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1 Introduction

The notion of partial metric is one of the most useful and interesting gen-
eralizations of the classical concept of metric. The partial metric spaces were in-
troduced in 1994 by Matthews [2]. Based on this notion, Matthews [2, 3], Oltra
and Valero [4], Ilic et al. [5, 6], Kadelburg et al. [7], Di Bari et al. [8], Hemant
Kumar Nashine et al. [9] obtained some very interesting fixed point theorems for
mappings satisfying different contractive conditions.

On the other hand, in order to generalize the well-known Banach contraction
theorem in complete metric space many authors have introduced various type of
contraction. In 2008, Suzuki introduced a new method [1] and then this method
was extended by some authors [10–13].
Very recently this method extended to the partial metric space in [14]

The purpose of this work is to provide a new condition for two multivalued
mappings which guarantees the existence of common fixed point.

Our results generalize some old results see for example [13,14]. In this way, we
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consider the set R of continuous function g : [0, 1)→ [0, 1) satisfying the following
properties:
(a) g(1, 1, 1, 2, 0) = g(1, 1, 1, 0, 2) = h ∈ (0, 1),
(b) g is sub-homogeneous, that is, g(αx1, αx2, αx3, αx4, αx5) < αg(x1, x2, x3, x4x5)
for all α ≥ 0 and all (x1, x2, x3, x4, x5) ∈ [0, 1)5,
(c) If xi, yi ∈ [0, 1) and xi < yi for i = 1, 2, 3, 4, then g(x1, x2, x3, x4, 0) <
g(y1, y2, y3, y4, 0) and g(x1, x2, x3, 0, x4) < g(y1, y2, y3, 0, y4).

We appeal the following result in the sequel.

Proposition 1.1. [15] If g ∈ R and u, v ∈ [0, 1) are such that

u ≤ max{g(v, v, u, v+u, 0), g(v, v, u, 0, v+u), g(v, u, v, v+u, 0), g(v, u, v, 0, v+u)},

then u ≤ hv.

2 Preliminaries

Definition 2.1. [2] A partial metric on a nonempty set X is a mapping p :
X ×X → R+ such that for all x, y, z ∈ X the following conditions are satisfied:
(i) x = y ⇔ p(x, x) = p(x, y) = p(y, y),
(ii) p(x, x) ≤ p(x, y),
(iii) p(x, y) = p(y, x),
(iv) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).

A partial metric space is a pair (X, p) such that X is a nonempty set and p is
a partial metric on X. Each partial metric p on X generates a T0 topology τp on
X which has as a base, the family of open p-balls {Bp(x, ε);x ∈ X, ε > 0}, where

Bp(x, ε) = {y ∈ X : p(x, y) < p(x, x) + ε},

for all x ∈ X and ε > 0.

If p is a partial metric on X, then the mapping dp : X ×X → R+ given by

dp(x, y) = 2p(x, y)− p(x, x)− p(y, y),

is a metric on X.

Definition 2.2. [3,16] Let (X, p) be a partial metric space. Then a sequence {xn}
in X is called
(i) convergent if there exists a point x ∈ X such that p(x, x) = limn→∞ p(xn, x),
(ii) Cauchy sequence if there exists (and is finite) limn,m→∞ p(xn, xm).

Definition 2.3. [3,16] A partial metric space (X, p) is said to be complete if every
Cauchy sequence {xn} in X converges, with respect to τp, to a point x ∈ X such
that p(x, x) = limn,m→∞ p(xn, xm).
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Lemma 2.4. [3, 16] Let (X, p) be a partial metric space. Then
(i) {xn} is a Cauchy sequence in (X, p) if and only if it is a Cauchy sequence in
the metric space (X, dp),
(ii) (X, p) is complete if and only if the metric space (X, dp) is complete. Fur-
thermore, limn→∞ dp(xn, x) = 0 if and only if p(x, x) = limn→∞ p(xn, x) =
limn,m→∞ p(xn, xm).

