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1 Introduction

The split feasibility problem has become the inspiration in pure and applied
mathematics. It attracted the author’s attention due to its application in signal
processing. The problem was introduced by Censor and Elfving(1994)([1]).

Let C' and @ be nonempty closed convex subsets of real Hilbert space Hy
and Hs,, respectively.
The split feasibility problem(SFP) was formulated so as to find a point u*
satisfy the properties :
u* € C and Au* € Q, (1.1)

where A : Hi — H> is a bounded linear operator.
The split common fized point problem(SCFP) was formulated such that

u* € F(T) and Au* € F(S), (1.2)

where F(T) and F(S) are fixed point sets of the operators T : H; — H; and
S : H2 — HQ.

Recently, the study of the split common fixed point problem(SCFP) has
become popular among mathematicians. The problem, first analysed by Censor
and Segal([2]), is a natural extension of the SFP and the convex feasibility prob-
lem.

In ([3]) Hamdi, Liou, Yao and Luo proved strong convergence theorem as
following algorithm : zy € H; and

zn = PoAxy,,

Vn = (1=&n) 20 + &S (1 — 1) 20 + 10S2n)

Yn = oY f(2n) + (L — anB) (zn — 0A™ (Azn — vn)),
un = Poyn,

Tt = (1= Bn)un + BT (1 — vn) tn + T uy)

for all n € N,
where {a, }, {Bn}, {7}, {&n} and {n,} are real sequences in [0,1], A: H; — Hs is
a bounded linear operator with its adjoint A*, f : C' — H; is p-contraction, B is
strongly positive bounded linear operator on Hy, S : @ — @ is an £;-Lipschitzian
quasi-pseudo-contractive operator with £, > 1, T : C — C is an Ly-Lipschitzian
quasi-pseudo-contractive operator with Lo > 1. They showed that the sequence
{z,} converges strongly to the unique fixed point of the contraction mapping
Pr(vf+1-B).

The purpose of this paper was to study the following split feasibility prob-
lem and fixed point problem :

Find v* € CN F(T) and Au* € QN F(S). (1.3)

The set of solution of (1.3)) is denoted by I' | that is,
F={z|zeCnNFT),Az e QN F(S)}.
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It is immediately evident that can be derived from SFP and SCFP.
In this paper, we’re motivated and inspired by Hamdi, Liou, Yao and Luo

(B]), we modified the split feasibility problem and fixed point problem by Hamdji,

Liou, Yao and Luo ([3]) and used the concept from Lemma 2.11. we will introduce

a new iteration to approach the solution of .

The proof of the strong convergence result is given later in the paper.

2 Preliminaries

Throughout this paper, we always assume that H be a real Hilbert space with

the inner product (-,-) and the norm ||-||. Let C' be a nonempty closed convex
subset of H. Using the notations of weak and strong convergence by “ —" and
Y —’" respectively.

Recall that a mapping T of C' into itself is called nonexpansive if
[Tz =Ty < llz—yl,
for all z,y € C. The set of all elements of fixed point of a mapping 7T is denoted
by F(T) = {z € C: Tz = z}. Goebel and Kirk ([4]) showed that F(T) is closed
and convex. In a real Hilbert space H, it is well known that

Az + (1= Nyll* = Mal® + (=2 Jyl* =21 =N = —yl*, Ae[o,1]

and
2 2 2
2 +yll” = [lz]” + 2 {z,y) + [yl

for all z,y € H.
Lemma 2.1. [5] Let H be a real Hilbert space. Then
lz +yl* < || +2{y,z +y), Vo,yeH

Definition 2.2. An operator A is a strongly positive bounded linear operator on
H if there is a constant ¥ > 0 with the property

(Az,z) > 7||z|*, Vz e H.
Definition 2.3. An operator A : C' — H is called L-Lipschitzian if
|Az — Ayl < Llle —yll, Va,yeC
for some constant £ > 0. If £ € [0, 1], then A is called L-contraction.
Definition 2.4. An operator A : C — C is called pseudo-contractive if

(Az — Ay,z —y) < |z —y|*, Va,yeC.
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Definition 2.5. An operator A : C — C is called quasi-pseudo-contractive if
Az = y|* < & — y||* + || Ax — 2|
for all x € C and y € F(A).

Definition 2.6. An operator A : C — H is called a-inverse strongly monotone if
there exists a positive real number « > 0 such that

(Az — Ay, z — y) zaHAfoyHQ, Vz,y € C.
It is obvious that any a-inverse strongly monotone mapping A is é—Lipschitinm.
Definition 2.7. An operator A : C — C is called firmly nonexpansive if
|4z — Ay|? < o —yl® = (T — Ao — (T - Apl®.  VayeC.

