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Abstract : Let X be an arbitrary nonempty set and T (X) the full transformation
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partition X/E induced by E, let

TE(X,R) = {α ∈ T (X) : Rα = R and ∀x, y ∈ X, (x, y) ∈ E ⇒ (xα, yα) ∈ E}.

Then the set Reg(TE(X,R)) of all regular elements of TE(X,R) is a regular sub-
semigroup of T (X). In this paper, we describe Green’s relations for elements of
the semigroup Reg(TE(X,R)). Also, we discuss the natural partial order on this
semigroup and characterize when two elements in Reg(TE(X,R)) are related under
this order.
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1 Introduction and Preliminaries

An element x of a semigroup S is called regular if there exists y ∈ S such that
x = xyx. If all its elements of S are regular, we call S a regular semigroup. The
set of all regular elements of S is denoted by Reg(S).

In 1951, Green [1] defined the equivalence relations L, R and J on a semigroup
S by the rules that, for a, b ∈ S,

(a, b) ∈ R if and only if aS1 = bS1,
(a, b) ∈ L if and only if S1a = S1b, and
(a, b) ∈ J if and only if S1aS1 = S1bS1

where S1 is the semigroup with identity obtained from S by adjoining an iden-
tity if necessary. Then he also defined the equivalence relations H = L ∩R and
D = L ◦ R. These five equivalence relations are known as Green’s relations. Hence
R,L ⊆ D ⊆ J .

In 1952, Vagner [2] defined the natural partial order for any inverse semigroup
S by defining ≤ on S as follows:

a ≤ b if and only if a = be for some idempotent e ∈ S. (1.1)

Later, Nambooripad [3] extended this partial order ≤ on a regular semigroup S
by

a ≤ b if and only if a = eb = bf for some idempotents e, f ∈ S. (1.2)

For an inverse semigroup S this relation is just the natural partial order (1.1).
In 1986, Mitsch [4] extended the above partial order to any semigroup S by

defining ≤ on S as follows:

a ≤ b if and only if a = xb = by and a = ay for some x, y ∈ S1. (1.3)

This natural partial order coincides with the relation (1.2) if the semigroup S is
regular.

Let T (X) be the full transformation semigroup on a set X under the usual
composition of mappings. In 1955, Miller and Doss [5] proved that T (X) is a
regular semigroup and described its Green’s relations. Over the past decades,
notions of regularity and Green’s relations of subsemigroups of T (X) have been
widely considered, see [6], [7] and [8]. In [6], the author introduced a family of
subsemigroups of T (X) defined by

TE(X) = {α ∈ T (X) : ∀a, b ∈ X, (a, b) ∈ E ⇒ (aα, bα) ∈ E}

where E is an arbitrary equivalence relation on X. The author investigated the
regularity and Green’s relations for TE(X). Also, the natural partial order on
TE(X) was described in [9].
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For an equivalence relation E on a set X, let R be a cross-section of the
partition X/E induced by E (i.e., |R ∩ A| = 1 for all A ∈ X/E). In [10], Araújo
and Konieczny defined a subsemigroup of T (X) as follows:

T (X,E,R) = {α ∈ T (X) : Rα ⊆ R and ∀x, y ∈ X, (x, y) ∈ E ⇒ (xα, yα) ∈ E}.

Clearly, T (X,E,R) ⊆ TE(X). The semigroup T (X,E,R) is the centralizer of
the idempotent transformation with kernel E and image R. They determined the
structure of T (X,E,R) in terms of Green’s relations and described the regular
elements of T (X,E,R) in [7]. Moreover, the natural partial order on T (X,E,R)
was discussed in [11]. Now, we consider the following subset of TE(X):

TE(X,R) = {α ∈ T (X) : Rα = R and ∀x, y ∈ X, (x, y) ∈ E ⇒ (xα, yα) ∈ E}.

Then TE(X,R) is a subsemigroup of T (X,E,R). In [8], the authors investigated
regular and E-inversive elements of the semigroup TE(X,R). The regularity of
the semigroup TE(X,R) was characterized as follows:

Theorem 1.1. ([8]) Let α ∈ TE(X,R). Then α is regular if and only if α|R is an
injection.

Theorem 1.2. ([8]) TE(X,R) is a regular semigroup if and only if R is finite.

Moreover, in [12], the authors showed that Reg(TE(X,R)) is a regular sub-
semigroup of TE(X,R).

Theorem 1.3. ([12]) Reg(TE(X,R)) is the largest regular subsemigroup of TE(X,R).

The purpose of this paper is to investigate Green’s relations on the semigroup
Reg(TE(X,R)). Moreover, we study the natural partial order on Reg(TE(X,R))
and characterize when two elements of Reg(TE(X,R)) are related under this order.
Also, their maximal, minimal and covering elements are described.