Let CBp(X) be a family of all nonempty, closed and bounded subsets of the
partial metric space (Xp). Note that closedness is taken from (X, τp) (τp is the
topology induced by p) and boundedness is given as follows: A, is a bounded
subset in (X, p) if there exist x0 ∈ X and M ≥ 0 such that for all a ∈ A, we have
a ∈ Bp(x0,M), that is, p(x0, a) < p(a, a) +M .
For A,B ∈ CBp(X) and x ∈ X, we defined

p(x,A) = inf{p(x, y) : y ∈ A},

δp(A,B) = sup{p(a,B) : a ∈ A},

δp(B,A) = sup{p(A, b) : b ∈ B},

and
Hp(A,B) = max{δp(A,B), δp(B,A)}.

It is immediate to check that p(x,A) = 0 implies that dp(x,A) = 0, where
dp(x,A) = inf{dp(x, a) : a ∈ A}.

Remark 2.5. [17] Let (X, p) be a partial metric space and A be any nonempty set
in (X, p), then a ∈ A if and only if p(a,A) = p(a, a), where A denotes the closure
of A with respect to the partial metric p. Note that A is closed in (X, p) if and
only if A = A.

Proposition 2.6. [18] Let (X, p) be a partial metric space. For any A,B,C ∈
CBp(X), we have the following:
(i) δp(A,A) = sup{p(a, a) : a ∈ A},
(ii) δp(A,A) ≤ δp(A,B),
(iii) δp(A,B) = 0⇔ A ⊆ B,
(iv) δp(A,B) ≤ δp(A,C) + δp(C,B)− infc∈C p(c, c).

Proposition 2.7. [18] Let (X, p) be a partial metric space. For all A,B,C ∈
CBp(X), we have
(h1) Hp(A,A) ≤ Hp(A,B),
(h2) Hp(A,B) = Hp(B,A),
(h3) Hp(A,B) ≤ Hp(A,C) +Hp(C,B)− infc∈C p(c, c),
(h4) Hp(A,B) = 0⇔ A = B.

The mapping Hp : CBp(X)×CBp(X)→ [0,∞), is called the partial Hausdorff
metric induced by p. It is easy to show that any Hausdorff metric is a partial
Hausdorff metric. The converse is not true see Example 2.6 in [18].
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3 Main Results

Now, we give the following result about common fixed points of two multival-
ued mappings.

Theorem 3.1. Let X denote a complete partial metric space and T, S : X →
CBp(X) two multivalued mappings. Suppose that there exits α ∈ (0, 1) and g ∈ R
such that α(h+ 1) < 1 and αp(x, Tx) ≤ p(x, y) or αp(y, Sy) ≤ p(x, y) implies

Hp(Tx, Sy) ≤ g(p(x, y), p(x, Tx), p(y, Sy), p(x, Sy)− p(x, x), p(y, Tx)− p(y, y)),

for all x, y ∈ X. Then F (T ) = F (S) and F (T ) is nonempty.

Proof. Let x0 be a arbitrary point in X and 1 > r > h. choose x1 ∈ Tx0 such
that αp(x0, Tx0) ≤ p(x0, x1). Then, we have

p(x1, Sx1) ≤ Hp(Tx0, Sx1)

≤ g(p(x0, x1), p(x0, Tx0), p(x1, Sx1), p(x0, Sx1)− p(x0, x0),

p(x1, Tx0)− p(x1, x1))

≤ g(p(x0, x1), p(x0, x1), p(x1, Sx1), p(x0, x1) + p(x1, Sx1), 0).

By using Proposition 1.1, we have

p(x1, Sx1) ≤ hp(x0, x1) < rp(x0, x1).