Definition 2.8. An operator A is said to be demiclosed if Va,, — @ and A(z,) — u
imply that A(a) = u

Lemma 2.9. [6] Let {Q,} C [0, +0o0], {v,} C [0,1] and {n,} be three real number
sequences. Suppose that {Qn},{vn} and {n,} satisfy the following three condi-
tions:

(Z) QnJrl S (1 - Un) Qn + NnUn,
(ii) Zvn = 00,
n=1

74i) limsupn, <0 or nUn| < 00.
(iii) imsupi > [1nvn]

n=1

Then, lim 9, = 0.
n— oo

Lemma 2.10. [7] Let {p,} be a sequences of real numbers. Assume that there
exists a subsequence {pn, } of {pn} such that pn, < pn,+1 for all k > 0. For every
n > Ny, define an integer sequence {T(n)} as

7(n) =maz{i <n:pn, < ppit1}-
Then T7(n) — o0 as n — oo and
max{pr(n)a Pn} < Pr(n)+1,
for all n > Ny.

Lemma 2.11. [§] Let C be a nonempty closed convex subset of a real Hilbert space
H. For everyi=1,2,....N, let A; be a strongly positive linear bounded operator
on a Hilbert space H with coefficient v; > 0 and ¥ = min;=1 2, n7vi. Let {ai}ilil
C (0,1) with Zf\il a; = 1. Then the following properties hold:



The Theory of the Feasibility Problems and Fixed Point Problems ... 393

(i) HI ~ P az‘AiH <1—py and IT—p SN | a;A; is a nonexpansive mapping
for every 0 < p < ||A|| ™" fori=1,2,...,N.
(ii) VI(C, N, aiA;) = e, VI(C, A;).

Proposition 2.12. [9] Let H be a real Hilbert space. Let U : H — H be an
L-Lipschitzian operator with £ > 1. Then

F((1=OT+U) =F U1 - T +U)) = FU)
for all ¢ € (0, ).

Proposition 2.13. [9] Let H be a real Hilbert space. Let U : H — H be an
L-Lipschitzian quasi-pseudo-contractive operator. Then we have

A (1 =)+ qUz) = u”||* < lz = u"||* + (L= ) o = U (1= n)z +nitz)||*,

and the operator (1 — )T + &U ((1 — n)Z + nld) is quasi-nonexpansive
when 0 <& <n< ﬁ, that is,

11 =&z + &U ((1 = n)z + nidz) — || < [lz —u||
for allz € H and v* € F(U).

Proposition 2.14. [O9] Let H be a real Hilbert space. Let U : H — H be an
L-Lipschitzian operator with £ > 1. If T —U is demiclosed at 0, then T —U((1 —
Q)T + CU) is also demiclosed at 0 when ¢ € (0, £).

3 Main Results

Theorem 3.1. Let H, and Hy are two real Hilbert space, let C C Hy and Q C Ho
are two nonempty closed convex sets. Let A : Hy — Hs is a bounded linear operator
with its adjoint A*, D; is strongly positive bounded linear operator on Hy with

coefficient v; > 0 and y = 1n%in N f:C — Hy is a p-contraction, S : Q — Q
i=1,2,...,

is an Lq-Lipschitzian quasi-pseudo-contractive operator with L1 > 1 ,T : C — C

is an Lo-Lipschitzian quasi-pseudo-contractive operator with Lo > 1. Assume that

T # 0 and let {x,} be a sequences generated by xo € H;

zn = PoAx,,

vp = (1= &n) 2n + &S (1 — 1) 20 + 10S20)

Yn = v f(T0) + (I —ay Zfil aiDi) (xp — 6A* (Azp, —vy)), (3.1)
un = Poyn,

Tn+1 = (1 - ﬂn)un + 6,1 ((1 - 'Yn) Up + ’YnTun) , fO?" n>1,

The parameters {an}, {Bn}, {n}, {&n} and {n.} are real sequences in [0,1] , 6 and
v are two positive constants.



394 Thai J. Math. 17 (2019)/ S. Premjitpraphan and A. Kangtunyakarn

We use T to denote the set of solution of problem , that is,
''={z|zeCnNFT),Az € QN F(S)}.

Suppose that T — T and S — T are demiclosed at 0. Assume that the following

conditions are satisfied :

(i) nlirgoanzﬂand Zan:oo,

n=1
(i) O<a; <& <by<m,<c <;
1 n 1 nn 1 m+l)

1
iii) 0<as <fBp <by<n <y < ——o——,
(i) 2 PSS VI+LE+1

1
(iv) 0<5,7<W and vy > vp,

(v) 0<ay < |D;|"" fori=1,2,...N.
Then the sequence {x,} converge strongly to the unique fized point of the contrac-

tion mapping z = Pr (’yf +7— ZZV:I aiDi) z.

