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Abstract : Let R be a finite commutative chain ring with identity of characteristic
pa that has maximal ideal 〈z〉. In this paper, we study λ-constacyclic codes of
length 2ps over R, for any unit λ of R. If the unit λ is not a square, the rings

Rλ = R[x]
〈x2ps−λ〉 is a local ring with maximal ideal 〈x2 − r, z〉, where r ∈ R such

that λ− rps is not invertible. When there exists a unit λ0 of R such that λ = λp
s

0 ,
we prove that x2− λ0 is nilpotent with nilpotency index aps− (a− 1)ps−1. When

λ = λp
s

0 + zω, for some unit ω of R, we show that Rλ is also a chain ring with
maximal ideals 〈x2 − λ0〉. Furthermore, the algebraic structure and dual of all
λ-constacyclic codes are obtained.
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1 Introduction

The most important class of codes is that of cyclic codes, which has been well
studied since the late 1950’s. Cyclic codes are the most studied of all codes such
as BCH, Kerdock, Golay, Reed-Muller, Preparata, Justesen, and binary Hamming
codes, are either cyclic codes or constructed from cyclic codes. However, most of
this research is concentrated on the situation in which the code length n is relatively
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prime to the characteristic of finite field F . The class of constacyclic codes play a
very significant role in the theory of error-correcting codes. Constacyclic codes can
be efficiently encoded using shift registers, which explains their preferred role in
engineering. Given a nonzero element λ of the finite field F , λ-constacyclic codes

of length n are classified as the ideals 〈f(x)〉 of the quotient ring F [x]
〈xn−λ〉 , where

the f(x) is a divisor of xn − λ.
The case when the code length n is divisible by the characteristic p of the

field yields the so-called repeated-root codes, which were first studied since 1967
by Berman [1]. In the 1990’s [2–4] that many important yet seemingly non-linear
binary codes such as Kerdock and Preparata codes are actually closely related to
linear codes over the ring of integers modulo four via the Gray map, codes over
Z4 in particular, and codes over finite rings in general, have received a great deal
of attention. A code C of length n over a finite ring R is a nonempty subset of
Rn, and the ring R is referred to as the alphabet of the code. If this subset is, in
addition, an R-submodule of Rn, then C is called linear code. For a unit λ of R,
the λ-constacyclic (λ-twisted) shift τλ on Rn is the shift

τλ(x0, x1, ..., xn−1) = (λxn−1, x0, x1, ..., xn−2),

and a code C is said to be λ-constacyclic if τλ(C) = C, i.e., if C is closed under the
λ-constacyclic shift τλ, for λ = 1, they are called cyclic codes, and when λ = −1,
they are called negacyclic codes. Each codeword c = (c0, c1, ..., cn−1) is identified
with its polynomial repesentation c(x) = c0 + c1x+ ...+ cn−1x

n−1, and the code C
is in turn identified with the set of all polynomial representations of its codewords.

Then in the ring R[x]
〈xn−λ〉 , xc(x) corresponds to a λ-constacyclic shift of c(x). The

following is known.

Proposition 1.1. [5, 6] A linear code C of length n is λ-constacyclic over R if

and only if C is an ideal of the quotient ring R[x]
〈xn−λ〉 .

Over the last few years, many researchers studied that repeated-root consta-
cyclic codes over class of finite chain rings, such as Abualrub and Ochmke [7, 8],
Blackford [9, 10], Dinh [11–14], Ling et al. [15–17], Sălăgean et al. [18, 19], etc.
Recently, Dinh [20] studied the algebraic structure of repeated-root λ-constacyclic
codes of prime power length ps over finite chain ring in general.

The structure of the paper is as follows. In Section 2, Preliminary concepts
and give some properties of chain rings and constacyclic codes. In Section 3, we
study λ-constacyclic codes of length 2ps over a finite commutative chain ring R
of characteristic pa with unique maximal ideal 〈z〉. By the Chinese Remainder
Theorem, we can prove that if the unit λ is a square in R, i.e., λ = α2, for some
unit α of R, then every λ-constacyclic codes of length 2ps over R can be represented
as a direct sum of an (−α)-constacyclic code and an α-constacyclic code of length
ps over R. In the main case, we consider λ is not a square. we prove that the

rings Rλ = R[x]
〈x2ps−λ〉 is a local ring with maximal ideal 〈x2 − r, z〉, where r ∈ R

such that λ − rps is not invertible. When there exists a unit λ0 of R such that
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λ = λp
s

0 , we get that x2 − λ0 is nilpotent with nilpotency index aps − (a− 1)ps−1.

When λ = λp
s

0 + zω, for some unit ω of R, we show that Rλ is also a chain ring
with maximal ideals 〈x2 − λ0〉. Furthermore, the algebraic structure and dual of
all λ-constacyclic codes are obtained.