In what follows, let E be an equivalence relation on a set X and R a cross-
section of the partition of X. Denote by X/E the quotient set and Er the E-class
containing r for all r ∈ R.

2 Green’s Relations

In this section, we focus on Green’s relations for regular elements of the semi-
group TE(X,R). First, we need the following lemmas.

Lemma 2.1. ([6]) Let α ∈ T (X). Then α ∈ TE(X) if and only if for every
A ∈ X/E, there exists B ∈ X/E such that Aα ⊆ B.

Lemma 2.2. ([12]) Let α, β ∈ TE(X,R). Then αβ ∈ Reg(TE(X,R)) if and only
if α and β are elements in Reg(TE(X,R)).
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Lemma 2.3. Let α ∈ TE(X,R) and r, s ∈ R. If x ∈ Er with xα ∈ Es, then
Erα ⊆ Es and rα = s.

Proof. Suppose that x ∈ Er with xα ∈ Es. Let y ∈ Er. Then (x, y) ∈ E. Since
α ∈ TE(X), (xα, yα) ∈ E and so yα ∈ Es. Hence Erα ⊆ Es. Since rα ∈ Es ∩ R,
it follows that rα = s.

For α ∈ T (X), the symbol π(α) will denote the decomposition of X induced
by the map α, namely

π(α) = {yα−1 : y ∈ Xα}.

Hence π(α) = X/ kerα, where kerα = {(x, y) ∈ X ×X : xα = yα}.

Lemma 2.4. Let α, β ∈ Reg(TE(X,R)). Then α = βµ for some µ ∈ Reg(TE(X,R))
if and only if kerβ ⊆ kerα.

Proof. Suppose that α = βµ for some µ ∈ Reg(TE(X,R)). Let (x, y) ∈ kerβ.
Then xβ = yβ and so xα = xβµ = yβµ = yα. This shows that (x, y) ∈ kerα.
Hence kerβ ⊆ kerα.

Conversely, suppose that kerβ ⊆ kerα. For every y ∈ Xβ \R, we choose and
fix an element ay ∈ X \R such that ayβ = y. And every r ∈ R, we choose and fix
an element ar ∈ R such that arβ = r (since Rβ = R). For each r ∈ R, we define
a map µr : Er → X by

xµr =

{
axα if x ∈ Xβ,
arα otherwise.

We define the map µ : X → X by µ|Er
= µr for all r ∈ R. Since R is a cross-

section of the partition X/E induced by E, we have that µ is well-defined and so
µ ∈ T (X). We show µ ∈ TE(X,R) and α = βµ in the following. Let r ∈ R. Then
r = arβ for some ar ∈ R. Claim that Erµ ⊆ Earα. Let y ∈ Er. If y /∈ Xβ, then
yµ = yµr = arα ∈ Earα. If y ∈ Xβ, then y = ayβ for some ay ∈ X. Thus ay ∈ Es
for some s ∈ R. Since ay ∈ Es and ayβ = y ∈ Er by Lemma 2.3, we get that
sβ = r = arβ. By assumption, we have sα = arα. This implies that

yµ = yµr = ayα ∈ Esα ⊆ Esα = Earα.

Hence Erµ ⊆ Earα, so we have the claim. It follows from Lemma 2.1 that µ ∈
TE(X). Obviously, Rµ ⊆ R. For the reverse inclusion, let r ∈ R. Then sα = r
for some s ∈ R. Thus sβ = t for some t ∈ R and so there exists at ∈ R such
that sβ = t = atβ. By assumption, we deduce that r = sα = atα = tµt = tµ. It
implies that R ⊆ Rµ and hence µ ∈ TE(X,R). Finally, we will show that α = βµ.
Let x ∈ X. Then xβ ∈ Xβ and xβ ∈ Er for some r ∈ R and so axββ = xβ for
some axβ ∈ X. Thus (axβ , x) ∈ kerβ so that xα = axβα = (xβ)µr = xβµ by
assumption. Therefore α = βµ. By Lemma 2.2, we have µ ∈ Reg(TE(X,R)).

Using Lemma 2.4, we can establish the next result.
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Theorem 2.5. Let α, β ∈ Reg(TE(X,R)). Then (α, β) ∈ R if and only if kerα =
kerβ.

Next, we consider the relation L, the following lemmas are needed.

Lemma 2.6. ([12]) Let α ∈ Reg(TE(X,R)) and x, y ∈ X. Then (x, y) ∈ E if and
only if (xα, yα) ∈ E.

Lemma 2.7. Let α, β ∈ Reg(TE(X,R)). Then the following statements are equiv-
alent.

(i) α = λβ for some λ ∈ Reg(TE(X,R)).

(ii) For every A ∈ X/E, there exists some B ∈ X/E such that Aα ⊆ Bβ.

(iii) Xα ⊆ Xβ.

