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1 Introduction

Stein[11] introduced a powerful and general method for obtaining an explicit bound
for the error in the normal approximation to the distribution of a sum of dependent
random variables. Stein’s method has been applied with much success in the
area of normal approximation(See, for example, Erickson[7], Bolthausen[5], Baldji,
Rinott and Stein[1] and Barbour[2]). This method was extended from the normal
distribution to the Poisson distribution by Chen[6]. Chen’s work has resulted in
advances in the theory of Poisson approximation and has helped to develop and
improve upon a body of interesting applications and examples.(For theoretical
developments, see Barbour and Eagleson|[3,4], Holst and Janson[8]). Many authors
developed Stein’s method to other approximations, for examples, Pekdz[10] applied
this method to geometric approximation.

In 2002, Neammanee[9] applied Stein’s method for Cauchy approximation to
the distribution function of sums of independent random variables. In this paper,
we further develop the Stein’s technique to find the bound in more general situa-
tion, i.e. we need not to assume independence of random variables. We organize
this paper as follows. Main results are stated in section 2 while proof of main
results is given in section 3.

2 Main results

Let X1, Xs,..., X, be random variables. Neammanee[9] used Stein’s method to
find a bound between the distribution function F;, of X7 + X5 +---+ X,, and the
Cauchy distribution F,

F(x):l/z L 2.1)
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In his work, he assume the independence of X,,’s but it is not necessary in this
paper. To applied Stein’s method we need the followings construction.

Let H={h:R— R|/ |d < oo} and for each h € H,
1 [ h(x)
Cau(h) = = /700 T+ 22 dzx. (2.2)

From Neammanee[9],we know that the Stein’s equation for Cauchy distribution
Fis
2w f(w)

Trw? = h(w) — Cau(h) (2.3)

f'(w) =

and

(1 + w)F(w)(1 — F(wp)) if w<w
Fuos () = ( 2) (w)(1 = F(wo)) 1 0 (2.4)
(14 w*)F(wo)(1 — F(w)) if w > wy
is a solution of (2.3) when we choose h(w) = I(_ ., and

1 if w<uwy
I(—Oo,wo](w) = {0 i w > wo.

The main results are the followings.

Theorem 2.1. Let Xy, Xs,..., X, be random variables such that EX; = 0,
EX} < co and S; be a subset of {1,2,...,n} for alli = 1,2,....,n. Let W =
X1+ Xo+ -+ X,,. Then for all wy € R,

‘P(W < wp) — F(wo)‘

<3, |E[1- 1+W2ZZXX

i=1j€S;
+47Tm1n{ i, EZX?E‘ZX ZX‘ F(wo)(1 = F(wo))
JE S JES;
+27TEZ‘E{X |7¢S}X‘+127r+1 EZ|X|(ZX>

i=1 JES;
where EBX is the conditional expectation of X with respect to B.

In the case of X,,’s are independent we have the following corollary and example.
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Corollary 2.2. Let X1, Xo,..., X, be independent random variables such that
EX, =0, EX}<ooforalli=1,2,....,n. Let W = X1 + -+ X,,.
Then for all wy € R,

‘P(W < wp) — F(wo)‘

3. |F|1 2 nX22
< — A
- [ 1+W2; 1}

+ 47 min { i EX?, n(i EXE) (zn: EX;‘) }F(wo)(l — F(wo))
i=1 =1

i=1
n
+12(m + 1) EIX
i=1
Example 2.3. Let Y7,Y5,...,Y, be identically independent random variables
1 Y;
with zero means, EY;? = 3 and E|Y;|® < co. Let X; = T and W = X; + Xo +
n
-+ 4+ X,,. Then for all wy € R,

|P(W < wp) — F(wo)| < \% + Cmin{%, \%«/E|}Q|4}F(wo)(1 — F(w)).

We note that Corollary 2.2 and Example 2.3 are main results of Neammanee[9).
Moreover, we also use Stein’s method to find the necessary and sufficient conditions
in order to a random variable W be Cauchy.

Theorem 2.4. Let W be a random variable. Then W has a Cauchy distribution
if and only if for all functions f : R — R such that f' exists a.e., continuous a.e.
and E|f'(W)| < oo, we have

WfW)
1+ W2’

Throughout this paper, C' stands for an absolute constant with possibly different
values in different places.

