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1 Introduction and Preliminaries

An element z of a semigroup S is called regular if there exists y € S such that
x = xyx. If all its elements of S are regular, we call S a reqular semigroup. The
set of all regular elements of S is denoted by Reg(.S).

In 1951, Green [I] defined the equivalence relations £, R and J on a semigroup
S by the rules that, for a,b € 5,

(a,b) € R if and only if aS? = bS1,

(a,b) € L if and only if S'a = S'b, and

(a,b) € J if and only if StaS* = S1bS?
where S is the semigroup with identity obtained from S by adjoining an iden-
tity if necessary. Then he also defined the equivalence relations H = LN R and
D = L oR. These five equivalence relations are known as Green’s relations. Hence
R,LCDCJ.

In 1952, Vagner [2] defined the natural partial order for any inverse semigroup
S by defining < on § as follows:

a < b if and only if a = be for some idempotent e € S. (1.1)

Later, Nambooripad [3] extended this partial order < on a regular semigroup S
by
a < b if and only if a = eb = bf for some idempotents ¢, f € S. (1.2)

For an inverse semigroup S this relation is just the natural partial order (1.1)).
In 1986, Mitsch [4] extended the above partial order to any semigroup S by
defining < on S as follows:

a < b if and only if a = zb = by and a = ay for some =,y € S*. (1.3)

This natural partial order coincides with the relation if the semigroup S is
regular.

Let T(X) be the full transformation semigroup on a set X under the usual
composition of mappings. In 1955, Miller and Doss [5] proved that T(X) is a
regular semigroup and described its Green’s relations. Over the past decades,
notions of regularity and Green’s relations of subsemigroups of T(X) have been
widely considered, see [6], [7] and [8]. In [6], the author introduced a family of
subsemigroups of T'(X) defined by

Tp(X)={aeT(X):Va,bec X,(a,b) € E= (aa,ba) € E}

where F is an arbitrary equivalence relation on X. The author investigated the
regularity and Green’s relations for Tg(X). Also, the natural partial order on
Tr(X) was described in [9].
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For an equivalence relation E on a set X, let R be a cross-section of the
partition X/E induced by E (i.e., [RNA| =1 for all A € X/FE). In [1I0], Aratijo
and Konieczny defined a subsemigroup of T'(X) as follows:

T(X,E,R)={aeT(X): Ra CRand Vz,y € X, (z,y) € E = (zo,y«) € E}.

Clearly, T(X,E,R) C Tg(X). The semigroup T(X, E, R) is the centralizer of
the idempotent transformation with kernel £ and image R. They determined the
structure of T'(X, E, R) in terms of Green’s relations and described the regular
elements of T'(X, E, R) in [7]. Moreover, the natural partial order on T'(X, E, R)
was discussed in [I1]. Now, we consider the following subset of T (X):

Tp(X,R)={aeT(X): Ra =R and Vz,y € X, (z,y) € E = (za,ya) € E}.

Then Tg(X, R) is a subsemigroup of T'(X, E, R). In [8], the authors investigated
regular and E-inversive elements of the semigroup T (X, R). The regularity of
the semigroup Tg (X, R) was characterized as follows:

Theorem 1.1. ([8]) Let o € Tg(X, R). Then « is reqular if and only if a|r is an
injection.

Theorem 1.2. ([8]) Tr(X, R) is a regular semigroup if and only if R is finite.

Moreover, in [12], the authors showed that Reg(Tr(X, R)) is a regular sub-
semigroup of Tg(X, R).

Theorem 1.3. ([12]) Reg(Tr (X, R)) is the largest reqular subsemigroup of Tg (X, R).

The purpose of this paper is to investigate Green’s relations on the semigroup
Reg(Tr(X, R)). Moreover, we study the natural partial order on Reg(Tr(X, R))
and characterize when two elements of Reg(Tr(X, R)) are related under this order.
Also, their maximal, minimal and covering elements are described.

In what follows, let E be an equivalence relation on a set X and R a cross-
section of the partition of X. Denote by X/E the quotient set and F, the E-class
containing r for all r € R.