Proof. (i) ⇒ (ii) Assume that α = λβ for some λ ∈ Reg(TE(X,R)). Let r ∈ R.
By Lemma 2.1, there exists s ∈ R such that Erλ ⊆ Es. By assumption, we have
Erα = Erλβ ⊆ Esβ.

(ii)⇒ (iii) Assume that (ii) holds. Let y ∈ Xα. Then y = xα for some x ∈ X.
Let A ∈ X/E such that x ∈ A. By assumption, there exists some B ∈ X/E such
that Aα ⊆ Bβ. It follows that y = xα ∈ Aα ⊆ Bβ ⊆ Xβ. Hence Xα ⊆ Xβ.

(iii) ⇒ (i) Suppose that Xα ⊆ Xβ. For each x ∈ X \ R, we choose and fix
x′ ∈ X such that xα = x′β. If x ∈ R, then xα ∈ Rα = R = Rβ. Thus we choose
and fix x′ ∈ R such that xα = x′β. Define λ : X → X by

xλ = x′ for all x ∈ X.

Let (x, y) ∈ E. Then (x′β, y′β) = (xα, yα) ∈ E where x′, y′ ∈ X. Hence by
Lemma 2.6, we have (xλ, yλ) = (x′, y′) ∈ E. Consequently, λ ∈ TE(X). Clearly,
Rλ ⊆ R. On the other hand, let r ∈ R. Then rβ ∈ R and rβ = sα = s′β for
some s, s′ ∈ R. By Theorem 1.1, r = s′, hence sλ = s′ = r. Thus λ ∈ TE(X,R).
If x ∈ X, then xλβ = x′β = xα. Hence α = λβ. Since α, β ∈ Reg(TE(X,R)) by
Lemma 2.2, it follows that λ ∈ Reg(TE(X,R)).

The following theorem is a direct consequence of Lemma 2.7.

Theorem 2.8. Let α, β ∈ Reg(TE(X,R)). Then the following statements are
equivalent.

(i) (α, β) ∈ L.

(ii) For every A ∈ X/E, there exist B,C ∈ X/E such that Aα ⊆ Bβ and
Aβ ⊆ Cα.

(iii) Xα = Xβ.

The following result is evident from Theorems 2.5 and 2.8.
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Theorem 2.9. Let α, β ∈ Reg(TE(X,R)). Then (α, β) ∈ H if and only if kerα =
kerβ and Xα = Xβ.

Theorem 2.10. Let α, β ∈ Reg(TE(X,R)). Then (α, β) ∈ D if and only if there
is a bijection ϕ : Xα→ Xβ satisfying

(i) Rϕ = R and

(ii) for every A ∈ X/E, there exists B ∈ X/E such that (Aα)ϕ ⊆ Bβ.

Proof. Suppose that (α, β) ∈ D. Then there exists γ ∈ Reg(TE(X,R)) such that
(α, γ) ∈ R and (γ, β) ∈ L.

Next, we shall construct a bijection ϕ : Xα → Xβ such that Rϕ = R and
for every A ∈ X/E, there exists B ∈ X/E such that (Aα)ϕ ⊆ Bβ. By Theorem
2.8, we observe that Xβ = Xγ. For each xα ∈ Xα, define ϕ : Xα → Xγ by
(xα)ϕ = xγ. If xα = yα, then (x, y) ∈ kerα and so (xα)ϕ = xγ = yγ = (yα)ϕ
since kerα ⊆ ker γ. Hence ϕ is well-defined. Similarly, since ker γ ⊆ kerα, we can
show that ϕ is an injection. Since xγ = (xα)ϕ for all x ∈ X, ϕ is a surjection.
Since Rα = R = Rγ, Rϕ = (Rα)ϕ = Rγ = R. Hence (i) holds. For each
A ∈ X/E, by Theorem 2.8, there exists B ∈ X/E such that (Aα)ϕ = Aγ ⊆ Bβ.
Therefore, (ii) holds.

Conversely, assume that ϕ : Xα → Xβ is a bijection satisfying (i) and (ii).
Define γ : X → X by xγ = (xα)ϕ for all x ∈ X. By (i), we deduce that
Rγ = (Rα)ϕ = Rϕ = R. Let A ∈ X/E. From (ii), we have (Aα)ϕ ⊆ Bβ for some
B ∈ X/E. Since β ∈ TE(X), there exists C ∈ X/E such that Bβ ⊆ C by Lemma
2.1. It follows that Aγ = (Aα)ϕ ⊆ Bβ ⊆ C. This implies that γ ∈ TE(X). Hence
γ ∈ TE(X,R). If rγ = sγ for some r, s ∈ R, then (rα)ϕ = (sα)ϕ. Thus rα = sα
since ϕ is an injection. By the regularity of α, r = s. Hence γ ∈ Reg(TE(X,R)).
Since ϕ is injective, for every x, y ∈ X, we have

xγ = yγ ⇔ (xα)ϕ = (yα)ϕ⇔ xα = yα.

