A,B ∈ CB(X).

We need the following definitions, lemmas, propositions that will be used in
the sequel.
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Definition 1.2. [8] A multivalued mapping T : K → CB(K) is said to be

(i) nonexpansive if H(Tx, Ty) ≤ d(x, y), for all x, y ∈ K;

(ii) quasi-nonexpansive if F (T ) 6= ∅ and H(Tx, Tp) ≤ d(x, p), for all x ∈ K and
p ∈ F (T ).

Definition 1.3. [9] A multivalued mapping T : K → CB(K) is said to satisfy
condition (Eµ) provided that

dist(x, Ty) ≤ µdist(x, Tx) + d(x, y), for all x, y ∈ K.

We say that T satisfies condition (E ) whenever T satisfies condition (Eµ) for some
µ ≥ 1.

Proposition 1.4. [9] If T : K → CB(K) is multivalued mapping satisfying con-
dition (E) with F (T ) 6= ∅, then T is a multivalued quasi-nonexpansive mapping.

Lemma 1.5. [9] Let T : K → CB(K) be a multivalued nonexpansive mapping.
Then T satisfies condition (E1).

We need the following definition of convergence in hyperbolic spaces [10] which
is called ∆-convergence. It plays an important role in the main results and we recall
some definitions and lemmas.

Let {xn} be a bounded sequence in a hyperbolic space X. We can define a
function r(·, {xn}) : X → [0,∞) by

r(x, {xn}) = lim sup
n→∞

d(x, xn), for all x ∈ X.

The asymptotic radius of a bounded sequence {xn} with respect to a nonempty
subset K of X is defined and denoted by

rK({xn}) = inf{r(x, {xn}) : x ∈ K}.

The asymptotic center of a bounded sequence {xn} with respect to a nonempty
subset K of X is defined and denoted by

ACK({xn}) = {x ∈ X : r(x, {xn}) ≤ r(y, {xn}), for all y ∈ K}.

Recall that a sequence {xn} in X is said to ∆-converge to x ∈ X if x is the
unique asymptotic center of {un} for every subsequence {un} of {xn}. In this
case, we write ∆-limn→∞ xn = x and call x the ∆-lim of {xn}.

Lemma 1.6. [11] Let (X, d,W ) be a complete uniformly convex hyperbolic space
with a monotone modulus of uniform convexity η. Then every bounded sequence
{xn} in X has a unique asymptotic center with respect to any nonempty closed
convex subset K of X.
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Lemma 1.7. [12] Let (X, d,W ) be a complete uniformly convex hyperbolic space
with a monotone modulus of uniform convexity η. Let x ∈ X and {αn} be a
sequence in [a, b] for some a, b ∈ (0, 1). If {xn} and {yn} are sequences in X such
that lim supn→∞ d(xn, x) ≤ c, lim supn→∞ d(yn, x) ≤ c,
limn→∞ d(W (xn, yn, αn), x) = c for some c ≥ 0, then

lim
n→∞

d(xn, yn) = 0.

Lemma 1.8. [7] Let (X, d,W ) be a complete uniformly convex hyperbolic space
with a monotone modulus of uniform convexity η, then X possesses the Opial
property, i.e., for any sequence {xn} ⊂ X with ∆-limn→∞ xn = x and for any
y ∈ X with x 6= y, then

lim sup
n→∞

d(xn, x) < lim sup
n→∞

d(xn, y).

Lemma 1.9. [7] Let (X, d,W ) be a complete uniformly convex hyperbolic space
with a monotone modulus of uniform convexity η, K be a subset of X and {xn} be a
bounded sequence in X with AC({xn}) = {p}. Suppose that {un} is a subsequence
of {xn} with AC({un}) = {u}, and the sequence {d(xn, u)} is convergent, then
p = u.

In 2016, Kim et al. [9] established the existence of a fixed point for generalized
nonexpansive multivalued mappings in hyperbolic spaces as the following lemma.