2 Green’s Relations

In this section, we focus on Green’s relations for regular elements of the semi-
group Tr(X, R). First, we need the following lemmas.

Lemma 2.1. ([0]) Let a« € T(X). Then a € Tg(X) if and only if for every
A€ X/E, there exists B € X/E such that Ao C B.

Lemma 2.2. ([12]) Let a, § € Tr(X, R). Then aff € Reg(Tg(X, R)) if and only
if « and B are elements in Reg(Tg(X, R)).
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Lemma 2.3. Let o € Tg(X,R) and r,s € R. If ¢ € E, with za € Ej, then
E,a CFE, and ra = s.

Proof. Suppose that ¢ € E, with za € E;. Let y € E,.. Then (z,y) € E. Since
a € Tg(X), (za,ya) € E and so ya € E,. Hence E.a C E;. Since ra € E; N R,
it follows that ra = s. O

For o € T(X), the symbol m(«) will denote the decomposition of X induced
by the map «, namely
m(a) = {ya~t 1y € Xa}.

Hence m(a) = X/ ker v, where kera = {(z,y) € X x X : za = ya}.

Lemma 2.4. Leta, 8 € Reg(Tg(X, R)). Then a = Bu for some i € Reg(Tr(X, R))
if and only if ker 8 C ker av.

Proof. Suppose that a = Bu for some u € Reg(Tr(X,R)). Let (z,y) € kerf.
Then z8 = yfB and so za = zfu = yBu = ya. This shows that (z,y) € ker a.
Hence ker 8 C ker a.

Conversely, suppose that ker 8 C ker ov. For every y € X\ R, we choose and
fix an element a, € X \ R such that a,8 = y. And every r € R, we choose and fix
an element a, € R such that a,.8 = r (since RG = R). For each r € R, we define
a map p, : E. - X by

- _{ agza ifx e Xg,
" aro  otherwise.
We define the map p: X — X by p|g, = p, for all » € R. Since R is a cross-
section of the partition X/E induced by E, we have that u is well-defined and so
w € T(X). We show u € Tg(X, R) and @ = Sp in the following. Let r € R. Then
r = a0 for some a, € R. Claim that E.u C E, . Let y € E,.. If y ¢ X[, then
Yy =y, = are € By o. If y € X3, then y = a, B for some a, € X. Thus ay € E,
for some s € R. Since a, € E; and ay8 = y € E, by Lemma we get that
sB =r = a,B. By assumption, we have sa = a,«. This implies that

Y = ypr = aya € Esa C Egq = Eg -

Hence E.u C E,, o, so we have the claim. It follows from Lemma that pu €
Tgr(X). Obviously, Ru C R. For the reverse inclusion, let » € R. Then sa = r
for some s € R. Thus s = t for some t € R and so there exists a; € R such
that s8 =t = a;8. By assumption, we deduce that r = sa = a;a = tuy = tu. It
implies that R C Ry and hence pu € Tg(X, R). Finally, we will show that o = Sp.
Let z € X. Then 28 € X and 8 € E, for some r € R and so a8 = zf3 for
some ayg € X. Thus (ays,x) € ker 8 so that za = azga = (xf)p, = xBu by
assumption. Therefore a = Su. By Lemma [2.2] we have p € Reg(Tg(X, R)). O

Using Lemma [2:4] we can establish the next result.
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Theorem 2.5. Let a, 8 € Reg(Tr(X, R)). Then (o, 8) € R if and only if ker o =
ker 3.

Next, we consider the relation £, the following lemmas are needed.

Lemma 2.6. ([12]) Let o € Reg(Tg(X, R)) and x,y € X. Then (z,y) € E if and
only if (za,ya) € E.

Lemma 2.7. Let o, 8 € Reg(Tg(X, R)). Then the following statements are equiv-
alent.

(i) a=AB for some A € Reg(Te(X,R)).
(i) For every A € X/E, there exists some B € X/E such that Ao C Bf.
(ii) Xa C XB.