This shows that kerα = ker γ. Since ϕ is surjective, Xγ = (Xα)ϕ = Xβ. It
follows that (α, γ) ∈ R and (γ, β) ∈ L, by Theorems 2.5 and 2.8, respectively.
Hence (α, β) ∈ D.

Finally, we characterize Green’s relation J for regular elements of TE(X,R).

Lemma 2.11. Let α, β ∈ Reg(TE(X,R)). Then α = λβµ for some λ, µ ∈
Reg(TE(X,R)) if and only if there is a mapping ϕ : Xβ → Xα satisfying

(i) ϕ|R : R→ R is a bijection,

(ii) for every x, y ∈ Xβ, (x, y) ∈ E implies that (xϕ, yϕ) ∈ E and

(iii) for every A ∈ X/E, there exists B ∈ X/E such that Aα ⊆ (Bβ)ϕ.
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Proof. Assume that α = λβµ for some λ, µ ∈ Reg(TE(X,R)). For each x ∈ X,
we let rx ∈ R with (x, rx) ∈ E. Define ϕ : Xβ → Xα by

xϕ =

{
xµ if x ∈ Xλβ,
rxµ otherwise.

Let x ∈ Xβ. If x ∈ Xλβ, then x = x′λβ for some x′ ∈ X. By assumption, we
have xϕ = xµ = x′λβµ = x′α ∈ Xα. If x /∈ Xλβ, then rx ∈ Xλβ and so rx = sλβ
for some s ∈ R. By assumption, we obtain that xϕ = rxµ = sλβµ = sα ∈ Xα.
This shows that ϕ is well-defined. If r, s ∈ R such that rϕ = sϕ, then rµ = sµ,
since R = Rλβ. Thus r′α = s′α such that r = r′λβ and s = s′λβ where r′, s′ ∈ R.
By the regularity of α, r′ = s′, and so r = s. Since Rµ = R, Rϕ = Rµ = R.
Therefore, ϕ|R : R → R is a bijection. Let x, y ∈ Xβ be such that (x, y) ∈ E.
Then rx = ry and x, y ∈ Erx . By Lemma 2.1, there is A ∈ X/E such that
xµ, yµ, rxµ ∈ Erxµ ⊆ A. This implies that xϕ, yϕ ∈ A and hence (xϕ, yϕ) ∈ E.
Thus (ii) holds. Finally, let A ∈ X/E. By Lemma 2.1, there exists B ∈ X/E such
that Aλ ⊆ B. By assumption and the definition of ϕ, we then have Aα = Aλβµ ⊆
(Bβ ∩Xλβ)µ = (Bβ ∩Xλβ)ϕ ⊆ (Bβ)ϕ. Hence (iii) holds.

Conversely, assume that ϕ : Xβ → Xα is a mapping satisfying the conditions
(i), (ii) and (iii). Let r ∈ R. To show that (Er ∩Xβ)ϕ ⊆ Erϕ, let x ∈ Er ∩Xβ.
Then (x, r) ∈ E and x, r ∈ Xβ. By (ii), (xϕ, rϕ) ∈ E. Define µr : Er → Erϕ by

xµr =

{
xϕ if x ∈ Xβ,
rϕ otherwise.

Let µ : X → X be defined by µ|Er
= µr for all r ∈ R. Since R is a cross-section of

the partition X/E induced by E, it follows that µ is well-defined. For each r ∈ R,
Erµr ⊆ Erϕ for some Erϕ ∈ X/E and by Lemma 2.1, we have µ ∈ TE(X). It
follows from (i) that Rµ = Rϕ = R. Hence µ ∈ TE(X,R).

For each r ∈ R, by (iii) we choose and fix r′ ∈ R such that Erα ⊆ (Er′β)ϕ.
If (r′β)ϕ = aα for some a ∈ X, then since r′β ∈ R and Rϕ = R, aα ∈ R and so
Erα ⊆ (Er′β)ϕ ⊆ Eaα. Thus rα = aα = (r′β)ϕ by Lemma 2.3. Let x ∈ Er. Then
we choose and fix bx ∈ Er′ (if x = r, we choose bx = r′) such that xα = (bxβ)ϕ.
Define λ : X → X by xλ = bx for all x ∈ X. For each r ∈ R, we get that
Erλ ⊆ Er′ . By Lemma 2.1, we obtain that λ ∈ TE(X). Obviously, Rλ ⊆ R. On
the other hand, let r ∈ R. Then rβ ∈ R and so (rβ)ϕ = sα for some s ∈ R. Thus
(rβ)ϕ = sα = (bsβ)ϕ where bs ∈ Es′ and s′ ∈ R. Since ϕ|R is injective, rβ = bsβ
and by the regularity of β, it follows that r = bs. Hence sλ = bs = r, which implies
the equality. This proves that λ ∈ TE(X,R). Furthermore, for x ∈ X,

xλβµ = bxβµ = (bxβ)ϕ = xα,

which implies that α = λβµ. It follows from Lemma 2.2 that λ, µ ∈ Reg(TE(X,R)).