2 Preliminaries

An ideal I of a ring is called principal if it is generated by single element. A
ring R is a principal ideal ring if its ideals are principal. R is called a local ring if
R has a unique maximal right (left) ideal. Furthermore, a ring R is called a chain
ring if the set of all right (left) ideals of R is linearly ordered under set-theoretic
inclusion. The following equivalent conditions are known for the class of finite
commutative rings (see, [21, Proposition 2.1]).

Proposition 2.1. If R is a finite commutative ring with identity, then the follow-
ing conditions are equivalent:

(a) R is a local ring and the maximal ideal M of R is principal,

(b) R is a local principal ideal ring,

(c) R is a chain ring.

Let z be a fixed generator of the maximal ideal M of a finite commutative
chain ring R. Then z is nilpotent and we denote its nilpotency index by Nz. The
ideals of R form a chain:

R = 〈z0〉 ) 〈z1〉 ) · · · ) 〈zNz−1〉 ) 〈zNz 〉 = 〈0〉,

Let R̄ = R
M be the residue field of R modulo its maximal ideal M . By ¯ :

R[x] → R̄[x], we denote the natural ring homomorphism that maps r 7→ r + M
and the variable x to x. We have the following well-known properties of finite
commutative chain rings (cf. [22]).

Proposition 2.2. Let R be a finite commutative chain ring with maximal ideal
M = 〈z〉 and let Nz be the nilpotency z. Then

(a) For some prime p and positive integer k, l with k ≥ l such that |R| = pk,
|R̄| = pl, and the characteristic of R is powers of p and R̄ are powers of p.

(b) There is an element ξ of the multiplicative group of units of R with multi-
plicative order |R̄|−1 such that any element r ∈ R can be uniquely expressed
as

r = r0 + r1z + · · ·+ rNz−1z
Nz−1,

where ri ∈ T = {0, 1, ξ, ..., ξ|R̄|−2}, the Teichmüller set of R.

(c) For i = 0, ..., Nz, |〈zi〉| = |R̄|Nz−i. In particular, |R| = |R̄|Nz , i.e., k = lNz.
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Given n-tuples x = (x0, x1, ..., xn−1), y = (y0, y1, ..., yn−1) ∈ Rn, their inner
product is defined as usual

x · y = x0y0 + x1y1 + ...+ xn−1yn−1,

evaluated in R. Two n-tuples x, y are called orthogonal if x · y = 0. For a linear
code C over R, its dual code C⊥ is the set of n-tuples over R that are orthogonal
to all codewords of C, i.e.,

C⊥ = {x | x · y = 0,∀y ∈ C}.

A code C is called self-orthogonal if C ⊆ C⊥, and it is called self-dual if C = C⊥.
The following proposition can be found in [23].

Proposition 2.3. Let p be a prime and R be a finite chain ring of size pa. The
number of codewords in any linear code C of length n over R is pk, for some
integer k ∈ {0, 1, ..., an}. Moreover, the dual code C⊥ has pl codewords, where
k + l = an, i.e., |C| · |C⊥| = |R|n.

Note that the dual of cyclic code is a cyclic code, and the dual of a negacyclic
code is a negacyclic code. In general, we have the following implication of dual of
a λ-constacyclic code.

Proposition 2.4. The dual of a λ-constacyclic code is λ−1-constacyclic code.

For a nonempty subset S of the ring R, the annihilator of S, denoted by
ann(S), is the set

ann(S) = {f ∈ R | fg = 0, for all g ∈ R}.

Then ann(S) is an ideal of R.
Customarily, for a polynomial f of degree k, its reciprocal polynomial xkf(x−1)

will be denoted by f∗(x). Thus, for example, if

f(x) = a0 + a1x+ · · ·+ ak−1x
k−1 + akx

k,

then

f∗(x) = xk(a0 + a1x
−1 + · · ·+ ak−1x

−(k−1) + akx
−k)

= ak + ak−1x+ · · ·+ a1x
k−1 + a0x

k.

Note that (f∗)∗(x) = f(x) if and only if the constant term of f is nonzero, if
and only if deg(f) = deg(f∗). We denote A∗ = {f∗(x) | f(x) ∈ A}. It is easy to
see that if A is an ideal, then A∗ is also an ideal.

Proposition 2.5. (cf. [13, 21]) Let R be a finite commutative chain ring, and λ
be a unit of R.
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(a) Let a(x), b(x) ∈ R[x] be given as

a(x) = a0 + a1x+ · · ·+ an−1x
n−1,

b(x) = b0 + b1x+ · · ·+ bn−1x
n−1.

Then a(x)b(x) = 0 in R[x]
〈xn−λ〉 if and only if (a0, a1, ..., an−1) is orthogonal to

(bn−1, bn−2, ..., b0) and all its λ−1-constacyclic shifts.

(b) Let C be a λ-constacyclic code of length n over R. Then the dual C⊥ of C
is (ann(C))∗, and |C| · |C⊥| = |R|n.