Proof. Let z* = Pr (yf +7- Zi\il aiD,;> z* , we have z* € CNF(T) and Az* €
QN F(S). From Py is firmly nonexpansive, thus
lzn — A2"||* = | PoAz, — PoAz"|”
* (12 * 12

< |[Azn — AZ*|” = |[(Z — PQ) Az, — (I — Po)Az"||

= || Az, — A2*|]* — || Azp — 2]° . (3.2)
Applying Proposition [2.12] condition (ii) and (iii), we have

F(S((1 =n0)T +n,8)) = F(S5)

and
F(T((1 =) +7.T)) = F(T)

for all n € N.
By Proposition and condition (ii), we have

[on — A2"[| = [[(1 = &) + &S (1 = nn)T + 10 S)] 2n — A2||
< |lzn — AZ¥||. (3.3)

This together with (3.2)), it implies that

[ — A2*|* < ||z — Az*||?
< || Az, — AZ*||2 — Az, — Zn||2 (3.4)



The Theory of the Feasibility Problems and Fixed Point Problems ... 395

By Proposition and condition (iii), we have

|Zns1 — 2% = [[(1 = Bn)Z + BuT (1 — vn) Z + v T)] un — 2" ||
<||lwn — 2% - (3.5)

Since P¢ is nonexpansive, we have

[un — 27| = | Peyn — Poz"||
<llyn =27 (3.6)

From definition of {y,}, we obtain

lyn — 2"l =

N
an'yf(xn) + (Z — Qp ZaiDi> (wn —0A" (Axn - Un)) -z
=1

N
= ||an7f(xn) - Oén'}/f(Z*) + an'Yf(Z*) — Qp ZaiDiZ* +x, — 0A" (Azn - Un)
i=1
N N
— oy, Z a;D; (x, — 0A™ (Azy, — vp)) + Z a;D;z* — 2%||
i=1 i=1

N
= llany (f(zn) — f(27)) + an (’Yf(Z*) - ZaiDiz*>
N i=1
+ <I —ap, ZaiDi> (xp, — 2% — 0A" (Azy, — ) ||
< apy [ f(zn) — FE) + an

N
I - [07% Z aiDi
i=1

N
vf(Z") - ZaiDiZ*
i=1

+ |xn — 2" + 0A™ (v, — Azy)||

< anypllan = 27| + an

N
vf(z*) — Z a;D;z*
i=1

+ (1 —an¥) |zn — 2" + 0A" (v, — Axy,)|| - (3.7

Observe that

(X — 2%, A" (v, — Axy))

(Ax, — AZ" v, — Axy,)

(Azx,, — Az" + v, — Az, — (v, — Axy) v, — Azy)
(

(

Az, — AZ" 4+ v, — Azy, v, — Axy) — (v, — Az, v, — Azy)
On — AZ* 0, — Axy,) — |lun — Az (3.8)
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and

1
(vn — 42", v — Azn) = o (an — A2 + ||vn — Azn||® — || Azy, — Az*||2> - (3.9)

From (3.4), (3.8) and (3.9), we obtain

(T — 2%, A" (v — Axy))

1 * (|2 2 * (2 2
=5 (Ilvn = 42" I + llon = Awa® = [ Azo = A="[1*) = [[vn — Az
1
<5 (A, — A" —HAwn—an o= Aza [P~ | Ava = A"*) = [[vn — Az,
1
== len - Az, ||” — 3 ||vn — Az, |?. (3.10)

From (3.10)), we have

@y — 2% + 6A* (vn — Azy)|)?
= |lzn — 2*|]> + 62 | A* (vp — Az)||” + 26z — 2%, A" (vp — Azy))

1 1
< = 217 + 8% A% llvn — Azal]® + 20 (2 Iz — Azl|” = 5 llon - Axnll2>
= lon = 2711 + 62 | AlI* llvn — Azall” = 6 |20 — Azal* = 6 [|vn — Azn |
=llen = 217 +8 (S IAI* = 1) llon — Azll” = 61|20 — Azp|*. (3.11)

From (3.11)) and condition (iv), we have

e — 2* 4+ A" (v, — Az < [l — 2|1

So,
lwn — 2% 4+ 0A™ (vy, — Azyp)|| < ||zn — 27| - (3.12)

From and ( , we get
[y — 27|

(I1—an¥) |xn—2"+0A" (v, — Axy)||

V(2 ZazD z*
vf(z ZalD z*
vf(z ZalD z*

<anyp ||Tn—2"|| + an

<an7pHxn_Z H + oy 1_0%'7)”3371_2:*"

=1 = an(¥ = o)l l2n = 2"l + an (3.13)
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By definition of {z,}, (3.5), (3.6) and (3.13)), we get

[#nt1 = 2" <L —an(¥ = p)] l2n — 7] + o

N
f(Z") = Z a;D;z"
i=1

H“Yf(z*) — Y @Dz
) 3 —p

=[1 = an(7 = 19)] om — 27| + €7 = 70
By induction, we get

(SEICORD A

|znt1 — 2%|| < max q ||zo — 27|, i

Hence, the sequence {z,} is bounded.
Since P is firmly nonexpansive, we have

lun = 2*|* = | Peyn — 2*|I?
= || Poyn — Poz"||?
<llyn — 2"1* = IZ = Po)yn — (I — Po) 2|
=llgn — 21> = lyn — Poynll?