By the above lemma, we have the following result immediately.
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Theorem 2.12. Let α, β ∈ Reg(TE(X,R)). Then (α, β) ∈ J if and only if there
exist mappings ϕ : Xβ → Xα and ψ : Xα→ Xβ satisfying

(i) ϕ|R, ψ|R : R→ R are bijections,

(ii) for every x, y ∈ Xβ, (x, y) ∈ E implies that (xϕ, yϕ) ∈ E,

(iii) for every x, y ∈ Xα, (x, y) ∈ E implies that (xψ, yψ) ∈ E and

(iv) for every A ∈ X/E, there exist B,C ∈ X/E such that Aα ⊆ (Bβ)ϕ and
Aβ ⊆ (Cα)ψ.

3 Natural Partial Order

In this section, we investigate the condition under which α ≤ β for two ele-
ments α, β ∈ Reg(TE(X,R)).

By Theorem 1.3, the natural partial order ≤ defined on Reg(TE(X,R)) as
follows: for α, β ∈ Reg(TE(X,R)),

α ≤ β if and only if α = λβ = βµ for some idempotents λ, µ ∈ Reg(TE(X,R)).

Theorem 3.1. Let α, β ∈ Reg(TE(X,R)). Then α ≤ β if and only if

(i) kerβ ⊆ kerα,

(ii) for every x ∈ X, if xβ ∈ Xα, then xα = xβ and

(iii) Xα ⊆ Xβ.

Proof. Suppose that α ≤ β. Then there exist idempotents λ, µ ∈ Reg(TE(X,R))
such that α = λβ = βµ. It follows from Lemma 2.4 that kerβ ⊆ kerα. Thus (i)
holds. Let x ∈ X be such that xβ ∈ Xα. Then xβ = yα for some y ∈ X and thus
xα = xβµ = yαµ = yβµµ = yβµ = yα = xβ. Hence (ii) holds. From Lemma 2.7,
we then have (iii) holds.

Conversely, we assume the conditions (i), (ii) and (iii) hold. We will con-
struct idempotents λ, µ ∈ Reg(TE(X,R)) such that α = λβ = βµ. Define
µ ∈ Reg(TE(X,R)) as in the proof of Lemma 2.4. Then α = βµ. It remains
to show that µ is idempotent. Let x ∈ X. By the definition of µ and (iii),
xµ ∈ Xµ ⊆ Xα ⊆ Xβ, and hence xµµ = axµα where axµ ∈ X with axµβ = xµ.
Since axµβ = xµ ∈ Xµ ⊆ Xα and (ii), we deduce that xµ = axµβ = axµα = xµµ.
This shows that µ is idempotent.

Next, we find an idempotent λ ∈ Reg(TE(X,R)) with α = λβ. For each
x ∈ X, if xβ ∈ Xα, then by (ii), xα = xβ. Thus we let x′ = x. Otherwise, we
choose and fix x′ ∈ X such that xα = x′β by (iii). Define λ : X → X by

xλ = x′ for all x ∈ X.

Let (x, y) ∈ E. Then (x′β, y′β) = (xα, yα) ∈ E for some x′, y′ ∈ X. It follows
from Lemma 2.6 that (xλ, yλ) = (x′, y′) ∈ E. Consequently, λ ∈ TE(X). Since
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Rβ = R = Rα ⊆ Xα, Rλ = R. Therefore λ ∈ TE(X,R). Let x ∈ X. We then
have xλβ = x′β = xα. Hence α = λβ. It remains to show that λ is idempotent.
Let x ∈ X. Then (xλ)β = xλβ = xα ∈ Xα. It follows that (xλ)′ = xλ and hence
xλλ = (xλ)′ = xλ. Thus λ2 = λ. Further λ ∈ Reg(TE(X,R)).

From the discussion above, α ≤ β as required.

As an immediate consequence of Theorem 3.1, we have the following results.

Corollary 3.2. Let α, β ∈ Reg(TE(X,R)) and α ≤ β. Then the following state-
ments hold:

(i) If Xα = Xβ, then α = β.

(ii) For every P ∈ π(α), there exists P ′ ∈ π(β) such that P ′ ⊆ P and Pα = P ′β.

(iii) If π(α) = π(β), then α = β.

(iv) For every U ∈ X/E, Uα ⊆ Uβ.

Proof. (i) It is obtained directly from Theorem 3.1 (ii).
(ii) Let P ∈ π(α) and x ∈ P . Then by Theorem 3.1(iii), xα = x′β for

some x′ ∈ X. Let P ′ = (x′β)β−1. Then P ′ ∈ π(β) and Pα = P ′β. If y ∈ P ′,
then xα = x′β = yβ. By Theorem 3.1 (ii), we have yα = yβ = xα and so
y ∈ (xα)α−1 = P . Hence P ′ ⊆ P .