Proof. (i) = (ii) Assume that o = AS for some A € Reg(Tg(X,R)). Let r € R.
By Lemma [2.7] there exists s € R such that E, A C E,. By assumption, we have
E.a = E\3 C E,B.

(#4) = (4i7) Assume that (i) holds. Let y € X . Then y = xa for some z € X.
Let A € X/E such that z € A. By assumption, there exists some B € X/FE such
that Aa C Bg. It follows that y = za € Ao C B C X3. Hence Xa C X}.

(#i7) = (i) Suppose that Xa C X 3. For each z € X \ R, we choose and fix
2z’ € X such that ra = 2/8. If x € R, then za € Rao = R = RB. Thus we choose
and fix 2’ € R such that xa = 2/8. Define A : X — X by

A=z’ for all x € X.

Let (z,y) € E. Then (¢/8,y'8) = (za,ya) € E where 2/,y’ € X. Hence by
Lemma we have (zA,yA\) = (¢/,y’) € E. Consequently, A € Tg(X). Clearly,
RX C R. On the other hand, let r € R. Then r8 € R and v = sa = s’ for
some s,s" € R. By Theorem r = ¢, hence sA = s’ =r. Thus A € Tg(X, R).
If € X, then 2Af = 2/ = za. Hence a = A\3. Since «, 8 € Reg(Tg(X, R)) by
Lemma [2.2] it follows that A € Reg(Tg (X, R)). O

The following theorem is a direct consequence of Lemma

Theorem 2.8. Let o, € Reg(Tr(X,R)). Then the following statements are
equivalent.

(1) (a,B) € L.

(i1) For every A € X/E, there exist B,C € X/E such that Aac C Bj and
AB C Ca.

(iii) Xo = XB.

The following result is evident from Theorems [2.5] and 2-§|
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Theorem 2.9. Let o, 8 € Reg(Te(X, R)). Then (o, 8) € H if and only if kera =
ker 8 and Xa = Xf.

Theorem 2.10. Let «, 8 € Reg(Tr(X, R)). Then («a, 3) € D if and only if there
s a bijection p : Xa — X satisfying

(i) Rp =R and
(i3) for every A € X/E, there exists B € X/E such that (Aa)y C BpS.

Proof. Suppose that («, 8) € D. Then there exists v € Reg(Tg (X, R)) such that
(a,7) € R and (v, ) € L.

Next, we shall construct a bijection ¢ : Xa — X such that Rp = R and
for every A € X/E, there exists B € X/E such that (Aa)p C BB. By Theorem
2:8] we observe that X3 = X~. For each za € Xa, define ¢ : Xa — X7 by
(xa)p = zvy. If xza = ya, then (z,y) € kera and so (za)p = zy = yy = (ya)p
since ker @ C ker~y. Hence ¢ is well-defined. Similarly, since kery C ker o, we can
show that ¢ is an injection. Since zy = (za)yp for all z € X, ¢ is a surjection.
Since Rae = R = Ry, Ry = (Ra)p = Ry = R. Hence (i) holds. For each
A € X/E, by Theorem there exists B € X/E such that (Aa)p = Ay C BB.
Therefore, (iz) holds.

Conversely, assume that ¢ : Xa — X is a bijection satisfying (i) and ().
Define v : X — X by ay = (za)p for all z € X. By (i), we deduce that
Ry = (Ra)p =Ry =R. Let A € X/E. From (ii), we have (Aa)p C Bf for some
B e X/E. Since § € Tg(X), there exists C' € X/E such that BS C C' by Lemma
It follows that Ay = (Aa)p C BB C C. This implies that v € Tx(X). Hence
v € Tg(X,R). If ry = sy for some 1, s € R, then (ra)y = (sa)p. Thus ra = sa
since ¢ is an injection. By the regularity of a, » = s. Hence v € Reg(Tr(X, R)).
Since ¢ is injective, for every x,y € X, we have

ry =yy < (za)p = (ya)p & za = ya.