Lemma 1.10. [9] Let (X, d,W ) be a complete uniformly convex hyperbolic space
with monotone modulus of uniform convexity η, K be a nonempty closed convex
subset of X, and T : K → P (K) be a multivalued mapping satisfying the condition
(E) with convex values. If {xn} is a sequence in K such that ∆- limn→∞ xn = z
and limn→∞ dist(xn, Txn) = 0, then z is a fixed point of T .

Moreover, they [9] established ∆-convergence and strong convergence theorems
for the iterative sequence induced by Chang et al. [1].

Theorem 1.11. [9] Let (X, d,W ) be a complete uniformly convex hyperbolic space
with monotone modulus of uniform convexity η, K be a nonempty closed convex
subset of X, and T : K → P (K) be a multivalued mapping satisfing the condition
(E) with convex values. Suppose that F (T ) 6= ∅ and Tp = {p} for each p ∈ F (T ).
For arbitrarily chosen x0 ∈ K, sequence {xn} is defined by

xn+1 = W (un, vn, αn), (1.1)

yn = W (xn, un, βn),

where vn ∈ Tyn, un ∈ Txn, {αn} and {βn} are real sequences satisfying the fol-
lowing condition:

(C1) there exist constants a, b ∈ (0, 1) with 0 < b(1−a) ≤ 1
2 such that {αn} ⊂ [a, b]

and {βn} ⊂ [a, b].
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Then the sequence {xn} defined by (1.1) is ∆-convergent to a point in F (T ).

Lemma 1.12. [9] Let (X, d,W ) be a complete uniformly convex hyperbolic space,
K be a nonempty closed convex subset of X. Let T : K → P (K) be a multivalued
mapping with F (T ) 6= ∅ and let PT : K → 2k be a multivalued mapping defined by

PT (x) := {y ∈ Tx : d(x, y) = dist(x, Tx)}, x ∈ K. (1.2)

Then the following conclusions hold:

(1) F (T ) = F (PT );

(2) PT (p) = {p}, for each p ∈ F (T );

(3) for each x ∈ K, PT (x) is a closed subset of T (x) and so it is compact;

(4) d(x, Tx) = d(x, PT (x)) for each x ∈ K.

On the other hand, in the case of a single-valued mapping T : K → K, we
known that Mann and Ishikawa iteration processes are defined as:

xn+1 = (1− αn)xn + αnTxn, n ∈ N

and

xn+1 = (1− αn)xn + αnTyn,

yn = (1− βn)xn + βnTxn, n ∈ N,

respectively.
In 2007, Agarwal-O’Regan-Sahu [13] introduced the iteration process:

xn+1 = (1− αn)Txn + αnTyn,

yn = (1− βn)xn + βnTxn, n ∈ N.

They presented that their process is dependent of Mann and Ishikawa and con-
verges faster than of these, for more details see [13].

In 2014, Chang et al. [1] introduced the mixed Agarwal-O’Regan-Sahu type
iterative scheme for the multivalued nonexpansive in the setting of hyperbolic
spaces as follows:

xn+1 = W (un, vn, αn), (1.3)

yn = W (xn, un, βn),

where vn ∈ T1yn, un ∈ T2xn, {αn} and {βn} are real sequences.
The purpose of this paper is to establish ∆-convergence and strong conver-

gence theorems for the mixed Agarwal-O’Regan-Sahu type iterative scheme [1] to
approximate a common fixed point for two generalized nonexpansive multivalued
mappings in hyperbolic spaces. The results presented in this paper extend and
improve some recent results in the literature.
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2 Main Results

In this section, we establish ∆-convergence and strong convergence theorems
for the mixed Agarwal-O’Regan-Sahu type iterative scheme [1] to approximate a
common fixed point for two generalized nonexpansive multivalued mappings in
hyperbolic spaces.