* (12 2
=g = 21 = [[un — > (3.14)

From (3.5)), (3.13) and (3.14)), we have

e
< lup — 2|

2 2
< Hyn = 21" = llun — yall

N 2
* * 2
vf(z%) _ZaiDiZ |> — |t — yn||
=1

:(u—aMV—wmnun—fn+an

_ 2 %12
=1 —an(¥y—70)" l|lzn — 27|

N
+2an [1 = an(y = yp)] lzn — 27| ’ V() =Y aiDiz”
i=1

2

+on, — llun = yul*-

N
V() =Y aiDiz”
i=1
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That is,

2
ln = yall* < llwa = 2°1° = llznss = 2*|1° + o

N
vf(z) =Y aDiz”
i=1

+ 200 [1 — an(7 = ¥)] e — =*| . (3.15)

N
Vf(z") — Z a;D;z"
i=1

Next, we focus our analysis on the fact that the sequence {||z, — 2*||} is either
monotone decreasing at infinity(Case 1) or not(Case 2).

Casel. There exists ng € N such that the sequence {||z,, — z*|| }n>n, is decreasing.
Case2. For any ng € N, there exists an integer m > 1 such that

[zm — 2% < llemia = 27| -

In Casel, we assume that there exists some integer m > 0 such that {||z, — 2*||}

is decreasing for all n > m.

In this case, we get lim ||z,, — 2*|| exists. From 1] and condition (i), we deduce
n—oo

nhﬁn;Q [n — yn]l = 0. (3.16)

From (3.7) and condition (iv), we have

lyn — 2*[| Sanypllzn — 2% + an

N
1f(Z") = ZaiDiZ*
i=1

+ (1= an¥) |xn — 2" + 0A™ (v, — Azy)||

llen =2+ [1£(z7) = £ Dyt
,7

:an’y

+ (1 — an¥) |lzn — 2" + A" (v, — Axy)|| - (3.17)

Since {z,} is bounded, then there exists a constant M > 0 such that

* * N *
pllen =21+ 1) = £ aiDiz
sup —
n 2l

< M.

By using property of convex function of ||H2 and (3.17), we have

lyn — 2*]1* < anYM? 4+ (1 — an?) ||lzn — 2 + 6A* (v, — Azy)||* . (3.18)
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From , , and , thus

|41 — 2"|*
< lup — 2"
2

<llyn — 27|l

San’?Mz + (1 = an¥) [|[zn — 2% + 64 (vy — Axn)||2

399

Can M + (1=an) (llan=="7+0 (3 [ AI° 1) llvn = Aza |3 |20 — Azs|*)

— (1= ) = 21+ (1 = )8 (SAI = 1) [ — A
—0(1—an?y) |lzn — Al‘nHQ + anyM?.

Hence,

(1= an7) 8 (1= 8 JAI*) llon = Azpll* + 8(1 = @) 120 — Az,

< (1= an) en = 217 = [[wngr — 27|17 + anyM?
<l = 217 = llonr — 2| + anyM>.

This implies that

lim ||v, — Az, || = lim |z, — Az,| = 0.
n— 00 n—oo

Consider that
lvn = znll =l|lvn — Az + Az — 25|

< an - Amn” + Hzn - Awn“ .

Thus

lim ||v, — z,]| = 0.
n—oo

Note that
Un —2n =1 = &) 2n + &S (1 —nn) 2n + 00 S2n) — 2n
=En [S (1= 0n) T+ 1nS) 20 — 2n] -
From , then
Tl 2 = S (1= 7) T+ 70) 20| = 0.

Consider that

[S((L=m) T +m0S) 20 — S((1 = nn) L+ nnS) Aza|
<Ly (1= 1) T+ 10S) 20 — (1 = 0n) L+ nnS) Az
=L1 [|(1 = nn) (20 — Azp) + 15 (S2p — SAz,) ||
<Li((1 =) lzn — Azpll + 10 [|Szn — SAz,|))
<Li (1 =) llzn — Aznll + 90 L1 |20 — Azn)
=L1 (1 = nn(1 = L)) ||z — Az

(3.19)

(3.20)

(3.21)

(3.22)
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From ([3.22)), thus

Az, — S (1 = 1) Z + nnS) Ay |
<[|Azn — zull + 20 = S (1 = 1) T + 1S) 2n |
+ IS (X =10) L +10S) 20 = S (1 = 1n) T + 1nS) Az ||
<[ Azn—zpll + [[2n =S (X = 00) L+ 00 S) 2ull + L1 (1 = 1 (1 = L£1)) ||2n— Azn]| -

(3.23)
From (3.19), (3.21)) and (3.23)), then we have
ILm Az, — S (1 =) Z 4+ npS) Az, || = 0. (3.24)

Since

|Az, — SAz,||
=||Az, — S((1 —nn) T+ npS) Azp, + S (1 — 1) Z + 1,S) Az, — SAzy,||
<[[Azn = S (1 = nn) L+ nnS) Azn || + IS (1 = 00) T +nnS) Az, — SA, ||
<Az, = S((1 = n0) T +nnS) Azl + L1 [[(1 = 1) T + 00S) Az, — Az |
=||Azy, = S (L = 1) T+ 00S) Azl + L1my || Axyy — SAz, ||

It implies that

1
|Az, — SAz,| < T 7

Az, — S (1 —=mp) L +n,5) Az, .
Emn” (1 =mn) I +nnS) Az ||

By (3.24), we obtain

le |Az, — SAz,| = 0. (3.25)
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Consider that