Let R be a finite chain ring of characteristic pa that has maximal ideal 〈z〉.
Let Nz denote the nilpotency index of z. For any unit λ of R, by Proposition
1.1, λ-constacyclic codes of length 2ps over R are the ideals of the ambient ring

Rλ = R[x]
〈x2ps−λ〉 .

3 λ-Constacyclic Codes of Length 2ps over
a Finite Chain Ring

In this section, we consider λ-constacyclic codes of length 2ps over finite chain
ring R. Now, if the unit λ is a square in R, i.e., there exists a unit α ∈ R such
that λ = α2. Then we have

x2ps − λ = x2ps − α2 = (xp
s

+ α)(xp
s

− α).

By the Chinese Remainder Theorem, we get that

Rλ =
R[x]

〈xps + α〉
⊕ R[x]

〈xps − α〉
.

It implies that ideals of Rλ are of the form A ⊕ B, where A and B are ideals of
R[x]
〈xps+α〉 and R[x]

〈xps−α〉 , respectively, i.e., they are (−α) and α-constacyclic codes of

length ps over R. This means that any λ-constacyclic code of length 2ps over R,
i.e., an ideal C of Rλ, is represented as a direct sum of C−α and Cα:

C = C−α ⊕ Cα,

where C−α and Cα are ideals of R[x]
〈xps+α〉 and R[x]

〈xps−α〉 , respectively. Hence, we can

determine the classification, detailed structure, and number of codewords of (−α)
and α-constacyclic codes length ps were invertigated in [20]. Thus, when λ is a
square in R, we obtain λ-constacyclic codes C of length 2ps over R from that of
the direct summands C−α and Cα (see [20]). Now, we have the dual code C⊥ of
C including a direct sum of the the dual codes of the direct summands C⊥−α and
C⊥α .
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Theorem 3.1. Let the unit λ is a square, i.e. λ = α2 for some α ∈ R, and
C = C−α ⊕ Cα be a λ-constacyclic code of length 2ps over R, where C−α and Cα
are ideals of R[x]

〈xps+α〉 and R[x]
〈xps−α〉 , respectively. Then

C⊥ = C⊥−α ⊕ C⊥α .

In particular, C is a self-dual constacyclic code of length 2ps over R if and only
if C−α and Cα are self-dual (−α) and α-constacyclic code of length ps over R,
respectively.

Proof. We have C⊥−α ⊕ C⊥α ⊆ C⊥. Now, we consider

|C⊥−α ⊕ C⊥α | = |C⊥−α| · |C⊥α | =
|R|ps

|C−α|
· |R|

ps

|Cα|
=

|R|2ps

|C−α| · |Cα|
=
|R|2ps

|C|
= |C⊥|.

Hence, C⊥ = C⊥−α ⊕ C⊥α .

Next, we will consider on the main case where λ is not square in R. We have
the following.

Lemma 3.2. Let R be a finite chain ring of characteristic pa and maximal ideal
〈z〉, and λ be a unit of R. For any element r ∈ R, x2 − r is invertible in Rλ if
and only if λ− rps is invertible in R. Moreover, when x2 − r is not invertible, it
is nilpotent in Rλ.

Proof. In Rλ, x2ps = λ, and p |
(
ps

i

)
for 1 ≤ i ≤ ps − 1, then

(x2 − r)p
s

= x2ps +

[
ps−1∑
i=1

(
ps

i

)
(x2)p

s−i(−r)i
]
− rp

s

= (λ− rp
s

) + ph(x),

where h(x) =
ps−1∑
i=1

(ps

i )
p (x2)p

s−i(−r)i. We obtain that x2 − r is invertible in Rλ if

and only if (x2−r)ps is invertible, which is equivalent to the condition that λ−rps

is invertible in R. Next, suppose that x2 − r is not invertible in Rλ, we get that
λ − rps is not invertible in R, that is, λ − rps = z1z, for some z1 ∈ R. Since p is
also not invertible in R, p = z2z, for some z2 ∈ R. Hence,

(x2 − r)p
s

= (λ− rp
s

) + ph(x) = z(z1 + z2h(x)).

Therefore,
(x2 − r)p

sNz = zNz (z1 + z2h(x))Nz = 0.

We have x2 − r is nilpotent in Rλ. The proof is complete.

Thus, we can find an element r such that λ − rps is nilpotent in R, for any
unit λ of R.
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Proposition 3.3. Let R be a finite chain ring of characteristic pa and maximal
ideal 〈z〉, and λ be unit of R. Then there always exists an element r such that
λ− rps is nilpotent, i.e., non-invertible, in R.