This shows that kera = kery. Since ¢ is surjective, Xv = (Xa)p = XB. It
follows that (a,v) € R and (v,8) € L, by Theorems and respectively.
Hence (a, ) € D. O

Finally, we characterize Green’s relation J for regular elements of Tr(X, R).

Lemma 2.11. Let o, € Reg(Tg(X,R)). Then o = A\Bu for some \,u €

Reg(Tg(X, R)) if and only if there is a mapping ¢ : X8 — X« satisfying
(i) ¢lr: R— R is a bijection,

(it) for every x,y € X, (x,y) € E implies that (xp,yp) € E and
)

(#i1) for every A € X/E, there exists B € X/E such that Aa C (Bf)ep.
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Proof. Assume that o = Afu for some A\, u € Reg(Tr(X,R)). For each z € X,
we let r, € R with (z,r,;) € E. Define ¢ : X — Xa by

_Joxp ifxe XAB,
Y= { rep otherwise.

Let z € X3. If x € X\B, then x = 2’\j for some ' € X. By assumption, we
have xp = 2p = 2’ \pu =2'a € Xa. M ¢ XAB, then r, € XAB and so r, = sA\S
for some s € R. By assumption, we obtain that z¢ = ryu = sABu = sa € Xa.
This shows that ¢ is well-defined. If r,s € R such that r¢ = sy, then ru = su,
since R = RA\B. Thus 7o = s’a such that r = r’\3 and s = s'\8 where r’, s’ € R.
By the regularity of o, 7/ = &', and so r = s. Since Ry = R, Ry = Ry = R.
Therefore, ¢|g : R — R is a bijection. Let z,y € X be such that (x,y) € E.
Then r, = ry and z,y € E,,. By Lemma there is A € X/FE such that
T, Y, ropb € B, p € A. This implies that zp,yp € A and hence (zp,yp) € E.
Thus (i) holds. Finally, let A € X/E. By Lemmal[2.1] there exists B € X/E such
that A\ C B. By assumption and the definition of ¢, we then have Ao = A\Bu C
(BBNXA\B)u=(BBNXAB)p C (BB)p. Hence (iii) holds.

Conversely, assume that ¢ : X5 — X« is a mapping satisfying the conditions
(¢), (it) and (ii7). Let r € R. To show that (E, N XB)p C E,,, let € E, N X}.
Then (z,r) € E and x,r € Xf. By (ii), (x¢,rp) € E. Define p, : E, — E,, by

I if x € Xp,
for = ro otherwise.

Let pu: X — X be defined by u|g, = p, for all » € R. Since R is a cross-section of
the partition X/F induced by E, it follows that u is well-defined. For each r € R,
E,.pi, C E,, for some E,, € X/E and by Lemma we have p € Tp(X). It
follows from (i) that Ru = Ry = R. Hence pu € Tr(X, R).

For each r € R, by (#ii) we choose and fix ' € R such that E.a C (E.()e.
If (r'B)¢ = aa for some a € X, then since ' € R and Ry = R, ac € R and so
E.a C(E.B)p C Eyy. Thus ra = aa = (r'f)p by Lemma Let x € E,. Then
we choose and fix b, € E,» (if x = r, we choose b, = r’) such that za = (b,3)¢p.
Define A : X — X by a2\ = b, for all z € X. For each r € R, we get that
E. )\ C E,.. By Lemma we obtain that A € Tg(X). Obviously, RA C R. On
the other hand, let » € R. Then r3 € R and so (rf8)y = sa for some s € R. Thus
(rB)p = sa = (bsfB)p where by, € Ey and s’ € R. Since ¢|g is injective, 13 = b3
and by the regularity of 3, it follows that » = bs. Hence s\ = b, = r, which implies
the equality. This proves that A € Tg(X, R). Furthermore, for z € X,

TABp = by = (byB)p =z,

which implies that & = ABp. It follows from Lemmathat A 1€ Reg(Tr(X, R)).
O

By the above lemma, we have the following result immediately.
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Theorem 2.12. Let o, 8 € Reg(Tg(X, R)). Then (o, 8) € J if and only if there
exist mappings p : X5 — Xa and ¥ : Xa — X satisfying

(#) ¢|r,¥|r: R — R are bijections,

(i

i)
(iii) for every x,y € Xa, (x,y) € E implies that (xip,y) € E and
)

(iv) for every A € X/E, there exist B,C € X/E such that Aa C (BB)y and
48 C (Ca)y.

for every z,y € X8, (x,y) € E implies that (zp,yp) € E,

3 Natural Partial Order

In this section, we investigate the condition under which a < § for two ele-
ments «, 8 € Reg(Tg(X, R)).