Theorem 2.1. Let (X, d,W ) be a complete uniformly convex hyperbolic space
with monotone modulus of uniform convexity η, K be a nonempty closed convex
subset of X, and Ti : K → P (K) (i = 1, 2) be a multivalued mapping satisfying

the condition (E) with convex values. Suppose that F =
⋂2
i=1 F (Ti) 6= ∅ and

Tip = {p} for each p ∈ F (i = 1, 2). For arbitrarily chosen x1 ∈ K, sequence {xn}
is the Agarwal-O’Regan-Sahu type sequence defined by (1.3) where {αn} and {βn}
are real sequences satisfying the following condition:

(C1) there exist constants a, b ∈ (0, 1) such that {αn} ⊂ [a, b] and {βn} ⊂ [a, b].

Then the sequence {xn} defined by (1.3) is ∆-convergent to a point in F .

Proof. We divide the proof into 3 steps as follows:
Step 1: First, we prove that limn→∞ d(xn, p) exists for p ∈ F .
By using Proposition 1.4 we obtain that each multivalued mapping T satisfying
condition (E) with F (T ) 6= ∅ is a multivalued quasi-nonexpansive mapping. Hence
for each p ∈ F , by (1.3), we have

d(yn, p) = d(W (xn, un, βn), p)

≤ (1− βn)d(xn, p) + βnd(un, p)

≤ (1− βn)d(xn, p) + βndist(un, T2p)

≤ (1− βn)d(xn, p) + βnH(T2xn, T2p)

≤ (1− βn)d(xn, p) + βnd(xn, p)

≤ d(xn, p). (2.1)

This implies that

d(xn+1, p) = d(W (un, vn, αn), p)

≤ (1− αn)d(un, p) + αnd(vn, p)

≤ (1− αn)dist(un, T2p) + αndist(vn, T1p)

≤ (1− αn)H(T2xn, T2p) + αnH(T1yn, T1p)

≤ (1− αn)d(xn, p) + αnd(yn, p)

≤ (1− αn)d(xn, p) + αnd(xn, p)

≤ d(xn, p). (2.2)

Therefore that sequence {d(xn, p)} is non-increasing and bounded below. It follows
that limn→∞ d(xn, p) exists for each p ∈ F .
Step 2: We now prove that

lim
n→∞

dist(xn, Tixn) = 0, for each i = 1, 2. (2.3)
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By Step 1, we know that limn→∞ d(xn, p) exists for each p ∈ F . Suppose that
limn→∞ d(xn, p) = c ≥ 0. If c = 0, then we obtain that

dist(xn, Tixn) ≤ d(xn, p) + dist(Tixn, p)

≤ d(xn, p) +H(Tixn, Tip)

≤ d(xn, p) + d(xn, p)

≤ 2d(xn, p).

This implies that limn→∞ dist(xn, Tixn) = 0, for each i = 1, 2. Therefore (2.3) is
true. If c > 0, then by using (2.1), we obtain that

lim sup
n→∞

d(yn, p) ≤ lim sup
n→∞

d(xn, p) = c. (2.4)

Since
d(vn, p) = dist(vn, T1p) ≤ H(T1yn, T1p) ≤ d(yn, p),

we have
lim sup
n→∞

d(vn, p) ≤ c. (2.5)

Similarly, since

d(un, p) = dist(un, T2p) ≤ H(T2xn, T2p) ≤ d(xn, p),

we obtain that
lim sup
n→∞

d(un, p) ≤ c. (2.6)

Since limn→∞ d(xn+1, p) = c, by using (2.5), (2.6) and Lemma 1.7, we have

lim
n→∞

d(un, vn) = 0. (2.7)

On the other hand, by (1.3), we have

d(xn+1, p) = d(W (un, vn, αn), p)

≤ (1− αn)d(un, p) + αnd(vn, p)

≤ (1− αn)dist(un, T2p) + αndist(vn, T1p)

≤ (1− αn)H(T2xn, T2p) + αnH(T1yn, T1p)

≤ (1− αn)d(xn, p) + αnd(yn, p)

= d(xn, p)− αnd(xn, p) + αnd(yn, p).

This implies that

d(xn, p) ≤
d(xn, p)− d(xn+1, p)

αn
+ d(yn, p) ≤

d(xn, p)− d(xn+1, p)

a
+ d(yn, p).