Now we choose a number µ such that infy∈Sx1
p(x1, y) = p(x1, Sx1) < µ <

rp(x0, x1). Thus, there exists x2 ∈ Sx1 such that p(x1, x2) < µ < rp(x0, x1).
Since αp(x1, Sx1) < p(x1, x2), we get,

p(x2, Tx2) ≤ Hp(Tx2, Sx1)

≤ g(p(x1, x2), p(x2, Tx2), p(x1, Sx1), p(x2, Sx1)− p(x2, x2),

p(x1, Tx2)− p(x1, x1))

≤ g(p(x1, x2), p(x2, Tx2), p(x1, x2), 0, p(x1, x2) + p(x2, Tx2)).

By using Proposition 1.1, we have

p(x2, Tx2) ≤ hp(x1, x2) < rp(x1, x2).

Now by using a similar method, we can find x3 ∈ Tx2 such that

p(x2, x3) ≤ rp(x1, x2) ≤ r2p(x0, x1),

Continuing this process, we can find a sequence {xn} in X such that x2n−1 ∈
Tx2n−2, x2n ∈ Sx2n−1, and we have,
(i) p(xn, xn+1) < rnp(x0, x1),
(ii) p(x2n, Tx2n) ≤ hp(x2n−1, x2n) and p(x2n−1, Sx2n−1) ≤ hp(x2n−2, x2n−1).
If xn = xm for some m ≥ 1, then T and S have a common fixed point.
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Suppose that xn 6= xn+1 for all n ≥ 1. By using (i), we show that {xn} is a
cauchy sequence. Obviously we have,

p(xn, xn+m) ≤ p(xn, xn+1) + p(xn+1, xn+2) + ...+ p(xn+m−1, xn+m)

≤ rnp(x0, x1) + rn+1p(x0, x1) + ...+ rn+m−1p(x0, x1)

≤ (rn + rn+1 + ...+ rn+m−1)p(x0, x1)

rn

1− rn
p(x0, x1)→ 0.

By the definition of dp, we get,

dp(xn, xn+m) ≤ 2p(xn, xn+m)→ 0,

as n→∞, which implies that {xn} is a Cauchy sequence in (X, dp). Since (X, p)
is complete, hence (X, dp) is complete, so we have limn→∞ dp(xn, x) = 0, for some
x ∈ X. Now by Lemma 2.4 we get

p(x, x) = lim
n→∞

p(xn, x) = lim
n,m→∞

p(xn, xm) = 0.

Now we claim that for each n ≥ 1 on of the relation αp(x2n, Tx2n) ≤ p(x2n, x)
and αp(x2n+1, Sx2n+1) ≤ p(x2n+1, x) hold.
If αp(x2n, Tx2n) > p(x2n, x) and αp(x2n+1, Sx2n+1) > p(x2n+1, x) for some n ≥ 1,
then we obtain

p(x2n, x2n+1) ≤ p(x2n, x) + p(x, x2n+1)− p(x, x)

≤ p(x2n, x) + p(x, x2n+1)

< αp(x2n, Tx2n) + αp(x2n+1, Sx2n+1)

≤ αp(x2n, x2n+1) + αhp(x2n, x2n+1).

Thus, α(1 + h) > 1, which is a contradiction. Therefore our claim is proved. Now
by using the assumption for each n ≥ 1 either

Hp(Tx2n, Sx) ≤ g(p(x2n, x), p(x2n, Tx2n), p(x, Sx), p(x2n, Sx)− p(x2n, x2n)

, p(x, Tx2n)− p(x, x)),

or

Hp(Tx2n+1, Sx) ≤ g(p(x2n+1, x), p(x2n+1, Tx2n+1), p(x,Sx), p(x, Tx2n+1)− p(x, x)

, p(x2n+1, Sx)− p(x2n+1, x2n+1)),

hold, Therefore, we have one of the following cases:
(i) In first case we have

p(x2n+1, Sx) ≤ Hp(Tx2n, Sx) ≤ g(p(x2n, x), p(x2n, Tx2n), p(x, Sx),

p(x, Tx2n)− p(x, x), p(x2n, Sx)− p(x2n, x2n)),
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for all n ∈ N. Therefore we have

p(x, Sx) ≤ p(x, x2n+1) + p(x2n+1, Sx)− p(x2n+1, x2n+1)