(iii) It is an immediate consequence of (ii).
(iv) Let U ∈ X/E. By Lemma 2.6, there exists A ∈ X/E such that U = Aα−1.

By Lemma 2.7, there exists V ∈ X/E such that Uα ⊆ V β. Let x ∈ U . Then
xα = yβ for some y ∈ V . It follows from Theorem 3.1 (ii) that yα = yβ = xα ∈
Uα ⊆ A. Therefore y ∈ Aα−1 = U , which implies that U ∩ V 6= ∅, so U = V .
Hence Uα ⊆ Uβ.

Let ρ be a partial order on a semigroup S. An element c ∈ S is said to be
right compatible with ρ if (ac, bc) ∈ ρ for all (a, b) ∈ ρ. Left compatibility with ρ is
defined dually.

Corollary 3.3. Let γ ∈ Reg(TE(X,R)). If γ is an injection, then γ is right
compatible with ≤ on Reg(TE(X,R)).

Proof. Assume that γ is injective. Let α, β ∈ Reg(TE(X,R)) be such that α ≤ β.
Let x, y ∈ X be such that xβγ = yβγ. Then xβ = yβ because γ is an injection.
Since kerβ ⊆ kerα, it follows that xα = yα. Thus xαγ = yαγ. This shows that
kerβγ ⊆ kerαγ. Let x ∈ X be such that xβγ ∈ Xαγ. Then xβγ = yαγ for some
y ∈ X. By assumption, xβ = yα ∈ Xα. From Theorem 3.1 (ii), we get xβ = xα
and hence xβγ = xαγ. Since Xα ⊆ Xβ, Xαγ ⊆ Xβγ. The desired result then
follows from Theorem 3.1. Therefore, γ is right compatible.

Corollary 3.4. Let γ ∈ Reg(TE(X,R)). If γ is a surjection, then γ is left com-
patible with ≤ on Reg(TE(X,R)).
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Proof. Suppose that γ is a surjection. Let α, β ∈ Reg(TE(X,R)) be such that
α ≤ β. We need to show that γα ≤ γβ. Since kerβ ⊆ kerα, it follows that
ker γβ ⊆ ker γα. Let xγβ ∈ Xγα. Then xγβ ∈ Xα. Since α ≤ β, xγβ = xγα by
Theorem 3.1 (ii). Since Xγ = X and Xα ⊆ Xβ, Xγα ⊆ Xγβ. The desired result
follows from Theorem 3.1. Therefore, γ is left compatible.

For α ∈ TE(X), we let

E(α) = {Aα−1 : A ∈ X/E and Aα−1 6= ∅}.

Then E(α) is also a partition of X. From [9] and [11], for α ∈ TE(X), A ∈ E(α)
is saturated if Aα ∈ X/E, that is, Aα = B for some B ∈ X/E.

Lemma 3.5. For every α ∈ Reg(TE(X,R)), X/E = E(α).

Proof. Let A ∈ X/E. Then A = Er for some r ∈ R. Then by Lemma 2.1,
Erα ⊆ Er′ for some r′ ∈ R. Thus Er ⊆ Er′α

−1 ∈ E(α). For each x ∈ Er′α−1,
we have (rα, xα) ∈ E. It follows from Lemma 2.6 that (r, x) ∈ E. Hence Er =
Er′α

−1. Consequently, A ∈ E(α). For the reverse inclusion, let A ∈ E(α). Then
A = Erα

−1 for some r ∈ R. Thus Aα ⊆ Er and hence r = r′α for some r′ ∈ R.
This implies that Er′ ⊆ A. And for each a ∈ A, we have (aα, r′α) ∈ E. By
Lemma 2.6, (a, r′) ∈ E. Therefore, A = Er′ ∈ X/E and hence A ∈ X/E. Thus
X/E = E(α) as required.

For each α ∈ Reg(TE(X,R)), by Lemma 3.5, A ∈ X/E is said to be saturated
of α if Aα ∈ X/E.

The following results prove useful in characterizing a maximal element in
Reg(TE(X,R)).

Lemma 3.6. Let α ∈ Reg(TE(X,R)). If U ∈ X/E is non-saturated of α such
that α|U is not an injection, then α is not maximal.

Proof. Let U ∈ X/E be non-saturated of α such that α|U is not an injection.
Then Uα ⊂ A for some A ∈ X/E. Let a ∈ A \ Uα. Then a /∈ R. Since α|U is
not injective, there are distinct elements u1, u2 ∈ U such that u1α = u2α. Since
|A ∩R| = 1, we assume u1 /∈ R. Let β ∈ T (X) be defined by

xβ =

{
a if x = u1,
xα otherwise.