By Theorem the natural partial order < defined on Reg(Tg(X, R)) as
follows: for a, 8 € Reg(Te(X,R)),

a < B if and only if @« = A3 = Bu for some idempotents A\, u € Reg(Tr(X, R)).

Theorem 3.1. Let o, 5 € Reg(Tg(X,R)). Then a < B if and only if
(7) ker 8 C keray,
(it) for every x € X, if 2B € Xa, then xa = zf8 and
(i) Xa C XB.

Proof. Suppose that o < 8. Then there exist idempotents A\, u € Reg(Tr(X, R))
such that a = A3 = Bu. It follows from Lemma that ker 8 C ker a. Thus ()
holds. Let x € X be such that 8 € Xa. Then z8 = ya for some y € X and thus
zxa = zfBp = yapu = yBup = yBu = ya = xf. Hence (i) holds. From Lemma [2.7]
we then have (ii7) holds.

Conversely, we assume the conditions (z), (i7) and (ii¢) hold. We will con-
struct idempotents A, pu € Reg(Tg(X,R)) such that « = A3 = Bu. Define
1 € Reg(Tr(X, R)) as in the proof of Lemma Then o = Bu. It remains
to show that p is idempotent. Let z € X. By the definition of p and (#i),
zp € Xp C Xa € X3, and hence xup = a0 where azy, € X with a8 = zp.
Since @z, 0 = xp € Xp € Xa and (i1), we deduce that zp = a0 = azpa = xpp.
This shows that p is idempotent.

Next, we find an idempotent A € Reg(Tg(X,R)) with o = AS8. For each
z € X, if 8 € Xa, then by (i7), za = z8. Thus we let 2’ = x. Otherwise, we
choose and fix 2’ € X such that xa = 2/f by (iii). Define A : X — X by

A =1’ for all x € X.

Let (z,y) € E. Then (2'8,y'8) = (zxa,ya) € E for some ',y € X. Tt follows
from Lemma [2.6] that (zA,yA) = (2/,y’) € E. Consequently, A € Tg(X). Since
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RS =R = Ra C Xa, RA = R. Therefore A € Tp(X,R). Let x € X. We then
have zA\3 = 2’8 = za. Hence @ = A\3. It remains to show that A is idempotent.
Let € X. Then (zA)S = 2\ = za € Xa. It follows that (zA)’ = 2\ and hence
2A\ = (z))’ = x\. Thus A\? = \. Further A € Reg(Tg(X, R)).

From the discussion above, a < (8 as required. O

As an immediate consequence of Theorem we have the following results.

Corollary 3.2. Let o, 8 € Reg(Tr(X, R)) and o < 3. Then the following state-
ments hold:

(i) If Xa=Xp, then a = .
(i7) For every P € w(a), there exists P’ € w(B) such that P’ C P and Pao = P'j5.

)
(131) If m(a) = w(B), then o = (.
)

() For everyU € X/E, Ua CUB.
Proof. (i) It is obtained directly from Theorem [3.1] (47).

(ii) Let P € w(a) and € P. Then by Theorem [3.1[iii), za = /3 for
some ¥’ € X. Let P’ = (2/8)8~!. Then P’ € n(3) and Pa = P'B. If y € P,
then za = 2/ = yB. By Theorem (#i), we have ya = yB = xza and so
y € (xa)a™t = P. Hence P’ C P.

(#¢) It is an immediate consequence of (ii).

