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Abstract : Ever since the introduction of fuzzy sets by Zadeh [1], the fuzziness in-
vaded almost all the branches of crisp mathematics. Deng [2], Kaleva and Seikalla
[3] and Kramosil and Michalek [4], have introduced the concept of fuzzy metric
space in different ways. In order to define the Hausdorff topology of fuzzy metric
space, George and Veeramani [5] modified the concept of fuzzy metric space intro-
duced by Kramosil and Michalek [4]. In this paper effort has been made to obtain
some results on fixed points of expansion type mapping in fuzzy metric space.
Our results are the fuzzy version of some fixed point theorems for expansion type
mappings on metric spaces.
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1 Introduction

Ever since the introduction of fuzzy sets by Zadeh [1], the fuzziness invaded almost
all the branches of crisp mathematics. Deng [2], Kaleva and Seikalla [3] and
Kramosil and Michalek [4], have introduced the concept of fuzzy metric space in
different ways. In order to define the Hausdorff topology of fuzzy metric space,
George and Veeramani [5] modified the concept of fuzzy metric space introduced
by Kramosil and Michalek [4].

Definition 1.1 [6]. A binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is called a
continuous t-norm if ([0, 1], ∗) is an abelian topological monoid with the unit 1
such that a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].

Examples of t-norms are a ∗ b = ab and a ∗ b = min{a, b}.

Definition 1.2 [5]. The 3-tuple (X, M, ∗) is called a fuzzy metric space (FM-
space) if X is an arbitrary set, ∗ is a continuous t-norm and M is a fuzzy set in
X2 × [0, ∞] satisfying the following conditions: for all x, y, z ∈ X and t, s > 0.
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(Fm-1) M(x, y, 0) > 0,

(Fm-2) —

(Fm-3) M(x, y, t) = M(y, x, t),

(Fm-4) M(x, y, t) ∗M(y, z, s) ≤ M(x, z, t + s),

(Fm-5) M(x, y, ·) : [0, ∞] → [0, 1] is continuous.

Below in the following, we give some definations which will be useful in the
sequel for proving certain fixed point theorems in fuzzy metric spaces.

Definition 1.3 [7]. Let (X, M, ∗) be a fuzzy metric space.

1. A sequence {xn} in X is said to be converge to a point x ∈ X (denoted by
limxn = x) if limM(xn, x, t) = 1 for all t > 0.

2. A sequence {xn} in X is called a Cauchy sequence if lim M(xn+p, xn, t) = 1
for all t > 0 and p > 0.

3. An FM-space in which every Cauchy sequence is convergent is said to be
complete.

Remark 1.1 Since ∗ is continuous, it follows from (FM − 4) that the limit of a
sequence in FM-space is uniquely determined.

Rhoades [8] summarized contractive maps of different type discussed on their
fixed point. He considered 250 types of mappings and analyzed the relationship
amongst them. He also obtained some general theorems on fixed points. These
250 types of mappings are based on 25 types where d(Tx, , Ty) is governed by
d(x, y), d(x, Tx), d(y, Ty), d(y, Tx), d(x, Ty).

In fuzzy metric spaces, our analysis shows that the authors have tried to
establish the fuzzy version of some theorems on contraction in metric spaces e.g., in
[7], Grabiec presented the fuzzy version of Banach contraction theorem as follows:
“Let (X, M, ∗) be a complete FM-space and f be a self map of X such that

M(fx, fy, kt) ≥ M(x, y, t)

for all x, y ∈ X, t > 0 and where k ∈ (0, 1), then f has a unique fixed point in
X.”

In 1976, Rosenholtz [9] discussed local expansion mappings. Let (X, d) be a
metric, T is a local expansion if every point in X has a neighbourhood B on which
T is expansion. In fact, Rosenholtz proved
“If (X, d) be a complete metric space and T : X → X be a self map of X onto
itself satisfying d(Tx, Ty) > λd(x, y) for all x, y ∈ X with x 6= y and λ > 1, then
T has fixed point in X.”
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2 Preliminaries

In 1984, Wang, Li, Gao and Iseki [10] proved that

Theorem (A). Let T be a self map of complete metric space X onto itself and if
there exists a constant λ > 1 s.t.

d(Tx, Ty) > λd(x, y)

for all x, y ∈ X then T has a unique fixed point in X.

Theorem (B). If there exists non-negative real numbers α, β, γ with α+β+γ > 1
and α < 1 s.t.

d(Tx, Ty) ≥ αd(x, Tx) + βd(y, Ty) + γd(x, y)

for each x, y ∈ X with x 6= y and T is onto, then T has a fixed point.

Theorem (C). If there exists a constant α < 1 s.t.

d(Tx, Ty) ≥ α min{d(x, Tx), d(y, Ty), d(x, y)}

for all s, y ∈ X and T is onto and continuous, then T has a fixed point.