Ef' (W) =2E

3 Proof of Main Results

To prove Theorem 2.1, we first introduce the basic assumption.

Basic assumptlon Let (Q B P) be a probablhty space and let B and C be sub-

o-algebras of B. The random variable G is B-measurable and random variable W
is C-measurable. Assuming
E|G| < oo,

we define W = EBG.
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Lemma 3.1. In addition to the basic assumption, let f : R — R be such that
|f(w)| < C(1+w?) for some C > 0. Then

WHW) _ 1 fOV)  f(W) FOV)
B _EG[1+W2—1+W2}+E(ECG)W. (3.1)
Moreover,
_ : FueV)  fuo (W) Fuo (W)
(3.2)
forwyg € R
Proof. Since B _ ppeGI0V) _ E(E°Q) UD , SO
L+ W2 1+ W2 1+ W2
wiw) _ fw)
B = PO
_ GfW)
= BEP (1 + WQ)
_ LGfW)
1+ W2
A FOV)FW) ¢ JW)
_EG[1+W2 1+W2} HB(EG)
Then (3.1) holds and (3.2) follows from (3.1) and (2.3) when h = I{_ ] O

Lemma 3.2. Under the basic assumption for any wy € R, we have

G(W = W)W fu, (W)
1+ W2)2

+2EG /_Oo (W —w)[I(w < W) - I(w < W)](M)dw

GW —W)
1+ W2

P(W < wo) = F(wy) + Ef,, (W) {1 9 }+4E

- 1+ w?

_4EG /Z(W —w)[I(w < W) = T(w < W)] (M)’dw

(EG) fuo (W)

—-2F —
1+Ww?2

Proof. Let wy € R. For W < W, we see that
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FusV)  FuoV) (W = W) S, (W) | AW = W)W £, (W)

1+W2 1+ W2 1+ W2 (1+Ww2)?

B fwo ’ Fioo W) 2W fu (W)

_/w [ 1+w2 1+W2+(1+W2)2}dw

_ / [ (W) 2w, (w)  fu,(W) N 2wa0(W)} dw
w

1+w?2 (14+w?)? 14+W?2 (1+W2)
/W / f{UO ) dyao — 2 / / yfwo
w 1+y
w /
/ / fwo dwdy—2/ / yfw° d dy
w Y y

/

w /
/W )dy 2/W (W_y)((?ifioy( )>>dy

and by the same argument we can show that

Fao W) FueW) (W = W) fi (W) | 2(W = W)W fu (W)

1+W2 14+W?2 1+ W2 + (1+W?2)2

w

W ()’ o (1) '
:/W (w_W)(1+w2) dw_g/w = W)<( ]1“52))2) "

for W < W.

So

Foo W) FueW) (W = W) fa (W) | 2(W = W)W fup (W)

1+w2 14+W?2 1+ W2 (14 W2)2

_ /_Z(’W —w)[I(w < W) — I(w < W)]({Li(zg)/dw

9 /_Oo (W —w)[I(w < W) — I(w < W)](Zﬁ”lig”)l) dw. (3.3)
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By Lemma 3.1, we have

GW = W) fo, (W) | GOV =W)fi,, (W)
1+ W2 1+ W2
LGV =W fu (W) | GOV = W)W fu, (W)
(1+W2)2 (1+W2)2
Fue(W)  fur (W) (ESG) fu, (W)
—26(1e - )| S
2G(W — W)
]
Fue V) fus W) (W =W)f0, (W) | 2(W — W)wa()(vv)}

P(W < wg) = Flwo) + B, (W) -2

= F(wo) + Ef,(W)[1 -

1+w2 14+W?2 1+ W?2 (14 W?2)2
GW = W)W L, (W) 1 (EG) fury (W)
(1+W2)? 1+
2G(W — W)
1w

+2EG[

+4F

= F(wo) + Ef, (W) [1 -

o

+ zEG/_Z(W —w)[I(w < W) - I(w < W)](%)/dw

_ 4EG/_Z(I/I~/ —w)[I(w < W) — I(w < W)](M),dw

W C w
(1+w2)? 1+ W2
where we have use (3.3) in the last equality. O

The following lemma is the properties of f,,, which we need in the proof of Theorem
2.1.