N
”yn - xﬂ” = O‘n')/f(xn) + <I — Qp ZazDz> (xn —0A” (Axn - Un)) —Tn
i=1
N N
= aan(xn) — A" (Amn - Un) — Qp Z a;D;zy, + o, Z aiDiA* (Axn - Un)
i=1 i=1

N N
= ||On <’7f(zn) - Z a;D;xy + 6 Z a;D; A* (Axn - Un)) +0A” (Un - Axn)

i=1 i=1

N
= ||, <7f(:r,n) - ZaiDi (zn — 6A* (Axy, — vn))> +0A* (v, — Axy,)

IN

N
Qnp 7f(mn) - ZaiDi (xn —0A” (Axn - Un)) + 4 ||A>,< (Un - Al‘n)H
i=1

IN

N
an |[1f (@) = Y aiD; (= SA™ (Azy = v2)) || + 8|4 fJvn — Az
=1

N
= o |[1f(@a) = 3 aiDi (@ — 5A" (Azy — v,))| + 6 1] o — Az .
=1

It follows from (3.19) and condition (i) that
nleréo |zn — ynl| = 0. (3.26)
From definition of {z,}, we have

|21 = 251 =11 = Ba)un + BT (1 = 7n) thn + W Tun) — 2°|*
=11 = Ba)(un = 2%) + Ba [T (1 = ) un + 3 Ttp) = 27|
=(1 = Bn) lun = 2" 1" + B [T (1 = ) tn + 1 Tun) = 2°|*
= Bu(1 = Ba) IT (1 = ) ttn + 3 Ttt) = | (3.27)

Applying proposition 2.13] we have

1T (1 = yn) wn + 0 Tun) — Z*”2

< lun — Z*”2 + (1 =) Jun — T (1 = vn) un + 'YnTun)||2 . (3.28)
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From (3.6),(3:12), (3.18), (3-27) and (3.28), thus

|1 — 2%

It implies that
ﬁn(’yn_ﬁn) ||un -

=(1 = Ba) ltn = 21> + B I (1 = ) i + Y Tun) — 2|
— (1= Ba) IT (1 =)t + Y Tun) =t |*

<(1 = Bn) lun — 21 + Bu(lltm — 2*|°
+ (1= ) un = T (1= 70) tn + W Tun)|°)
— Bu(1 = B) IT (1 =) ttn + 1 Tun) =t |°

= llun = 2*[° + B (1 = ) llun = T (1 = 70) thn + Tt |*
= Bn(1 = B) IT (1 =) tin + Y0 Tun) — tn|*

<lyn = 21 + Br(1 = ) llun = T (1 = 70) ttn + 1Tt |°
= Ba(1 = B) IT (1 =)t + Y Tun) =t |*

< AM? + (1 — ) ||z — 2% + 6A* (v, — Ay
+ Bn(1 =) lun = T (1 = 70) t + 3T |°
= Bn(1L = Ba) IT (1 =) tn + 1 Ttin) — tin|*

=a, 7M? + (1 — an?) || — 2% + 0A* (vn — Az,
= Ba(n = Ba) ltm = T (1 = ) tun + L)

<anYM? + ||z, — 2*||°
= B(¥n = Bn) ltn — T (1 = )t + T |*.

2 - |2 |2
T (=) tn + W Tun)lI” < @ FMP |z — 2" = [lwns — 27"

By condition (i) and (iii), we get

Observe that

lm |lu, — T (1 — ) tn + v Tuy,)|| = 0. (3.29)

n—0o0

[un = Tun|| < [[un =T ((1=7n) un+ymTun) |+ [T (1 = ¥0) un + 10 Tun) — Tun||
<un = T((1 = v0) un + ¥ Tun) [+ L2 |(1 = v0) up + Yo Tun — |
=[lun =T ((1 = ) tn + WTun) || + Lovn [un — Tunl|-

Thus,

l|lwn —

1
Tu,|| < ———
1

Up, — T (1 — ) Up, + VT us)l -
o [ (1 =) gt |

This together with (3.29)) implies that,

nhﬁrréo lun, — Tup || = 0. (3.30)
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Next, we will show that

limsup(yf(z Z%Dz Yn —27) <0,

n— oo

where z* = Pr(yf+7Z — Zfil a;D;)z*.
Choose a subsequence {yy,, } of {y,} such that

N
lim sup(vyf(z* Z%D 25y —2") = hm (vf(z ZazD 25 yn, —2%). (3.31)

n—oo
=1

Since the sequence {y,} is bounded, without loss of generality, we have a sub-
sequence {y,,} of {y,} such that y,, — z. Subsequently, we derive from above
conclusion that

Tp, — Z,
Up, — 2

i

and

Axy, — Az,
Ay, — Az, (3.33)
Au,, — Az.

Note that u,, = Poyn, € C and , thus z € C.

From demiclosedness of (Z — T) and (Z — T)u,, — 0, then z € F(T).
Therefore, z € C N F(T).

Note that z,, = PgAz,, € @ and from and (| -, we have z,, — Az.
Thus, Az € Q.

From demiclosedness of (Z — S) and (Z — S)Axz,, — 0, then Az € F(S).
Therefore, Az € QN F(S). That is z € T.