Proof. Let R̄ = R/〈z〉 be the residue field of R. Then R̄ has cardinality a power of
p, say |R̄| = q = pm. By Proposition 2.2, fix ξ to be an element of the multiplicative
group of units of R with multiplicative order q − 1 such that any element η ∈ R
can be uniquely expressed as

η = η0 + η1z + · · ·+ ηNz−1z
Nz−1,

where ηi ∈ T = {0, ξ, ..., ξq−2, ξq−1 = 1}, the Teichmüller set of R. Since λ is a
unit of R, λ is uniquely expressed as

λ = l0 + l1z + · · ·+ lNz−1z
Nz−1,

where li ∈ T , and l0 6= 0. Note that ξ has multiplicative order q − 1, it means

that ξq−1 = 1, i.e., ξp
m

= ξ. Thus, for any positive integer k, ξp
km

= ξ. By the
Division Algorithm, there exist nonnegative integer kq, kr such that s = kqm+kr,

and 0 ≤ kr ≤ m − 1. Let ξ0 = ξp
(kq+1)m−s

= ξp
m−kr

. Then ξp
s

0 = ξp
(kq+1)m

= ξ.

Since 0 6= l0 ∈ T , l0 = ξj , for 1 ≤ j ≤ q − 1, we get that l0 = ξjp
s

0 . Choose r = ξj0,
we have

λ− rp
s

= λ− (ξj0)p
s

= λ− l0
= l1z + · · ·+ lNz−1z

Nz−1

= z(l1 + · · ·+ lNz−1z
Nz−2),

which is nilpotent in R.

Now, when λ − rps is nilpotent in R, that is, it is not invertible, we can see
that Rλ is a local ring with maximal ideal 〈x2− r, z〉. We start with the following
observation.

Proposition 3.4. Any nonzero linear polynomial cx + d ∈ R[x] is invertible in
Rλ.

Proof. In Rλ, we have

(x+ d)p
s

(x− d)p
s

= (x2 − d2)p
s

= x2ps − d2ps = λ− d2ps .

Since λ is not a square in R, λ− d2ps is invertible in Rλ. Thus

(x+ d)−1 = (x+ d)p
s−1(x− d)p

s

(λ− d2ps)−1.

Therefore, for any c 6= 0 in R,

(cx+ d)−1 = c−1(x+ c−1d)−1 = (x+ c−1d)p
s−1(x− c−1d)p

s

(λ− c−2psd2ps)−1.

The proof is complete.
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Proposition 3.5. Let R be a finite chain ring of characteristic pa with maximal
ideal 〈z〉, and λ be a unit of R. Fix an element r ∈ R such that λ − rps is not
invertible, then the ambient ring Rλ is a local ring with maximal ideal 〈x2 − r, z〉.

Proof. Let r be an element of R such that λ − rps is not invertible. By Lemma
3.2, we have x2 − r is nilpotent in Rλ. As R is a chain ring, each element y ∈ R
can be written as y = riz

i, where ri is a unit of R and 0 ≤ i ≤ Nz. Let f(x) ∈ Rλ,
then f(x) can be expressed as

f(x) =

ps−1∑
i=0

(cix+ di)(x
2 − r)i,

where ci, di ∈ R, we can see that

f(x) = (c0x+ d0) + (x2 − r)
ps−1∑
i=1

(cix+ di)(x
2 − r)i−1

= zk0(r0x+ r′0) + (x2 − r)
ps−1∑
i=1

(cix+ di)(x
2 − r)i−1,

where 0 ≤ k0 ≤ Nz and r0, r
′
0 are units of R. Since both x2 − r and z are

nilpotent in Rλ, f(x) is invertible in Rλ if and only if k0 = 0. This implies that
〈x2 − r, z〉 is the set of all non-invertible elements of Rλ. Therefore, Rλ is a local
ring with maximal ideal 〈x2 − r, z〉. Now, we will show that 〈x2 − r, z〉 is not a
principle ideal of Rλ. Suppose that z ∈ 〈x2 − r〉. Then, there is a polynomial

f(x) =
ps−1∑
i=0

(cix+ di)(x
2 − r)i ∈ R such that z = (x2 − r)f(x). Hence,

z = (x2 − r)
ps−1∑
i=0

(cix+ di)(x
2 − r)i

= (x2 − r)
ps−1∑
i=0

zki(rix+ r′i)(x
2 − r)i,

where ri, r
′
i are units of R. Then, there exists l ∈ {0, 1, 2, ..., ps − 1} such that

kl = 1, it follows that (x2 − r)(rlx + r′l)(x
2 − r)l = 1. This implies that x2 − r

is invertible, which is a contradiction. So, z /∈ 〈x2 − r〉. Obviously, x2 − r /∈ 〈z〉,
because (x2−r)Nz 6= 0 in R, but zNz = 0. Thus, 〈x2−r, z〉 is not a principle ideal
of R, which implies that R is not chain ring according to Proposition 2.1.

Next, if there exists λ0 ∈ R such that λ = λp
s

0 , setting r = λ0, we can see that
λ− rps = 0, which is not invertible. The following result is straightforword.

Corollary 3.6. Let λ be a unit of the chain ring R such that there exists λ0 ∈ R
with λp

s

0 = λ. Then the ambient ring Rλ is a local ring with maximal ideal
〈x2 − λ0, z〉.
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It is worth noting that when there exists λ0 ∈ R such that λp
s

0 = λ, we
can establish a one-to-one correspondence between λ-constacyclic codes and cyclic
codes of length 2ps over R via a ring isomorphism that sends x 7→ λ0x as follows.