(iv) Let U € X/E. By Lemma there exists A € X/E such that U = Aa~!.
By Lemma there exists V' € X/E such that Ua C V. Let x € U. Then
xa = yp for some y € V. It follows from Theorem (7i) that ya = yf = za €
Ua C A. Therefore y € Aa~! = U, which implies that U NV # 0, so U = V.
Hence Ua C UPB. O

Let p be a partial order on a semigroup S. An element ¢ € S is said to be
right compatible with p if (ac, bc) € p for all (a,b) € p. Left compatibility with p is
defined dually.

Corollary 3.3. Let v € Reg(Tg(X,R)). If v is an injection, then v is right
compatible with < on Reg(Tg(X,R)).

Proof. Assume that v is injective. Let a, 8 € Reg(Tr(X, R)) be such that o < 3.
Let x,y € X be such that 8y = yf8v. Then z8 = yB because 7y is an injection.
Since ker 8 C ker o, it follows that xa = ya. Thus xay = yary. This shows that
ker By C ker ay. Let « € X be such that 8y € Xavy. Then zfvy = yay for some
y € X. By assumption, 28 = ya € Xa. From Theorem [3.1] (i), we get 28 = za
and hence xf8v = zay. Since Xa C X8, Xay C XBv. The desired result then
follows from Theorem [3.1] Therefore, v is right compatible. O

Corollary 3.4. Let v € Reg(Tr(X, R)). If v is a surjection, then v is left com-
patible with < on Reg(Tr(X, R)).
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Proof. Suppose that 7 is a surjection. Let «, 5 € Reg(Tr(X,R)) be such that
a < B. We need to show that yao < 8. Since ker 8 C ker«, it follows that
kervB C kerya. Let xv8 € Xya. Then zvf8 € Xa. Since a < 8, xy8 = xya by
Theoremm (7). Since Xy = X and Xa C X3, X~va C X~8. The desired result
follows from Theorem [3.1] Therefore, v is left compatible. O

For a € Tg(X), we let
E(a)={Aa"': A€ X/E and Aa"! # 0}.

Then E(«) is also a partition of X. From [J] and [I1], for « € Tr(X), A € E(«)
is saturated if Ao € X/E, that is, Ao = B for some B € X/E.

Lemma 3.5. For every o € Reg(Tg(X,R)), X/E = E(«).

Proof. Let A € X/E. Then A = E, for some r € R. Then by Lemma
E,a C E, for some ' € R. Thus E, C E.a~! € E(a). For each x € E a™ !,
we have (ra,za) € E. It follows from Lemma that (r,z) € E. Hence E, =
E,.a~!. Consequently, A € E(a). For the reverse inclusion, let A € E(a). Then
A= E,a~! for some r € R. Thus Aa C E, and hence r = r’a for some 7 € R.
This implies that E,.» C A. And for each a € A, we have (aa,r’a) € E. By
Lemma [2.6] (a,r’) € E. Therefore, A = E,» € X/E and hence A € X/E. Thus
X/E = E(«) as required. O

For each a € Reg(Tg(X, R)), by Lemma[3.5] A € X/E is said to be saturated
of aif Ao € X/E.

The following results prove useful in characterizing a maximal element in

Reg(Tg (X, R)).

Lemma 3.6. Let a € Reg(Tg(X,R)). If U € X/E is non-saturated of « such
that a|y s not an injection, then a is not mazimal.

Proof. Let U € X/E be non-saturated of « such that «|y is not an injection.
Then Ua C A for some A € X/E. Let a € A\ Ua. Then a ¢ R. Since afy is
not injective, there are distinct elements wuy,us € U such that uya = usa. Since
|[ANR| =1, we assume uy ¢ R. Let 8 € T(X) be defined by

xﬁ:{a if x = uq,

zo  otherwise.