Consequently,

lim sup rYf Za’lD z yYn — > = hm 7f ZazD z* yYn; — >

n— o0
— E a;D;z*,z — 2*)
i=1

<0. (3.34)
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Consider that

N
2 |7 0, Y 0D
i=1

N
+ 2(any (f(zn) — f(27)) + an ('Yf(Z*) - ZaiDiZ*> s Yn — 27)
, =1
| — 2* — 6A* (Azp — vp) |

lyn — 27|l |20 — 2% = 6A (Azy — va)|?

N
=||Z — Ay Z CLiDz
i=1

+ 2007 (f (2n) = F(2*), yn—2") + 200 (7 f (2 ZazD 2y — 2%)

2

%12 * *
[z = 2|17 + 2007 [ f (2n) — F(Z5) | [lyn — 27|

N
< IfanZaiD

+2an ’Vf ZCLZDZJM— >

<(1—an¥)” [lon — Z*|| + 200yp [z — 27| llyn — 27|
+ 20, (vf(2 ZazDz,yn— )
< (1= @)’ Jan =2 I + awyp (llon = 2> + 1y — 1)
+ 20 {vf(2 ZazDz,yn— )
= (1= any)?lzn — 21 + anyp 120 — 21 + € vp yn — 27|17
+ 20 {vf(2 ZazDz,yn— ).
It follow that
(1= anyp) lyn — 2°I”
(1—2an'y+an'y +an7p)||mn—z || + 20, (v f(z ZaiDz,yn— )
= (1 + anyp = 2007) |20 — 271 + 03 |z — 27|

N
+2an ’Yf ZazDz7yn_ >
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=(1—apyp+ 2anw — 207) |10 — 2" + @32 [|2n — 2|

+ 20, (v f (2 ZazDz,yn* ")
then,
* (12 20‘”(:)/ ,Yp) * ’Y (ln %112
I 1 < [1.- 2524 I — 2*| ln — 2|
1 —vypa I—p
2an - iv:a D;z )
1— vpai, P 7 > Yn
Therefore,
*[12
[Zn+1 — 27|
* 12
<llyn — 2"||
2000 (7 — Yp) 2 7o’ o2
<|l————— o — 2"+ ——— llzn — 27|
L —pan 1 —pay
2 N
+———(f(z") = Y _aiDiz",y, — 2*)
1 —~pan ;
_ |:1_ 2an(’7_’7p):| || _Z*||2
L —vypay,
20471(’7 - /7/)) :YQCVn 1
+ - |Zn le+77f a;Diz", yn — 2%)
L—ypay |27 —7p) Z
(3.35)

Applying (3.34), (3.35) and Lemma we obtain x, — z* as n — oco.
In Case2, we assume that there exists some integer ny such that

[ = 27| < l@mo41 — 27| -
Setting wy,, = ||z, — z*||, then
Wiy < Wyip41-
Define an integer sequence {7, } for all n > ng as follows:
7(n) =maz{l e N|ng <l <n,w; <wigq}.
It is clear that 7, is a nondecreasing sequence satisfying

nhﬁn;(} 7(n) = co.
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and

Wr(n) < Wr(n)+1
for all n > ng.
By a similar argument of Case 1, that is

lim ||ur(n) = yr(m)|| =0,

n—oo

fim a7y = g || = 0,

n— o0
Jim [|S Az ) = A-|| = 0
and
lim {|ur(ny = Ttrny || = 0.

n—oo
This implies that we (yr(n)) C T
We obtain

N
lim sup(yf(z*) — Z aiD;iz",yr, —2") <0.
i=1

n—oo
From w;(n) < Wy(y)41 and (3.35)), we have

2 2
wT(TL) Su]‘r(n)Jrl

92 = 720[2
< [1 _ a‘r(n)(’y ryp):| ’LU2 + v 7(n) 2

Wr(n)

1- YPCr(n) () 1- YPCr(n)
20[7_(”) * a * *
——(yf(2*) = a; D; 2% Yriny — 2%).
[Ep— (v f(z") ;:1 (n) — ")

It implies that

2
Wr(n < = N
(n) 2(’7 - Pyp) - 720[7'(70

Combining ([3.36) and (3.38]), we have

lim sup w () < 0,
n— 00
and hence

i ey =0,

From ([3.39)), implies that

nh—>néo ’w.r(n)+1 =0.

Applying Lemma ,we have

max{wr(n)a wn} < Wr(n)+1-

N
<’Yf(2*) - ZaiDiz*vy‘r(n) - Z*>
=1

(3.36)

(3.37)

(3.38)

(3.39)
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It implies that
Wy, < Wr(n)+1- (3.40)

Since w,, is nondecreasing sequence and n < 7(n),
Wp, < Wr(n)- (3.41)
From and , we obtain
0 < wp < maz{wr(ny, Wr(n)41}-
Therefore, w,, — 0. That is, x,, — z*. This complete the proof. O
By using our main result, we obtain the following results in Hilbert spaces.