Lemma 3.3. For any real numbers wy and w,

1. | fuo (w)/ (1 + w?)| < wF (wo) (1 = F(wo))

2. | fu(w) <3

8 |fo,(w)] <3427

4o |(frg () /(1 +w?))'| <6+ 27

5. |(wfwe(w)/(1+w?)?)| <3+ 5.

Proof. See [9]. O

3.1 Proof of Theorem 2.1.

Let I be a random variable, uniformly distributed over {1,2,...,n} indepen-
dent of {X;,X5,...,X,}. Let B be a o-algebra in which the random variables
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I and {X1, X5,...,X,} are measurable, B the sub-o-algebra of B generated by
{X1,X2,...,X,} and C the o-algebra generated by I and {X; | j ¢ Si}. Let

G= TLX[.
Then

EBG = EBnX; = ZXZ- =W.

So the basic assumption is satisfied. Let

To prove the theorem, let wy € R. By Lemma 3.2, we obtain
|P(W < wo) — F(wo)]

GW —W) (W = W)W foy (W o (w c
< ) Bh—2 2 aE 0 25 ()| e
—i‘é%”wo(w)' ‘ 1+ w2 ‘ ‘ (1+wW2)2 ‘JF weR‘ ’ |B7G]
+2sup‘({“’°7 ‘E|G|/ W — w||[I(w < W) — I(w < W)]|dw
weR +
+4sup‘( f“’o ‘E|G|/ W — w||[I(w < W) — I(w < W)]|dw
weR (1+
(W = W)W fur, (W)
< B 0
sup |, (u |\/ T EEGOV W)} +4E’ WP |

!
+2 sup fwo ’E\ECG|+(sup ‘(fwo(w))
we]R wer | V1 + w?

(et vy

weR

Hence, by Lemma 3.3,

(W = W)W fuy (W)

IP(W < wo) — F(wo)] gs\/E [1 - 2W EBG(W — W)} + 4E’

+ 27 E|ECG| + 12(n + 1) E|G|(W — W)2.

(14 W2)2

We see that

E|ECG| = E|E°nX;| = E‘EC
=1

EIGI( - W)? E\ZX(ZX)\<EZIX|(Z )

JES; jJES;
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\/E[1 - 1+2W2EBG(W—W)}2 = \/E[l - H%Ezsnxl S Xjr

JEST

2 - 2
-\ Fh- T p e L )
2 2 2
:\E[1—1+W2;J§Xixj} :

By Lemma 3.3(1), we have

G(ﬁ; B W)wao
(T+ W2y

5 0] < (o)1 Flwo) BIGIW ~ ]

— 7 F(wo)(1 — F(wo))E‘ iX( > Xﬂ')’

JES:

(2 %)

< mF(wo)(1 — F(wo))E Y | | X
i=1 JES;

and

5| GOV = W)W £, (W)

< mF (wo)(1 — F(wo))E|G||[W — W||W|

1+ W2)2
< wF(wo)(1 = F(wo))\/ E|G]|W — W |2VEW?
n 2 n
= 7 F(wo)(1 — F(w)) E’ S x Y Xj( By x2.
i=1 JES; i=1
This complete the proof. 0

3.2 Proof of Corollary 2.2.

Follows from Theorem 2.1 by choosing S; = {i}, so
BIY X ) XP=E|) X <n} EX],
i=1  jeS; i=1 i=1
and the assumption that Xi, Xo,..., X, are independent implies

|p{Xiligsid x| = |EXl# x| = |[EX;| = 0.
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3.3 Proof of Example 2.3.
See[9].

3.4 Proof of Theorem 2.4.

To prove the necessity, we assume that W has a Cauchy distribution and let
f :R — R be such that f’ exists a.e., continuous a.e. and E|f'(W)| < co. Then

W)
14+ w2

2 [ wf(w)
- E/_m (ESTIE

2F

:% /Ooo £(t) ;(1(+w)) dw dt+/0 f’(t)/too 7<1+ww2)2dwdt}
0 / oo !
L[ [T L0

= ()
/,OO 1+t2dt

= Ef'(W).
Conversely, let wo € R. By Lemma 3.3(2), we see that E|f,, (W)| < oo. Then

W fuw, (W)
1+ W2
= E[I(_w7u,0](W) — C’au(I(_ono])]

3=

0=E|f, (W)—-2

wWo

where we have used Stein’s equation (2.3) in the first equality. Hence W has a
Cauchy distribution. O
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