(2.8)
Taking inferior limit to the both sides of the above inequality, we obtain that

c ≤ lim inf
n→∞

d(yn, p). (2.9)
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By using (2.4) and (2.8), we have

lim
n→∞

d(yn, p) = c. (2.10)

By Lemma 1.7, (2.6), (2.10) and limn→∞ d(xn, p) = c, then we have

lim
n→∞

d(un, xn) = 0. (2.11)

Therefore
dist(xn, T2xn) ≤ d(un, xn)→ 0 as n→∞. (2.12)

On the other hand, it follows from (1.3) and (2.11) that

d(yn, xn) = d(W (xn, un, βn), xn) ≤ βnd(un, xn), (2.13)

and

dist(yn, T1yn) ≤ d(yn, vn)

= d(W (xn, un, βn), vn)

≤ (1− βn)d(xn, vn) + βnd(un, vn)

≤ (1− βn)[d(xn, un) + d(un, vn)] + βnd(un, vn).

Taking limit n→∞ and using (2.7) and (2.11) in above inequality, we have

lim
n→∞

dist(yn, T1yn) = 0. (2.14)

Since T1 satisfies the condition (E), we have

dist(xn, T1xn) ≤ d(xn, yn) + dist(yn, T1xn)

≤ d(xn, yn) + µdist(yn, T1yn) + d(yn, xn)

= 2d(xn, yn) + µdist(yn, T1yn).

Taking limit n→∞ and using (2.13) and (2.14), we have

lim
n→∞

dist(xn, T1xn) = 0.

This implies that, limn→∞ dist(xn, Tixn) = 0, i = 1, 2.
Step 3: We finally prove that the sequence {xn} is ∆-convergent to a point in

F =
⋂2
i=1 F (Ti). Denote W∆({xn}) =

⋃
{un}⊂{xn}AC({un}). We now prove that

W∆({xn}) ⊂ F . Let u ∈W∆({xn}). Then there exists a subsequence {un} of {xn}
such that AC({un}) = {u}. By applying Lemma 1.6, there exists a subsequence
{vn} of {un} such that ∆-limn→∞ vn = p ∈ K. Since limn→∞ dist(vn, Tivn) =
0 (i = 1, 2), it follows from Lemma 1.10, we have p ∈ F . Since {d(un, p)} converges
from Lemma 1.9, we have u = p ∈ F . It follows that W∆({xn}) ⊂ F . We next
prove that W∆({xn}) consists of exactly one point. Let {un} be a subsequence of
{xn} such that AC({un}) = {u} and AC({xn}) = {x}. Since u ∈ W∆({xn}) ⊂
F , we have limn→∞ d(xn, u) exists. By Lemma 1.9, we obtain that x = u ∈
W∆({xn}). Therefore W∆({xn}) consists of exactly one point. Hence the sequence
{xn} is ∆-convergent to element of F .
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We now illustrate the strong convergence theorems in the setting of complete
uniformly convex hyperbolic spaces.

Theorem 2.2. Let (X, d,W ) be a complete uniformly convex hyperbolic space
with monotone modulus of uniform convexity η, K be a nonempty compact convex
subset of X and Ti : K → CB(X) (i = 1, 2) be a multivalued mapping satisfying

the condition (E) with convex values. Suppose that F =
⋂2
i=1 F (Ti) 6= ∅ and

Tip = {p} for each p ∈ F (i = 1, 2). Then the sequence {xn} defined by (1.3)
converges strongly to a point in F .