Since (a, u2α) ∈ E and α ∈ TE(X), we deduce that β ∈ TE(X). Since α|R : R→ R
is a bijection, β|R is also. Since Rβ = R and by Theorem 1.1, β ∈ Reg(TE(X,R)).
Claim that α ≤ β. Let xβ = yβ. Then xβ = a or xβ = xα. If yβ = xβ = a,
then x = u1 = y and hence xα = yα. If yβ = xβ = xα 6= a, then y 6= u1, so
xα = yβ = yα. Consequently, kerβ ⊆ kerα. If xβ ∈ Xα, then xβ 6= a, so that
xβ = xα. Moreover, Xα ⊆ Xα ∪ {a} = Xβ. By virtue of Theorem 3.1, α ≤ β.
Since α 6= β, it follows that α is not maximal in Reg(TE(X,R)).
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Lemma 3.7. Let α, β ∈ Reg(TE(X,R)) be such that α ≤ β and U ∈ X/E. Then
the following statements hold:

(i) If U is saturated of α, then Uα = Uβ.

(ii) If α|U is an injection, then Uα = Uβ.

Proof. (i) Assume that U is saturated of α. Then there exists A ∈ X/E such
that Uα = A. Since α ≤ β by Corollary 3.2 (iv), it follows that A = Uα ⊆ Uβ.
Since X/E is a partition of X and by Lemma 2.1, we deduce that Uβ ⊆ A. Hence
Uα = Uβ.

(ii) Suppose that α|U is an injection. By Lemma 2.6, there exists A ∈ X/E
such that U = Aα−1. By Corollary 3.2 (iv), we get that Uα ⊆ Uβ. Also, Uβ ⊆ A.
Now we show Uα = Uβ. Indeed, if there is some y ∈ Uβ \ Uα, then y ∈ A \ Uα.
Let x ∈ U with y = xβ. Then x 6= r ∈ U ∩R and xα 6= xβ. Since α|U is injective,
we have xα 6= rα = rβ and xα 6= zβ for any z ∈ U \ {x, r}. So xα ∈ Uα \ Uβ,
which implies that Uα * Uβ, a contradiction. Hence Uα = Uβ.

From Lemmas 3.6 and 3.7, we characterize a maximal element inReg(TE(X,R))
as follows.

Theorem 3.8. Let α ∈ Reg(TE(X,R)). If α is a surjection, then α is maximal.

Proof. Suppose that α is a surjection. Let β ∈ Reg(TE(X,R)) be such that α ≤ β.
By Theorem 3.1, Xα ⊆ Xβ. It follows from assumption that Xα = Xβ. Hence by
Corollary 3.2 (i), we conclude that α = β. Consequently, α is a maximal element
of Reg(TE(X,R)).

The converse of Theorem 3.8 is not necessarily true. We now show that there
exists a maximal element of Reg(TE(X,R)) which is not surjective.

Example 3.9. Let X = {1, 2, . . . , 8}, X/E = {{1, 2}, {3, 4, 5}, {6, 7, 8}} and R =
{1, 3, 6}. Define α : X → X by

α =

(
1 2 3 4 5 6 7 8
6 8 1 1 2 3 4 5

)
.

Then α ∈ TE(X,R) and α is not surjective. By Theorem 1.2, α is regular. Let
β ∈ Reg(TE(X,R)) be such that α ≤ β. Then by Theorem 3.1, we have Xα ⊆ Xβ.
Thus Xβ = Xα or Xβ = X. Suppose that Xβ = X. Then x1β = 6, x2β = 7
and x3β = 8 for some x1, x2, x3 ∈ X. By Lemma 2.6, (x1, x2), (x1, x3) ∈ E.
Since x1β, x3β ∈ Xα, by Theorem 3.1 (ii), we deduce that x1α = x1β = 6
and x3α = x3β = 8, which implies that x1 = 1 and x3 = 2. It follows that
x2 ∈ {1, 2} = {x1, x3}. This is a contradiction with β is a mapping. Hence
Xβ = Xα. We can conclude that α = β by Corollary 3.2 (i). Consequently, α is
a maximal element.

Theorem 3.10. Let α ∈ Reg(TE(X,R)). Suppose that α is not surjective. Then
α is maximal if and only if for every non-saturated A of α, α|A is an injection.
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Proof. Suppose that α is maximal and not surjective. Let A ∈ X/E be non-
saturated of α. By Lemma 3.6, α|A must be an injection.

Conversely, suppose that each non-saturated A of α, α|A is an injection. Let
β ∈ Reg(TE(X,R)) be such that α ≤ β. Then by Theorem 3.1, we obtain that
Xα ⊆ Xβ. On the other hand, let A ∈ X/E. If A is saturated of α, then by
Lemma 3.7 (i), we deduce that Aα = Aβ. If A is non-saturated of α, then α|A is
an injection. By Lemma 3.7 (ii), we obtain that Aα = Aβ. Hence Xβ ⊆ Xα by
Lemma 2.7. Therefore Xα = Xβ. From Corollary 3.2 (i), it follows that α = β
and thus α is a maximal element of Reg(TE(X,R)).