Proposition 3.7. Let Φ be the map

Φ : Rλ → R1

given by

Φ(f(x)) = f(λ0x).

Then Φ is a ring isomorphism. In particular, A is an ideal of Rλ if and only if
Φ(A) is an ideal of R1. Equivalent, A is a λ-constacyclic code of length 2ps over
R if and only if Φ(A) is a cyclic code of length 2ps over R.

Now, we use the nilpotency index Nz of the generator z and determine the
nilpotency index of the other generator x2 − λ0, which is the structure of ideals
of the ambient rings Rλ. If k is the highest power to which p divides N , we write
pk||N , i.e., pk|N and pk+1 - N . We will recall an important fact in number theory
proven by Kummer.

Theorem 3.8. [20] (Kummer’s Theorem) For any prime p and integers n ≥ m ≥
0, let k be the highest power to which p divides the binomial coefficient

(
n
m

)
, i.e.,

pk||
(
n
m

)
. Then k is precisely the numbers of carries when adding n−m and m in

base p.

Kummer’s Theorem easily implies the following result.

Proposition 3.9. [20] Let p be a prime.

(a) Assume that pn > t, and pm||t. Then pn−m||
(
pn

t

)
.

(b) For any i with 1 ≤ i ≤ p− 1, p||
(
ps

ips−1

)
.

Proposition 3.10. Let k ≥ 0 and λ be a unit of the chain ring R such that
there is an element λ0 ∈ R such that λp

s

0 = λ. Then in Rλ, there exist elements
αk(x), βk(x) such that αk(x) is invertible, pk+2(x2 − λ0)|βk(x), and

(x2 − λ0)p
s+k(p−1)ps−1

= pk+1αk(x)(x2 − λ0)p
s−1

+ βk(x).

Proof. We will prove by induction on k. When k = 0, we have

0 = x2ps − λ = [(x2 − λ0) + λ0]p
s

− λp
s

0 =

ps∑
i=1

(
ps

i

)
(x2 − λ0)iλp

s−i
0 .
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It implies that

(x2 − λ0)p
s

= −
ps−1∑
i=1

(
ps

i

)
(x2 − λ0)iλp

s−i
0

= −
p−1∑
i=1

(
ps

ips−1

)
(x2 − λ0)ip

s−1

λp
s−ips−1

0

−
ps−1∑

i=1,ps−1-i

(
ps

i

)
(x2 − λ0)iλp

s−i
0

= pα0(x)(x2 − λ0)p
s−1

+ β0(x),

where

α0(x) = −1

p

p−1∑
i=1

(
ps

ips−1

)
(x2 − λ0)(i−1)ps−1

λp
s−ips−1

0 ,

and

β0(x) = −
ps−1∑

i=1,ps−1-i

(
ps

i

)
(x2 − λ0)iλp

s−i
0 .

By Proposition 3.9, α0(x) is invertible, and ps(x2−λ0) | β0(x). Hence, the assertion
is true for k = 0. Assume that the assertion is true for any integer up to k, we
will show that it is true for k + 1. We consider

(x2 − λ0)p
s+(k+1)(p−1)ps−1

= (x2 − λ0)p
s+k(p−1)ps−1

(x2 − λ0)(p−1)ps−1

= [pk+1αk(x)(x2 − λ0)p
s−1

+ βk(x)](x2 − λ0)(p−1)ps−1

= pk+1αk(x)(x2 − λ0)p
s

+ βk(x)(x2 − λ0)(p−1)ps−1

= pk+1αk(x)[pα0(x)(x2 − λ0)p
s−1

+ β0(x)]

+ βk(x)(x2 − λ0)(p−1)ps−1

= pk+2αk(x)α0(x)(x2 − λ0)p
s−1

+ pk+1αk(x)β0(x)

+ βk(x)(x2 − λ0)(p−1)ps−1

= pk+2

[
αk(x)α0(x) +

βk(x)

pk+2
(x2 − λ0)(p−2)ps−1

]
× (x2 − λ0)p

s−1

+ pk+1αk(x)β0(x)

= pk+2αk+1(x)(x2 − λ0)p
s−1 + βk+1(x),

where

αk+1(x) = αk(x)α0(x) +
βk(x)

pk+2
(x2 − λ0)(p−2)ps−1

,

and
βk+1(x) = pk+1αk(x)β0(x).
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Since α0(x), αk(x) are invertible and (x2 − λ0) | βk(x)
pk+2 , we get that αk+1(x) is

also invertible. As ps(x2 − λ0) | β0(x), pk+3(x2 − λ0) | βk+1(x). The proof is
complete.

Theorem 3.11. Let λ be a unit of the chain ring R such that there is an element
α0 ∈ R such that λp

s

0 = λ. In Rλ, x2 − λ0 is nilpotent with nilpotency index
aps − (a− 1)ps−1.