Since (a,uza) € E and o € Tg(X), we deduce that § € Tg(X). Sincea|gr: R — R
is a bijection, B|g is also. Since R = R and by Theorem|[L.1} 8 € Reg(Tg(X, R)).
Claim that a < 8. Let 8 = yB. Then z8 = a or z8 = za. If yB8 = 6 = a,
then x = w3 = y and hence za = ya. If y5 = 28 = xza # a, then y # uy, so
rza = yf = ya. Consequently, ker 8 C kera. If 8 € Xa, then 8 # a, so that
xf = xa. Moreover, Xa C Xa U {a} = X3. By virtue of Theorem a < B.
Since « # S, it follows that « is not maximal in Reg(Tg(X, R)). O
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Lemma 3.7. Let o, 5 € Reg(Tg(X, R)) be such that o« < 8 and U € X/E. Then
the following statements hold:

(1) If U is saturated of c, then Ua = Up.
(i) If |y is an injection, then Ua = Up.

Proof. (i) Assume that U is saturated of «. Then there exists A € X/E such
that Ua = A. Since a < 8 by Corollary (iv), it follows that A = Ua C US.
Since X/F is a partition of X and by Lemma we deduce that U C A. Hence
Ua=Up.

(#4) Suppose that |y is an injection. By Lemma there exists A € X/E
such that U = Aa~!. By Corollary (iv), we get that Ua C US. Also, US C A.
Now we show Ua = Up. Indeed, if there is some y € U\ Uay, then y € A\ Ua.
Let x € U with y = 28. Then x # r € UN R and z« # x8. Since «|y is injective,
we have za # ra = rf and za # z8 for any z € U \ {z,r}. So za € Ua\ UP,
which implies that Ua € Up, a contradiction. Hence Ua = U . O

From Lemmas|3.6|and[3.7] we characterize a maximal element in Reg(Tg (X, R))
as follows.

Theorem 3.8. Let o € Reg(Tr(X, R)). If a is a surjection, then « is mazimal.

Proof. Suppose that « is a surjection. Let 5 € Reg(Tr(X, R)) be such that oo < .
By Theorem 3.1} Xa C X . It follows from assumption that Xa = X 3. Hence by
Corollary (1), we conclude that o = 8. Consequently, « is a maximal element
of Reg(Tr(X, R)). O

The converse of Theorem is not necessarily true. We now show that there
exists a maximal element of Reg(Tr (X, R)) which is not surjective.

Example 3.9. Let X ={1,2,...,8}, X/E = {{1,2},{3,4,5},{6,7,8}} and R =
{1,3,6}. Define a : X — X by

a<12345678>

6 8 1 1 2 3 4 5 /)°

Then « € Tg(X, R) and « is not surjective. By Theorem « is regular. Let
B € Reg(Tr(X, R)) be such that « < 5. Then by Theoremwe have Xa C X 8.
Thus X5 = Xa or X3 = X. Suppose that Xg = X. Then z18 = 6,228 = 7
and x3f8 = 8 for some x1,z9,23 € X. By Lemma (z1,22), (z1,23) € E.
Since z18,z38 € Xa, by Theorem (ii), we deduce that 100 = 18 = 6
and zza = z3f = 8, which implies that 1 = 1 and x3 = 2. It follows that
x2 € {1,2} = {z1,23}. This is a contradiction with 8 is a mapping. Hence

X = Xa. We can conclude that a = 3 by Corollary (7). Consequently, « is
a maximal element.

Theorem 3.10. Let o € Reg(Tr(X, R)). Suppose that a is not surjective. Then
a is mazimal if and only if for every non-saturated A of ., |4 is an injection.
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Proof. Suppose that « is maximal and not surjective. Let A € X/FE be non-
saturated of a. By Lemma al4 must be an injection.

Conversely, suppose that each non-saturated A of a, a4 is an injection. Let
B € Reg(Tg(X,R)) be such that a < 3. Then by Theorem we obtain that
Xa C XpB. On the other hand, let A € X/E. If A is saturated of «, then by
Lemma (1), we deduce that Aa = AB. If A is non-saturated of «, then |y is
an 1nject10n By Lemma (1), we obtain that Ac = AfB. Hence XB C Xa by
Lemma Therefore X a = XB. From Corollary (1), it follows that « =
and thus « is a maximal element of Reg(Tg(X, R)). O

Next, we characterize minimal elements of Reg(Tr (X, R)).