Proof. For all x ∈ K and for all i = 1, 2, by the assumption, we obtain that Tix is
a bounded closed and convex subset K. Since K is compact and Tix is a nonempty
compact and convex subset of K, we have Tix is a bounded proximal subset in
K. This implies that Ti : K → P (K) for all i = 1, 2. Therefore all conditions of
Theorem 2.1 are satisfied. From (2.2) and (2.3) we obtain that

lim
n→∞

d(xn, p) exists and lim
n→∞

dist(xn, Tixn) = 0,

for all p ∈ F and for all i = 1, 2. Since K is compact, there exists a subsequence
{xnk

} of {xn} converging strong to q ∈ K. Since T1 satisfies the condition (E),
there exists µ ≥ 1 and then

dist(q, T1q) ≤ d(q, xnk
) + dist(xnk

, T1q)

≤ d(q, xnk
) + µdist(xnk

, T1xnk
) + d(xnk

, q)

≤ 2d(q, xnk
) + µdist(xnk

, T1xnk
).

By taking the limit as k → ∞, we have dist(q, T1q) = 0 and it follows that
q ∈ T1q. Similarly, we can prove that q ∈ T2q. This implies that q ∈ F . Since
limn→∞ d(xn, q) exists, we have

lim
n→∞

d(xn, q) = lim
k→∞

d(xnk
, q) = 0.

This show that {xn} converges strongly to a point in F .

Theorem 2.3. Let (X, d,W ) be a complete uniformly convex hyperbolic space
with monotone modulus of uniform convexity η, K be a nonempty compact convex
subset of X and Ti : K → CB(X) (i = 1, 2) be a multivalued mapping satisfying

the condition (E) with convex values. Suppose that F =
⋂2
i=1 F (Ti) 6= ∅ and

Tip = {p} for each p ∈ F (i = 1, 2). Then the sequence {xn} defined by (1.3)
converges strongly to a point in F if and only if lim infn→∞ dist(xn, F ) = 0.

Proof. Assume that limn→∞ d(xn, p) = 0 for some p ∈ F . Since

dist(xn, F ) ≤ d(xn, p), for all n ∈ N.
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By taking limit inferior n→∞ in the above inequality, we have

lim inf
n→∞

dist(xn, F ) = 0.

Conversely, suppose that lim infn→∞ dist(xn, F ) = 0. From (2.2), we have

d(xn+1, p) ≤ d(xn, p), for all p ∈ F.

It follows that dist(xn+1, F ) ≤ dist(xn, F ) for all n ∈ N.
Therefore lim

n→∞
dist(xn+1, F ) exists and limn→∞ dist(xn+1, F ) = 0. This implies

that, we can choose a subsequence {xnk
} of {xn} and sequence {pk} in F such

that

d(xnk
, pk) <

1

2k
,

for all k ∈ N. From (2.2), we have

d(xnk+1
, pk) ≤ d(xnk

, pk) <
1

2k
.

Therefore

d(pk+1, pk) ≤ d(pk+1, xnk+1
) + d(xnk+1

, pk)

<
1

2k+1
+

1

2k
<

1

2k−1
.

It follows that {pk} is a Cauchy sequence in K and it converges to some w ∈ K.
Since

dist(pk, Tiw) ≤ H(Tipk, Tiw) ≤ d(pk, w)

and pk → w as k → ∞, we have dist(w, Tiw) = 0. Therefore w ∈ Tiw for
each i = 1, 2. This yields w ∈ F . Since {xnk

} converges strongly to w and
limn→∞ d(xn, w) exists, we have {xn} converges strongly to w. Therefore the
proof is complete.

Theorem 2.4. Let (X, d,W ) be a complete uniformly convex hyperbolic space
with monotone modulus of uniform convexity η, K be a nonempty compact convex
subset of X and Ti : K → CB(X) (i = 1, 2) be a multivalued mapping satisfying

the condition (E) with convex values. Suppose that F =
⋂2
i=1 F (Ti) 6= ∅ and

Tip = {p} for each p ∈ F (i = 1, 2). Let {xn} be defined by (1.3). Suppose
that there exists an increasing function f : [0,∞) → [0,∞) with f(0) = 0, where
f(r) > 0 for all r > 0 such that

dist(xn, Tixn) ≥ f(dist(xn, F )), i = 1, 2.

Then the sequence {xn} converges strongly to a point in F .
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Proof. In the proof of Theorem 2.1, we obtain that dist(xn, Tixn) = 0, i = 1, 2.
By the assumption, we have

lim
n→∞

f(dist(xn, F )) ≤ lim
n→∞

dist(xn, Tixn) = 0, i = 1, 2.