Proof. By Proposition 3.10, we put k = a − 1, then there exist αa−1(x), βa−1(x)
such that αa−1(x) is invertible, pa+1(x2 − λ0) | βa−1(x), and

(x2 − λ0)p
s+(a−1)(p−1)ps−1

= paαa−1(x)(x2 − λ0)p
s−1

+ βa−1(x) = 0.

Thus the nilpotency index of x2−λ0 is less than or equal to ps+(a−1)(p−1)ps−1 =

aps− (a− 1)ps−1. Next, we will show that (x2− λ0)ap
s−(a−1)ps−1−1 6= 0. If a = 1,

i.e., R is a chain ring of characteristic p, then x2 − λ0 has nilpotency index ps,
which is aps−(a−1)ps−1. Next, we want to consider a ≥ 2. Using Proposition 3.10
for k = a − 2, then there exist αa−2(x), βa−2(x) such that αa−2(x) is invertible,
pa(x2 − λ0) | βa−2(x), and

(x2 − λ0)p
s+(a−2)(p−1)ps−1

= pa−1αa−2(x)(x2 − λ0)p
s−1

+ βa−2(x)

= pa−1αa−2(x)(x2 − λ0)p
s−1

.

Therefore,

(x2 − λ0)ap
s−(a−1)ps−1−1 = (x2 − λ0)p

s+(a−1)(p−1)ps−1−1

= (x2 − λ0)p
s+(a−2)(p−1)ps−1+(p−1)ps−1−1

= (x2 − λ0)p
s+(a−2)(p−1)ps−1

(x2 − λ0)(p−1)ps−1−1

= pa−1αa−2(x)(x2 − λ0)p
s−1

(x2 − λ0)(p−1)ps−1−1

= pa−1αa−2(x)(x2 − λ0)p
s−1 6= 0.

The proof is complete.

When λ = 1, λ0 = 1, and we get the following straightforward result on

R1 = R[x]
〈x2−1〉 , the ambient ring of cyclic codes.

Corollary 3.12. Let R be a finite chain ring of characteristic pa and maximal
ideal 〈z〉. The ambient ring R1 is a local ring with maximal ideal 〈x2 − 1, z〉, and
the nilpotency index of x2 − 1 in R1 is aps − (a− 1)ps−1.

Consider the case λ = 1 and p is odd prime. Hence, the hypotheses of Proposi-

tion 3.5 are satisfied, and therefore it implies that the ambient ring R−1 = R[x]
〈x2+1〉

is a local ring with maximal ideal 〈x2 + 1, z〉. Moreover, the nilpotency index of
x2 + 1 in R−1 can still be computed as follows.
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Theorem 3.13. Let R be a finite chain ring of characteristic pa and maximal
ideal 〈z〉. The ambient ring R−1 is a local ring with maximal ideal 〈x2 + 1, z〉.
Then x2 + 1 is nilpotent with nilpotency index aps − (a − 1)ps−1 when p is odd
prime.

We give some of classes of constacyclic codes of length 2ps over special cases
of the chain ring R as particular cases of our results.

Example 3.14. R = Fpm+uFpm , (u2 = 0). In this case, a = 1, z = u, and Nz = 2.
In 2016, Dinh [24] classified λ-constacyclic codes of length 2ps over Fpm + uFpm
into two cases. If the unit λ is not a square and λ = α+ uβ for nonzero elements
α, β of Fpm , it is shown that the ambient ring (Fpm +uFpm)[x]/〈x2ps− (α+uβ)〉 is
a chain ring with the unique maximal ideal 〈x2−α0〉 for 0 ≤ i ≤ 2ps. If the unit λ
is not a square and λ = γ for some nonzero element γ of Fpm , such λ-constacyclic
codes are classified into 4 distinct types of ideals. The detailed structures and the
number of codewords of ideals in each type, and the dual of every λ-constayclic
code are obtained.

Now, by Proposition 3.3, any unit λ of the chain ring R can be expressed
as λ = λp

s

0 + zω, where λ0 is a unit of R, ω ∈ R. Thus, the following result is
straightforward from Proposition 3.5.

Corollary 3.15. Let R be a unit of the chain R can always be expressed as 〈z〉,
and λ be a unit of R. Expressing λ of the form λ = λp

s

0 +zω, where λ0 is a unit of
R, ω ∈ R, then the ambient ring Rλ is a local ring with maximal ideal 〈x2−λ0, z〉.

If, in addition, ω is invertible, we can prove that z ∈ 〈x2 − λ0〉, implying that
Rλ is in deed a chain ring, as follows.

Theorem 3.16. Let R be a finite chain ring of characteristic pa with maximal
ideal 〈z〉, and λ be a unit of R of the form λ = λp

s

0 + zω, where λ0 is a unit of R,
ω are unit of R. Then 〈(x2 − λ0)p

s〉 = 〈z〉, and the ambient ring Rλ is a chain
ring with maximal ideals 〈x2−λ0〉, where the nilpotency index of x2−λ0 is psNz.