Next, we characterize minimal elements of Reg(TE(X,R)).

Theorem 3.11. Let α ∈ Reg(TE(X,R)). Then α is minimal if and only if
Xα = R.

Proof. Assume that α is minimal. For each x ∈ X, let rx ∈ R be such that (x, rx) ∈
E. Define β : X → X by xβ = rxα for all x ∈ X. Then β ∈ Reg(TE(X,R)) and
Xβ = R. If aα = bα, then by Lemma 2.6, we have (a, b) ∈ E. Thus ra = rb and
so aβ = raα = rbα = bβ. Hence kerα ⊆ kerβ. Let x ∈ X be such that xα ∈ Xβ.
Then xα = x′β = rx′α for some x′ ∈ X and by Lemma 2.6, (x, rx′) ∈ E, whence
rx = rx′ . Therefore xα = x′β = rx′α = rxα = xβ. Hence (ii) in Theorem 3.1
holds. Obviously, Xβ = R = Rα ⊆ Xα. It follows from Theorem 3.1 that β ≤ α.
By assumption, α = β. Hence Xα = Xβ = R.

Conversely, suppose that Xα = R. Let β ∈ Reg(TE(X,R)) be such that
β ≤ α. By Theorem 3.1, it follows that Xα = R = Rβ ⊆ Xβ ⊆ Xα. Thus
Xα = Xβ. It follows from Corollary 3.2 (i) that α = β. Hence α is minimal.

Let ≤ be a partial order on a semigroup S. An element b ∈ S is called an
upper cover for a ∈ S if a < b and there exists no c ∈ S such that a < c < b. A
lower cover is defined dually.

Finally, the following results are concerned with the existence of an upper
cover and a lower cover for elements of Reg(TE(X,R)).

Theorem 3.12. Let α ∈ Reg(TE(X,R)). If α is not maximal, then α has an
upper cover.

Proof. Suppose that α is not maximal. So α is not surjective. Let a ∈ X \ Xα.
Then there exists A ∈ X/E such that a ∈ A. Let U = Aα−1. Then Uα ⊆ A. By
Lemma 3.5, U ∈ X/E. Since a /∈ Xα, Uα 6= A. Therefore U is non-saturated. By
Theorem 3.10, we have that α|U is not an injection. Let β be defined as in the
proof of Lemma 3.6, and we will show that β is an upper cover of α. Suppose that
α < γ ≤ β for some γ ∈ Reg(TE(X,R)). Then by Theorem 3.1, we obtain that
Xα ⊂ Xγ ⊆ Xβ = Xα ∪ {a} and thus Xγ = Xβ. It follows from Corollary 3.2
(i) that γ = β. Hence β is an upper cover of α.

Theorem 3.13. Let α ∈ Reg(TE(X,R)). If α is not minimal, then α has a lower
cover.
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Proof. If α is not minimal, then Xα 6= R. Let y ∈ Xα \R. Then y ∈ Er for some
r ∈ R. Define β : X → X by

xβ =

{
r if x ∈ yα−1,
xα otherwise.

Then β is well-defined and α 6= β. Let r′ ∈ R be such that r′α = r. For each
x ∈ yα−1, (xα, r′α) = (y, r) ∈ E. By Lemma 2.6, (x, r′) ∈ E. Thus yα−1 ⊆ Er′ .
If x ∈ Er′ \yα−1, then (xβ, r′β) = (xα, r′α) = (xα, r) ∈ E. Hence Er′β ⊆ Er. For
each s ∈ R \ {r′}, by Lemma 2.1, there exists s′ ∈ R such that Esβ = Esα ⊆ Es′ .
From Lemma 2.1, we obtain that β ∈ TE(X). Since R ⊆ X \ yα−1, we get
Rβ = Rα = R and hence β ∈ TE(X,R). Since α is regular, β is also.

Now, we will show that β ≤ α by using Theorem 3.1. Let a, b ∈ X be such that
aα = bα. If aα = y, then aβ = r = bβ. Otherwise, aβ = aα = bα = bβ. Hence
kerα ⊆ kerβ. Suppose that xα ∈ Xβ where x ∈ X. Since Xβ = Xα\{y}, xα 6= y
and hence x /∈ yα−1. Therefore, xβ = xα. Obviously, Xβ = Xα \ {y} ⊆ Xα.
Hence β ≤ α.

Finally, to show that β is a lower cover for α, let γ ∈ Reg(TE(X,R)) be such
that β ≤ γ < α. Then by Theorem 3.1, Xα \ {y} = Xβ ⊆ Xγ ⊂ Xα, which
implies Xβ = Xγ. By Corollary 3.2 (i), we conclude that β = γ. Consequently,
α has a lower cover.
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