It follows that
lim
n→∞

f(dist(xn, F )) = 0.

Since f : [0,∞)→ [0,∞) is an increasing function with f(0) = 0, we can conclude
that limn→∞ dist(xn, F ) = 0. By Theorem 2.3, we obtain that {xn} converges
strongly to a point in F . Therefore the proof is complete.

Theorem 2.5. Let (X, d,W ) be a complete uniformly convex hyperbolic space with
monotone modulus of uniform convexity η, K be a nonempty closed convex subset
of X and Ti : K → CB(K) (i = 1, 2) be a multivalued mapping with convex values.

Suppose that F =
⋂2
i=1 F (Ti) 6= ∅. Let PTi

be a multivalued mapping satisfying
the condition (E) (i = 1, 2). For arbitrarily chosen x1 ∈ K, sequence {xn} be a
sequence defined by

xn+1 = W (un, vn, αn), (2.15)

yn = W (xn, un, βn),

where un ∈ PT2
xn, vn ∈ PT1

yn = PT1(W (xn, un, βn)). Let {αn} and {βn} be real
sequences satisfying the condition (C1). Then the sequence {xn} defined by (2.15)
is ∆-convergent to a point in F .

Proof. By Lemma 1.12, we know that the mapping PTi , i = 1, 2 defined by (1.2)
has the following property, for each i = 1, 2, PTi

: K → P (K) is multivalued

mappings with
⋂2
i=1 F (PTi

) =
⋂2
i=1 F (Ti) 6= ∅ and

PTi(p) = {p}, for each p ∈ F.

By replacing the mappings Ti by PTi
in Theorem 2.1, i = 1, 2, we obtain that all

the conditions in Theorem 2.1 are satisfied. This implies that {xn} is ∆-convergent
to a point in F .

Using the result in Step 1 and Step 2 of Theorem 2.1 with the sequence {xn}
defined by (2.15) and the same technique as in the proof of Theorem 18 and
Theorem 19 of Kim et al. [9], we get the following strong convergence results for
multivalued mappings PTi

satisfying the condition (E), i = 1, 2 without proving.

Theorem 2.6. Let (X, d,W ) be a complete uniformly convex hyperbolic space
with monotone modulus of uniform convexity η, K be a nonempty closed convex
subset of X and Ti : K → CB(K) (i = 1, 2) be a multivalued mapping with convex

values. Suppose that F =
⋂2
i=1 F (Ti) 6= ∅. Let PTi

(i = 1, 2) be a multivalued
mapping satisfying the condition (E) (i = 1, 2 . For arbitrarily x1 ∈ K, let {xn}
be a sequence in K defined by (2.15). Then the sequence {xn} converges strongly
to a point in F if and only if lim infn→∞ dist(xn, F )) = 0.
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Theorem 2.7. Let (X, d,W ) be a complete uniformly convex hyperbolic space
with monotone modulus of uniform convexity η, K be a nonempty closed convex
subset of X and Ti : K → CB(K) (i = 1, 2) be a multivalued mapping with convex

values. Suppose that F =
⋂2
i=1 F (Ti) 6= ∅. Let PTi

(i = 1, 2) be a multivalued
mapping satisfying the condition (E). Let {xn} be a sequence in K defined by
(2.15). Suppose that there exists an increasing function f : [0,∞) → [0,∞) with
f(0) = 0, where f(r) > 0 for all r > 0 such that

dist(xn, Tixn) ≥ f(dist(xn, F ), i = 1, 2.

Then the sequence {xn} converges strongly to a point in F .

3 Numerical Example

Let X = R with metric d(x, y) = |x − y| and K = [0, 4]. Define W : X2 ×
[0, 1] → X by W (x, y, α) := αx + (1 − α)y for all x, y ∈ X and α ∈ [0, 1]. Then
(X, d,W ) is a complete uniformly hyperbolic space with a monotone modulus of
uniform convexity and K is a nonempty closed convex subset of X. Let T1, T2 :
K → CB(K) be defined by

T1x =

{
[0, x4 ], x < 4;

{1}, x = 4,

and
T2x = [

x

6
,
x

2
].