Throughout this paper, (X, M, ∗) will denote the fuzzy metric space in the
sense of definition (1.2) with the following conditions:

(Fm-6) lim M(x, y, t) = 1 for all x, y ∈ X.

We need the following lemmas:

Lemma 2.1 [7]. For all x, y ∈ X, M(x, y, ·) is non-decreasing.

Lemma 2.2 [7]. Let {yn} be a sequence in an FM-space (X, M, ∗) with the
condition (Fm-6). If there exists a number k ∈ (0, 1) such that

M(yn+2, yn+1, kt) ≥ M(yn+1, yn, t)

for all t > 0 and n=1, 2, ..., then {yn} is a Cauchy sequence in X.

Lemma 2.3 [7]. For all x, y ∈ X, t > 0 and 0 < k < 1,

M(x, y, kt) ≥ M(x, y, t)

, then x = y.

Remark 2.1 In Lemma (2.2) and Lemma (2.3), the condition may be replaced
respectively by:
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1. If there exist some k > 1 s.t.

M(yn+2, yn+1, t) ≥ M(yn+1, yn, kt),

{yn} is a Cauchy sequence.

2. If there exists some k > 1 s.t.

M(x, y, t) ≥ M(x, y, kt),

then x = y.

3 Main Results

Our main object is to obtain some fuzzy version of the theorems on expansion
type maps in metric spaces. As, the fuzzy version of the theorem (A) is given by
the following theorem (3.1)

Theorem 3.1 Let (X, M, ∗) be a complete fuzzy metric space and f be a self map
of X onto itself. There exist a constant k > 1 s.t.

M(fx, fy, kt) ≤ M(x, y, t) (3.1)

for all x, y ∈ X and t > 0, then f has a unique fixed point in X.

Proof : Let x0 ∈ X, as f is onto there is an element x1 ∈ f−1x0. In the same way
xn ∈ f−1xn−1 for all n = 2, 3, 4, ..., thus we get a sequence {xn}. If xm = xm−1

for some m, then xm is a fixed point of f. Now suppose xn 6= xn−1 for all n = 1,
2, 3,..., then it follows from (1) that

M(xn, xn+1, kt) = M(fxn+1, fxn+2, kt) ≤ M(xn+1, xn+2, t)

for all t > 0 and for all n = 0, 1, 2,... Therefore, in view of Remark (2.1)(i) on
Lemma (2.2), {xn} is a Cauchy sequence in X. Since X is complete, xn has a limit
u ∈ X. As f is onto, there is an element v ∈ X s.t. v ∈ f−1u. Now

M(xn, u, kt) = M(fxn+1, fv, kt) ≤ M(xn+1, v, t)

which as n → ∞, gives M(u, v, t) = 1 for all t > 0. Therefore by (Fm-2), it
follows that u = v yielding thereby fu = u, and so u is the fixed point of f . Let
u and v be the two fixed points of f i.e. fu = u and fv = v, then (1) yields

M(u, v, kt) = M(fu, fv, t) ≤ M(u, v, t)

for all t > 0. Hence, in view of Remark (2.1)(ii) on Lemma (2.3), we obtain u = v,
which shows the uniqueness of u as a fixed point of f . This completes the proof.
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Theorem 3.2 Let (X, M, ∗) be a complete FM-space with t∗t ≤ t for all t ∈ [0, 1]
and f be a mapping from X onto itself. There exists a number k > 1 s.t.

M(fx, fy, kt) ≤ M(x, y, t) ∗M(x, fx, t) ∗M(y, fy, t) (3.2)

for all x, y ∈ X and t > 0, then f has a unique fixed point in X.

Proof : A sequence {xn} is developed similarly as in Theorem (3.1). If xm−1 =
xm for some m, f has a fixed point xm. Suppose xn−1 6= xn for every positive
integer n, then from (2)

M(xn, xn+1, kt) = M(fxn+1, fxn+2, kt)

≤ M(xn+1, xn+2, t) ∗M(xn+1, fxn+1, t) ∗M(xn+2, fxn+2, t)

= M(xn+1, xn+2, t) ∗M(xn+1, xn, t) ∗M(xn+2, xn+1, t)

yielding thereby

M(xn, xn+1, kt) ≤ M(xn, xn+1, t) ∗M(xn+1, xn+2, t). (3.3)

Now, suppose
M(xn+1, xn+2, t) < M(xn, xn+1, t)

then it follows from (3) that

M(xn, xn+1, kt) ≤ M(xn+1, xn+2, t)

for all t > 0 which in view of Remark (2.1)(i) on Lemma (2.3), implies xn = xn+1,
a contradiction.
Now, let