Proof. In Rλ, x2ps = λ = λp
s

0 + zω, i.e., zω = x2ps − λp
s

0 . Since p|
(
ps

i

)
for

1 ≤ i ≤ ps − 1, we get that

zω = x2ps − λp
s

0

= [(x2 − λ0) + λ0]p
s

− λp
s

0

= (x2 − λ0)p
s

+

ps−1∑
i=1

(
ps

i

)
(x2 − λ0)iλp

s−i
0

= (x2 − λ0)p
s

+ p(x2 − λ0)

ps−1∑
i=1

(
ps

i

)
p

(x2 − λ0)i−1λp
s−i

0 .
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Note that p is nilpotent in the chain ring R, we have p must be in the maximal
ideal 〈z〉. Then, p = tz for some t ∈ R. Thus,

(x2 − λ0)p
s

= zω − p(x2 − λ0)

ps−1∑
i=1

(
ps

i

)
p

(x2 − λ0)i−1λp
s−i

0

= z

[
ω − t(x2 − λ0)

ps−1∑
i=1

(
ps

i

)
p

(x2 − λ0)i−1λp
s−i

0

]
.

Since ω is invertible and x2 − λ0 is nilpotent in Rλ, ω − t(x2 − λ0)
ps−1∑
i=1

(ps

i )
p (x2 −

λ0)i−1λp
s−i

0 is invertible in Rλ. Therefore, 〈(x2 − λ0)p
s〉 = 〈z〉, implying the

nilpotency index of x2 − λ0 is psNz. Moreover, since z ∈ 〈z〉 = 〈(x2 − λ0)p
s〉 ⊆

〈x2 − λ0〉, the maximal ideal 〈x2 − λ0, z〉 is in fact 〈x2 − λ0〉. Therefore, by
Proposition 2.1, Rλ is a chain ring with maximal ideal 〈x2 − λ0〉.

Now, we can list all λ-constacyclic codes of length 2ps over R and their sizes.

Proposition 3.17. Let R be a finite chain ring of characteristic pa with maximal
ideal 〈z〉, and λ be a unit of R of the form λ = λp

s

0 + zω, where λ0 and ω are
units of R. There are psNz + 1 λ-constacyclic codes of length 2ps over R, they are
precisely the ideal 〈(x2 − λ0)i〉, where 0 ≤ i ≤ psNz, of the chain ring Rλ. Each
λ-constacyclic code 〈(x2 − λ0)i〉 contains |R̄|psNz−i codewords, where R̄ = R

〈z〉 is

the residue field of R.

By Proposition 2.4, the dual of a λ-constacyclic code is a λ−1-constacyclic
code. So, we want to determine the duals of λ-constacyclic codes. Firstly, we
must obtain λ−1 for λ = λp

s

0 + zω, where λ0 and ω are units of R. Let k be the
integer such that 2k < Nz ≤ 2k+1, we have

(λp
s

0 + zω)(λp
s

0 − zω)((λp
s

0 )2 + (zω)2)((λp
s

0 )22

+ (zω))22

· · · ((λp
s

0 )2k

+ (zω)2k

)

= ((λp
s

0 )2 − (zω)2)((λp
s

0 )2 + (zω)2)((λp
s

0 )22

+ (zω))22

· · · ((λp
s

0 )2k

+ (zω)2k

)

...

= ((λp
s

0 )2k

− (zω)2k

)((λp
s

0 )2k

+ (zω)2k

)

= ((λp
s

0 )2k+1

− (zω)2k+1

)

= (λp
s

0 )2k+1

.

That means,

λ(λp
s

0 − zω)

k∏
i=1

(λ2ips

0 + z2i

ω2i

) = λ2k+1ps

0 .

Thus,

λ−1 = λ−2k+1ps

0 (λp
s

0 − zω)

k∏
i=1

(λ2ips

0 + z2i

ω2i

).
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Viewing λ−1 as a polynomial of z, say λ−1 = g(z) = g0 +g1z+g2z
2 + · · · , we have

g0 = λ−2k+1ps

0

k∏
i=1

λ2ips

0

= λ−2k+1ps

0 λ
ps

∑k
i=0 2i

0

= λ−2k+1ps

0 λp
s(2k+1−1)

= λ−p
s

0 ,

and

g1 = −ωλ−2k+1ps

0

k∏
i=1

λ2ips

0

= λ−2k+1ps

0 λ
ps

∑k
i=0 2i

0

= λ−2k+1ps

0 λp
s(2k+1−2)

= −ωλ−2ps

0 .

We can see that g1 is invertible, and so, λ−1 can be expressed as λ−1 = (λ−1
0 )p

s

+
zω′, for some unit ω′ of R. By Theorem 3.16 and Proposition 3.17, the following
results about λ−1-constacyclic codes of length 2ps over R are obtained.