Set αn = βn = 1
2 , for all n ≥ 1. First, we will show that it satisfies the condition

(C1). Choose a = 1
5 , b = 1

2 . Then we obtain that

{αn} = {βn} = {1

2
} ⊆ [

1

5
,

1

2
] = [a, b].

By definitions of T1 and T2, it is clear that F = F (T1) ∩ F (T2) = {0}.
Next, we will show that T1 and T2 satisfy condition (E).

If x, y < 4, then dist(x, T1x) = dist(x, [0, x4 ]) = |x− x
4 | = |

3
4x|. Therefore

dist(x, T1y) = dist(x, [0,
y

4
]) = |x− y

4
| = |x− x

4
+
x

4
− y

4
|

≤ |x− x

4
|+ |x

4
− y

4
|

= |3
4
x|+ 1

4
|x− y|

≤ |3
4
x|+ |x− y| = dist(x, T1x) + d(x, y).

If x, y = 4, then dist(x, T1x) = dist(x, {1}) = |x− 1|. Therefore

dist(x, T1y) = dist(x, {1}) = |x− 1|
≤ |x− 1|+ |x− y|
= dist(x, T1x) + d(x, y).
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If x < 4 and y = 4, then dist(x, T1x) = dist(x, [0, x4 ]) = |x − x
4 | = | 34x|.

Therefore

dist(x, T1y) = dist(x, {1}) = |x− 1| = |x− x

4
+
x

4
− 1|

≤ |x− x

4
|+ |x

4
− 1|

= |x− x

4
|+ 1

4
|x− 4|

= |3
4
x|+ 1

4
|x− y|

≤ |3
4
x|+ |x− y| = dist(x, T1x) + d(x, y).

If x = 4 and y < 4, then dist(x, T1x) = dist(x, {1}) = |x− 1|. Therefore

dist(x, T1y) = dist(x, [0,
y

4
]) = |x− y

4
| = |x− 1 + 1− y

4
|

≤ |x− 1|+ |1− y

4
|

= |x− 1|+ 1

4
|4− y|

= |x− 1|+ 1

4
|x− y|

≤ |x− 1|+ |x− y|
= dist(x, T1x) + d(x, y).

Then we can conclude that, for all x, y ∈ K,

dist(x, T1y) ≤ µdist(x, T1x) + d(x, y), for some µ = 1.

We observe that

dist(x, T2x) = dist(x, [
x

6
,
x

2
]) = |x− x

2
| = |x

2
|

and

dist(x, T2y) = dist(x, [
y

6
,
y

2
]).

If dist(x, T2y) = |x− y
6 |, then we have

dist(x, T2y) = |x− y

6
| = |x− x

6
+
x

6
− y

6
|

≤ |x− x

6
|+ |x

6
− y

6
|

= |5
6
x|+ 1

6
|x− y|

≤ 5

3
|x
2
|+ |x− y| = 5

3
dist(x, T2x) + d(x, y).
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If dist(x, T2y) = |x− y
2 |, then we have

dist(x, T2y) = |x− y

2
| = |x− x

2
+
x

2
− y

2
|

≤ |x− x

2
|+ |x

2
− y

2
|

= |x
2
|+ 1

2
|x− y|

≤ |x
2
|+ |x− y|

≤ 5

3
|x
2
|+ |x− y| = 5

3
dist(x, T2x) + d(x, y).

Then for x, y ∈ K, we have

dist(x, T2y) ≤ µdist(x, T2x) + d(x, y), for some µ =
5

3
.