Corollary 3.2. Let Hy; and Hy are two real Hilbert space, let C C Hy and Q C Hs
are two nonempty closed convex sets. Let A : Hy — Hs is a bounded linear operator
with its adjoint A*, D is strongly positive bounded linear operator on Hy with
coefficient v; > 0 and ¥ = 2111 N f:C — Hy is a p-contraction, S : Q — @

.....

is an L1-Lipschitzian quasi-pseudo-contractive operator with L1 >1,T :C — C
is an Lo-Lipschitzian quasi-pseudo-contractive operator with Lo > 1. Assume that
T # 0 and let {z,} be a sequences generated by xo € Hy

zn = PoAx,

vp = (1= &n) 2n + £ S (1 = 1) 20 + 10S20)

Yn = anYf(xn) + (Z — D) (x,, — 6A* (Azy, — V), (3.42)
Up = Poln,

Tpt1 = (L= B)un + BT (1 — vn) un + v Tun),  forn>1,

The parameters {an}, {Bn}, {1}, {&n} and {n.} are real sequences in [0,1] , 6 and

v are two positive constants.

We use T’ to denote the set of solution of problem , that is,
I'={z|z2eCNFT),Az € QNF(5)}.

Suppose that T'— T and S — T are demiclosed at 0. Assume that the following

conditions are satisfied :

[ee]
(i) nli_)rréoa,L =0 and Zan = 00,
n=1
(i) O<a1 <& <bi<n<ca< !
1 ay n 1 Tn (&1 Ty .
V14+Li+1

1
(iii) 0 <as < fp <by <Yp <2 < ——o,
V1I+L3+1

1
(iv) 0<d,y < ——5 and 7 > p,

|A]I?
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(v) 0<a, <|D||"".

Then the sequence {x,} converge strongly to the unique fixed point of the contrac-
tion mapping z = Pr (vf +Z — D) z.

Proof. Putting D = D; = Dy = D3 = ... = Dy in Theorem 3.1, we get the desired
conclusions. O

Corollary 3.3. Let Hy and Hs are two real Hilbert space, let C C Hy and Q C Hy
are two nonempty closed conver sets. Let A : Hy — Hs is a bounded linear operator
with its adjoint A*, D; is strongly positive bounded linear operator on Hi with
coefficient v; > 0 and y = Z__lmin N f:C — Hy is a p-contraction, S': Q — Q

=1,2,...,

is an L-Lipschitzian quasi-pseudo-contractive operator with L > 1. Assume that
T #0 and let {x,} be sequences generated by xo € Hy

2n = PoAxy,
Tnt1 = Po [ocn'yf(mn) + (I —an Zfil a,'Di) (x, — 0A* (Ax,, — vn))} , forn>1
(3.43)
The parameters {an}, {€n} and {n,} are real sequences in [0,1] , § and v are two
positive constants.
We use T’ to denote the set of solution of problem , that is,
F={z|zeC Az e QN F(S)}.

Suppose that S — T is demiclosed at 0. Assume that the following conditions are
satisfied :

(i) nll)n;o a, =0 and Zan = 00,

n=1
1

VI+ L+

(i) O<a1 <& <bi<mp<a <
1 _
(iii) 0<d < —= and 7 > vp,

2
1A]

1
(iv) 0 <y < —,
1A]l

(V) 0<a, <|Dif| " fori=1,2,...N.

Then the sequence {x,} converge strongly to the unique fixed point of the contrac-
tion mapping z = Pr (’yf +7-— vazl aiDi).

Proof. Putting T'= 7 in Theorem 3.1, we get the desired conclusions. O
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4 Application

Lemma 4.1. [10] Let C be a nonempty closed convex subset of a real Hilbert space
H and S : C — C be a self-mapping of C. If S is a k-strict pseudo-contractive
mapping, then S satisfies the Lipschitz condition

1+

K
12— Syll < Tl —yll, VeyeC.

By Lemma applying T, S are k,Rk-strict pseudo-contractive mappings, we
obtain this theorem.

Theorem 4.2. Let Hi and Hy are two real Hilbert space, let C C Hy and Q C Hs
are two nonempty closed convex sets. Let A : Hi — Hsy is a bounded linear
operator with its adjoint A*, D; is strongly positive bounded linear operator on
H;y with coefficient v; > 0 and 7 = _ﬂnéin N f:C — Hy is a p-contraction,

,,,,,,

S Q — Q is a R-strict pseudo-contractive mapping, T : C — C is a k-strict
pseudo-contractive mapping. Assume that T # O and let {x,} be a sequences
generated by xg € Hy

zn = PoAx,,

vp = (1= &n) 2n + &S (1 — 1) 20 + 10 S20)

Yn = v Sf(T0) + (I —ap Zfil aiDi) (x — 6A* (Azp, —vy)), (4.1)
un = Poyn,

Tnt1 = (1= Bo)un + BnT (1 — vn) un + Tun), forn>1,

The parameters {a, }, {Bn}, {1}, {&n} and {n,} are real sequences in [0,1] , 6 and

v are two positive constants.

We use T to denote the set of solution of problem , that is,
I'={z|z2eCNFT),Ax e QN F(S)}.