Theorem 3.11. Let a € Reg(Tg(X,R)). Then a is minimal if and only if
Xa=R.

Proof. Assume that « is minimal. For each z € X, let r, € R be such that (x,r,) €
E. Define 8 : X — X by 28 = rpa for all € X. Then 8 € Reg(Tg(X, R)) and
XpB = R. If aa = ba, then by Lemma we have (a,b) € E. Thus r, = r}, and
so af} = rqa = rya = bB. Hence ker o C ker 8. Let x € X be such that xa € X§.
Then za = 2'B = ryra for some 2’ € X and by Lemma 2.6 (z,7,/) € E, whence
ry = ry. Therefore za = 2/ = rpa = rpa = zfB. Hence (it) in Theorem
holds. Obviously, X3 = R = Ra C Xa. It follows from Theorem that 8 < a.
By assumption, « = 8. Hence Xa = X3 = R.

Conversely, suppose that Xa = R. Let f € Reg(Tg(X,R)) be such that
B < «a. By Theorem it follows that Xaa = R = RS C X3 C Xa. Thus
Xa = Xp. It follows from Corollary (i) that o = 5. Hence « is minimal.

Let < be a partial order on a semigroup S. An element b € S is called an
upper cover for a € S if a < b and there exists no ¢ € S such that a < ¢ <b. A
lower cover is defined dually.

Finally, the following results are concerned with the existence of an upper
cover and a lower cover for elements of Reg(Tg(X, R)).

Theorem 3.12. Let o € Reg(Tg(X,R)). If a is not mazimal, then o has an
upper cover.

Proof. Suppose that « is not maximal. So « is not surjective. Let a € X \ Xa.
Then there exists A € X/F such that a € A. Let U = Aa~'. Then Ua C A. By
Lemma U e X/E. Since a ¢ Xa, Ua # A. Therefore U is non-saturated. By
Theorem we have that «|y is not an injection. Let 8 be defined as in the
proof of Lemma[3.6] and we will show that /3 is an upper cover of a. Suppose that
o < < B for some v € Reg(Tg(X,R)). Then by Theorem [3.1] we obtain that
Xa C Xy C X8 =XaU{a} and thus Xy = XS. Tt follows from Corollary -
(1) that v = /3. Hence 3 is an upper cover of a.

Theorem 3.13. Let a € Reg(Tg(X, R)). If o is not minimal, then a has a lower
cover.



Green's Relations and Natural Partial Order ... 443

Proof. If a is not minimal, then Xa # R. Let y € Xa\ R. Then y € E,. for some
r € R. Define g : X — X by

1

| r frxeya,
zp _{ ra  otherwise.

Then 3 is well-defined and «a # 3. Let ' € R be such that r’a = r. For each
z € ya~t, (za,r'a) = (y,7) € E. By Lemma[2.6] (v,7) € E. Thus ya~' C E,..
If v € B \ya™!, then (z3,7'8) = (za,r'a) = (za,7) € E. Hence E,.3 C E,.. For
each s € R\ {r'}, by Lemma [2.1] there exists s’ € R such that E,8 = E;oa C Ey.
From Lemma we obtain that 3 € Tg(X). Since R C X \ ya~!, we get
RS = Ra = R and hence 8 € Tg(X, R). Since « is regular, § is also.

Now, we will show that 8 < a by using Theorem[3.1] Let a,b € X be such that
ac = ba. If aae = y, then aff = r = bB. Otherwise, aff = ac = ba = b3. Hence
ker o C ker . Suppose that za € X where x € X. Since X = Xa\{y},za#y
and hence z ¢ ya~!. Therefore, 3 = ra. Obviously, X3 = Xa \ {y} € Xa.
Hence g < a.

Finally, to show that § is a lower cover for a, let v € Reg(Tg(X, R)) be such
that 8 < v < a. Then by Theorem Xa\{y} = XB C Xy C X, which
implies X5 = X+v. By Corollary (i), we conclude that 5 = ~. Consequently,
« has a lower cover. O
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