Hence T1 and T2 are multivalued quasi-nonexpansive mappings.
From {αn} = {βn} = { 1

2}, for x0 = 3
4 and using (1.3), we have T2x0 = [ 1

8 ,
3
8 ],

taking u0 = 1
4 ∈ T2x0, we obtain that

y0 = W (x0, u0,
1

2
) =

1

2
x0 + (1− 1

2
)u0

=
1

2
· 3

4
+

1

2
· 1

4

=
3

8
+

1

8
=

1

23
(1 + 3) =

1

23
(4).

Now we compute T1y0 = [0,
1
23

(4)

4 ], taking v0 = 1
23 ∈ T1y0, then

x1 = W (u0, v0,
1

2
) =

1

2
u0 + (1− 1

2
)v0

=
1

2
· 1

4
+

1

2
· 1

23
=

1

23
+

1

24

=
1

23
[1 +

1

2
].

From definition of T2, we have T2x1 = [
1
23

(1+ 1
2 )

6 ,
1
23

(1+ 1
2 )

2 ], taking u1 = 1
24 ∈ T2x1,

then

y1 = W (x1, u1,
1

2
) =

1

2
· 1

23
[1 +

1

2
] +

1

2
· 1

24

=
1

24
+

1

25
+

1

25
=

1

24
[1 +

1

2
+

1

2
].

Hence T1y1 = [0,
1
24

(1+ 1
2 + 1

2

4 ], taking v1 = 1
25 ∈ T1y1, then

x2 = W (u1, v1,
1

2
) =

1

2
u1 + (1− 1

2
)v1

=
1

2
· 1

24
+

1

2
· 1

25
=

1

25
+

1

26
=

1

25
[1 +

1

2
].
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From definition of T2, we have T2x2 = [
1
25

(1+ 1
2 )

6 ,
1
25

(1+ 1
2 )

2 ], taking u2 = 1
26 ∈ T2x2,

then

y2 = W (x2, u2,
1

2
) =

1

2
· 1

25
[1 +

1

2
] +

1

2
· 1

26

=
1

27
+

1

26
+

1

27
=

1

26
[1 +

1

2
+

1

2
].

Hence T1y2 = [0,
1
26

(1+ 1
2 + 1

2

4 ], taking v2 = 1
27 ∈ T1y2, then

x3 = W (u2, v2,
1

2
) =

1

2
u2 + (1− 1

2
)v2

=
1

2
· 1

26
+

1

2
· 1

27

=
1

27
+

1

28
=

1

27
[1 +

1

2
].

Inductively, we have xn+1 =
1

22n+3
(1 +

1

2
). Therefore all conditions of Theorem

2.2 are satisfied. Then the sequence {xn} converges strongly to a point in F which
is 0.

Using the algorithm (1.3) with the initial point x0 = 3
4 , u0 = 1

4 we have nu-
merical result appeared in Table 1.

n xn
1 0.187500
2 0.046875
3 0.011718
4 0.002929
5 0.000732
6 0.000183
7 0.000045
8 0.000011
9 0.000002

10 0.000000

Table 1: The values of the sequence {xn}

4 Conclusion Remarks

Theorem 2.1, Theorem 2.2, Theorem 2.3, Theorem 2.4, Theorem 2.5, Theorem
2.6 and Theorem 2.7, are improvements and extensions of the corresponding results
in the following senses:
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(1) Our results propose for two generalized nonexpansive mappings instead of
one generalized nonexpansive mapping in Kim et al. [9] (Theorem 12, The-
orem 13, Theorem 14, Theorem 15, Theorem 17, Theorem 18 and Theorem
19).

(2) We suppose that Ti : K → P (K) insteads of Ti : K → C(K), (i = 1, 2) in
Chang et al. [1] (Theorem 2.1), where K is a nonempty closed convex subset
of X, where P (K) is the collection of all nonempty proximal bounded and
closed subsets of K and C(K) is the collection of all nonempty compact
subset of K.

(3) We suppose that a mapping Ti is a multivalued mapping satisfying the
condition (E) (i = 1, 2) insteads of multivalued nonexpansive mappings in
Chang et al. [1] (Theorem 2.1).

Acknowledgements : The first and the third authors would like to express their
deep thanks to Naresuan University for supporting this research.
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