Suppose that T — T and S — T are demiclosed at 0. Assume that the following

conditions are satisfied :

(i) nh_)rr;O oy =0 and Zan = 00,

n=1

(i) O<a1 <& <by<mp<ec < ,

(il) 0<a2 <B, <by <7, <c2< ,

1
(iv) 0<d,y < ——5 and 7 > p,

4]
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(v) 0<an < |Di|~" fori=1,2,..,N.
Then the sequence {x,} converge strongly to the unique fized point of the contrac-
tion mapping z = Pr (7f +7- Z G z)

Proof. By using Theorem [3.1] and Lemma we obtain the conclusion. O

In 2009, Kangtunyakarn and Suantai([IT]) introduced the S-mapping gener-
ated by a finite family of x-strictly pseudo contractive mappings and real numbers
as follows:

Definition 4.3. Let C' be a nonempty convex subset of real Banach space. Let
{T:}Y, be a finite family of x;-strict pseudo contractions of C' into itself. For each
j=1,2,..,N,let a; = (o, 0, a}) € IxIxI, where I € [0,1] and &/} +ad+od, = 1.
Deﬁne the mapping S :C — C as follows:

Up=1,
Ui = a;TiU + ayUy + a1,
Uy = a3ToU; + a2Uy + a2l
Us = a3T3Us + aUy + i 1,

Unv_1=aY Ty \Uy_o+a) Un_o+ad ',
SZUNzal TNUN_1+a2 UN_1+C¥3I.

This mapping is called S-mapping generated by 11,75, ..., Tn and a1, as,...,aN.

Lemma 4.4. [I1] Let C be a nonempty closed convex subset of a real Hilbert space.
Let {T;}N.| be a finite family of k-strict pseudo contractions of C into C with
ﬂil F(T;) # 0 and k = max{r; : i =1,2,...,N} and let o = (ad,ad,al) e I x
IxI,j=1,2,..,N, where I =]0,1] a1—|—a2+a3 =1, of, oz3 (k,1) for all j =
,2,..,N =1 and o € (k,1],0d € [r,1) o} € [k,1) forall j = 1,2,...,N. Let
S be the mapping generated by Tl,TQ,...,TN and ag,azg,...,ay. Then F(S) =
ﬂi]\il F(T;) and S is a nonexpansive mapping.

Theorem 4.5. Let C and Q are nonempty closed convex subset of real Hilbert
spaces. Let {T;}N., be a finite family of k;-strict pseudo contractions of C into C
with ﬂfil F(T;) # 0 and k = maz{r; : i =1,2,. N} and let aj = (a{,q;,aé) €
I'xIxI, j=1,2..,N, where I = [0,1] ozl + ol + o<3 =1, of, of €
(k,1) for all j =1,2,....,N — 1 and o&¥ € (x,1],aL € [r,1) o} € [r,1) for all j =

., N. Let S be the S-mapping generated by Tl,Tg,...,TN and o, 09, ..., QN.
Let {T;}N.| be a finite family of F;-strict pseudo contractions of Q into Q with
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ﬂfil F(T)) # 0 and & = maz{; :i=1,2,... N} and let B; = (81,55, 83) € I x
IxI,j=1,2,...N, where I =[0,1] ,B+B+5] =1, 8, B} € (&, 1) for all j =
1,2,...,N —1 and 8~ € (r,1],8) € [z, 1) 8} € [r,1) for all j = 1,2,...,N. Let S
be the S-mapping generated by Ty, Ty, ..., Tn and 1, B2, ..., fn. Let A: Hy — Hy
is a bounded linear operator with its adjoint A*, D; is strongly positive bounded
linear operator on Hy with coefficient v; > 0 and ¥ = min N f:C — Hy

1=1,2,...
is a p-contraction. Assume that T' # 0 and let {x,} be a sequences generated by
To € Hy

2n = PoAxy,

U = (1—=&n) 2n + gng ((1 — M) 2n + nngzﬂ) )

Yn = anvf(xn) + (I — ap, Zfil aiDi) (xp, — 0A* (Azy, — vp)), (4.2)
un = Poyn,

Tn4+1 = (1 - 5n)un + ﬁns((l - 'Yn) Un +7nsun) , forn>1,

The parameters {an}, {Bn}, {1}, {&n} and {n,} are real sequences in [0,1] , § and

v are two positive constants.

We use T' to denote the set of solution of problem , that is,
I={z|zecCnNL, F(T;),Az € QN N, F(T)}.

Suppose that S — T and S — I are demiclosed at 0. Assume that the following

conditions are satisfied :

(1) nh_)rr;O o, =0 and Zan = 00,

n=1

(i) O<a1 <& <bi <M< <

1
V241’

(iii) 0 < a2 < fp <by <yp <c2<

1
V241’

. 1 _
(iv) O<5,7<W and 5 > vp,

(v) 0<an < |Di||”" fori=1,2,...N.

Then the sequence {x,} converge strongly to the unique fized point of the contrac-
tion mapping z = Pr (’yf +7-— Ef\il aiDi).

Proof. By using Theorem [3.] and Lemma [£.4] we obtain the conclusion. O
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