M(xn, xn+1, t) ≤ M(xn+1, xn+2, t),

in this case, it is noting from (3) that

M(xn, xn+1, kt) ≤ M(xn+1, xn+2, t)

for all t > 0. Thus, in view of Remark (2.1)(i) on Lemma (2.2), {xn} is a Cauchy
sequence in X which is complete, therefore there exists some u ∈ X s.t. xn → u.
Since f is onto, there is an element v ∈ f−1u. Now,

M(xn, u, kt) = M(fxn+1, fv, kt) ≤ M(xn+1, v, t) ∗M(xn+1, xn, t) ∗M(v, u, t)

which, as letting n →∞, gives M(u, v, t) = 1 for all t > 0. Therefore by (Fm-2),
it is noting that u = v and so fu = u i.e. u is a fixed point of f . The uniqueness
of u as a fixed point of f can be shown easily from (2). Hence the theorem proved.

Theorem 3.3 Let (X, M, ∗) be a complete fuzzy metric space with t ∗ t ≤ t for
all t ∈ [0, 1] and f, g be two self maps of X onto itself. If there exists a number
k > 1 s.t.

M(fx, gy, kt) ≤ M(x, y, t) ∗M(x, fx, t) ∗M(y, gy, t). (3.4)
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Proof : Choose an element x0 ∈ X; as f is onto there is an element x1 ∈ f−1x0.
since g is onto, there exists an element x2 satisfying x2 ∈ g−1x1. Thus in general,
a sequence {xn} is defined as x2n+1 ∈ f−1x2n, x2n+2 ∈ g−1x2n+1 for all n = 0, 1,
2,... Now, we have two cases as follows:

Case(1) When xm 6= xm+1 for all m = 0, 1, 2,... In this case, it follows from (4)
that

M(x2n, x2n+1, kt) = M(fx2n+1, gx2n+2, kt)

≤ M(x2n+1, x2n+2, t) ∗M(x2n+1, x2n, t) ∗M(x2n+2, x2n+1, t)

≤ M(x2n+1 , x2n+2, t) ∗M(x2n, x2n+1, t) (3.5)

Suppose
M(x2n+1, x2n+2, t) < M(x2n, x2n+1, t),

then from (5) we obtain

M(x2n, x2n+1, kt) ≤ M(x2n, x2n+1, t)

which, in view of Remark (2.1)(ii) on Lemma (2.3), implies x2n = x2n+1

which is a contradiction. Therefore, let

M(x2n+1, x2n+2, t) ≥ M(x2n, x2n+1, t),

then (5) yields

M(x2n, x2n+1, kt) ≤ M(x2n+1, x2n+2, t)

for all t > 0. Similarly, it can be shown that

M(x2n+1, x2n+2, kt) ≤ M(x2n+2, x2n+1, t)

for all t > 0. Thus, in general we obtain

M(xn, xn+1, kt) ≤ M(xn+1, xn+2, t)

for all t > 0 and n = 0, 1, 2,... Hence, in view of remark (2.1)(i) on lemma
(2.2), {xn} is a Cauchy sequence in X which is complete, therefore {xn}
has a limit point in X. Since {x2n} and {x2n+1}are subsequences of {xn},
x2n → u and x2n+1 → u as n → ∞. As f and g are onto, there exist
v, w ∈ X satisfying v ∈ f−1u and w ∈ g−1u. Now,

M(x2n, u, kt) = M(fx2n+1, gw, kt)

≤ M(x2n+1, w, t) ∗M(x2n+1, x2n, t) ∗M(w, gw, t)
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which, as n → ∞, gives M(u, w, t) = 1 for all t > 0. Thus by (Fm-2), it
follows that u = w. In the similar pattern, taking x = v and y = x2n+2

in (4), and therefore proceeding as above, we obtain u = v. Therefore,
u = v = w which immediately implies fu = gu = u and so u is a common
fixed point of f and g. Now, let u and v be two common fixed point of f
and g i.e. fu = gu = u and fv = gv = v, then

M(u, v, kt) = M(fu, gv, kt)

leqM(u, v, t) ∗M(u, fu, t) ∗M(v, gv, t)

= M(u, v, t) ∗ 1 ∗ 1 = M(u, v, t)

for all t > 0. Further by an application of Remark (2.1)(ii) on Lemma (2.3),
we obtain u = v.

Case(II) When xm−1 = xm for some m. Here m may be even or odd positive
integer. Without loss of generality, suppose m is an even integer, say m = 2p,
then x2p−1 = x2p i.e. gx2p = fx2p−1 which implies x2p = x2p+1 ( as we have
fx 6= gy if x 6= y). Therefore we have x2p−1 = x2p = x2p+1 = ... Which
shows that {xn} is a convergent sequence and so Cauchy sequence in X. The
rest of the proof is similar to as in case (1) and this completes the proof.
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