Theorem 3.18. Let R be a finite chain ring of characteristic pa with maximal
ideal 〈z〉 and λ be a unit of R of the form λ = λp

s

0 + zω, where λ0 and ω are units
of R. Then

(a) λ−1 = (λ−1
0 )p

s

+ zω′ of R.

(b) In Rλ−1 , 〈(x2 − λ−1
0 )p

s〉 = 〈z〉, and the ambient ring Rλ−1 is a chain ring
with maximal ideals 〈(x2 − λ−1

0 )p
s〉, where the nilpotency index of x2 − λ−1

0

is psNz.

(c) There are psNz + 1 λ−1-constacyclic codes of length 2ps over R, they are
precisely the ideals 〈(x2 − λ−1

0 )i〉, where 0 ≤ i ≤ psNz, of the chain ring
Rλ−1 . Each λ−1-constacyclic code 〈(x2− λ−1

0 )i〉 ⊆ Rλ−1 contains |R̄|psNz−i

codewords, where R̄ = R
〈z〉 is the residue field of R.

For a λ-constacyclic code of legnth 2ps over R, C = 〈(x2 − λ0)i〉 ⊆ Rλ, by
Proposition 3.17, |C| = |R̄|psNz−i. By Proposition 2.5, the number of codewords
in the dual C⊥ is

|C⊥| = |R̄|
ps

|C|
=
|R̄|psNz

|R̄|psNz−i
= |R̄|i.

On the other hand, since C⊥ is a λ−1-constacyclic code of length 2ps over R,
by Theorem 3.18, C⊥ is an ideal of the chain ring Rλ−1 , of the form C⊥ =
〈(x2 − λ−1

0 )i〉 ⊆ Rλ−1 which contains |R̄|psNz−j codewords. Hence, psNz − j = i,
i.e., j = psNz − i. Therefore, C⊥ = 〈(x2 − λ0)p

sNz−i〉 ⊆ Rλ−1 . Thus, we have the
following result.
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Corollary 3.19. Let R be a finite chain ring of characterstic pa with maximal
ideal 〈z〉, residue field R̄ = R

〈z〉 , and λ be a unit of the form λ = λp
s

0 + zω, where

λ0 and ω are units of R. Let C be a λ-constacyclic code of length 2ps over R, then
C = 〈(x2 − λ0)i〉 ⊆ Rλ, where 0 ≤ i ≤ psNz, that contains |R̄|psNz−i codewords.
The dual C⊥ is the λ−1-constacyclic code C⊥ = 〈(x2−λ−1

0 )p
sNz−i〉 ⊆ Rλ−1 , which

contains |R̄|i codewords.

Comparing the sizes of C and C⊥, we have |C| = |C⊥| if and only if psNz = 2i.
So ifNz and p are odd, C 6= C⊥. IfNz is even, |C| = |C⊥| if and only if i = psNz/2,
and thus,

C = 〈(x2 − λ0)p
sNz/2〉 = 〈zNz/2〉 ⊆ Rλ,

C⊥ = 〈(x2 − λ−1
0 )p

sNz/2〉 = 〈zNz/2〉 ⊆ Rλ−1 .

As both 〈zNz/2〉 ⊆ Rλ and 〈zNz/2〉 ⊆ Rλ−1 are in fact 〈zNz/2〉ps ⊂ Rp
s

, it follows
that, in this case

C = C⊥ = 〈zNz/2〉p
s

⊂ Rp
s

.

We summarize this result about self-dual codes, as follows.

Corollary 3.20. Let R be a finite chain ring of characteristic pa with maximal
ideal 〈z〉, and λ be a unit of R of the form λ = λp

s

0 + zω, where λ0 and ω are
units of R. If Nz and p are odd, then self-dual λ-constacyclic codes of length 2ps

over R do not exist. If Nz is even, then 〈zNz/2〉 ⊂ Rp
s

is the unique self-dual
λ-constacyclic codes of length 2ps over R.

4 Conclusion

We study λ-constacyclic codes of length 2ps over a finite commutative chain
ring R. If the unit λ is a square in R, i.e., λ = α2, for some unit α of R, then every
λ-constacyclic codes of length 2ps over R can be represented as a direct sum of
an (−α)-constacyclic code and an α-constacyclic code of length ps over R. In the

main case, the unit λ is not a square, the rings Rλ = R[x]
〈x2ps−λ〉 is a local ring with

maximal ideal 〈x2 − r, z〉, where r ∈ R such that λ − rps is not invertible. When

there exists a unit λ0 of R such that λ = λp
s

0 , we prove that x2 − λ0 is nilpotent

with nilpotency index aps−(a−1)ps−1. When λ = λp
s

0 +zω, for some unit ω of R,
we show that Rλ is also a chain ring with maximal ideals 〈x2−λ0〉. Furthermore,
the algebraic structure and dual of all λ-constacyclic codes are obtained. It is
interesting to see other type of a unit λ and study all λ-constacyclic code of nps

over finite commutative chian ring R with identity.
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