≤ p(x, x2n+1) + g(p(x2n, x), p(x2n, Tx2n), p(x, Sx), p(x, Tx2n)− p(x, x),

p(x2n, Sx)− p(x2n, x2n))

≤ p(x, x2n+1) + g(p(x2n, x), p(x2n, x2n+1), p(x, Sx), p(x, x2n+1)− p(x, x),

p(x2n, x) + p(x, Sx)− p(x2n, x2n)),

for all n ∈ N. Since g is continuous letting n→∞ we obtain

p(x, Sx) ≤ p(x, x) + g(p(x, x), p(x, x), p(x, Sx), p(x, x)− p(x, x),

p(x, x) + p(x, Sx)− p(x, x))

= g(0, 0, p(x, Sx), 0, p(x, Sx)).

Now by using Proposition 1.1 we have p(x, Sx) = 0 and so x ∈ Sx.
(ii) In the second case we have,

p(Tx, x2n+2) ≤ Hp(Tx, Sx2n+1) ≤ g(p(x, x2n+1), p(x, Tx), p(x2n+1, Sx2n+1)

, p(x2n+1, Tx)− p(x2n+1, x2n+1), p(x, Sx2n+1)− p(x, x)),

for all n ∈ N. Therefore,

p(x, Tx) ≤ p(x, x2n+2) + p(x2n+2, Tx)− p(x2n+2, x2n+2)

≤ p(x, x2n+2) + g(p(x, x2n+1), p(x, Tx), p(x2n+1, Sx2n+1), p(x2n+1, Tx)

− p(x2n+1, x2n+1), p(x, Sx2n+1)− p(x, x))

≤ p(x, x2n+2) + g(p(x, x2n+1), p(x, Tx), p(x2n+1, x2n+2), p(x2n+1, x)

+ p(x, Tx)− p(x, x), p(x, x2n+2)− p(x, x)),

for all n ∈ N. Since g is continuous letting n→∞ we obtain

p(x, Tx) ≤ g(0, p(x, Tx), 0, p(x, Tx), 0).

Now by using Proposition 1.1 we have p(x, Tx) = 0 and so x ∈ Tx. Therefore in
all cases we have F (T ) is non-empty.
Next we show that F (T ) = F (S). Let x ∈ Tx, then αd(x, Tx) ≤ d(x, x), therefore
we have,

p(x, Sx) ≤ Hp(Tx, Sx)

≤ g(p(x, x), p(x, Tx), p(x, Sx), p(x, Sx)− p(x, x), p(x, Tx)− p(x, x))

≤ g(p(x, x), p(x, x), p(x, Sx), p(x, x) + p(x, Sx), 0).

Now by using Proposition 1.1 we have p(x, Sx) ≤ hp(x, Sx). This implies that
p(x, Sx) = 0 and so x ∈ Sx. Thus F (T ) ⊆ F (S). Similarly we can show that
F (S) ⊆ F (T ). This completes the proof.
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The following result is a consequence of Theorem 3.1.

Theorem 3.2. Let X denote a complete partial metric space and T : X →
CBp(X) be a multivalued mapping. Suppose that there exits α ∈ (0, 1) and g ∈ R
with h = g(1, 1, 1, 2, 0) such that α(h+ 1) ≤ 1 and αp(x, Tx) ≤ p(x, y) implies

Hp(Tx, Ty) ≤ g(p(x, y), p(x, Tx), p(y, Ty), p(x, Ty)− p(x, x), p(y, Tx)− p(y, y)),

for all x, y ∈ X. Then T has a fixed point.

Theorem 3.3. [14] Define a strictly decreasing function θ from [0, 1) onto ( 1
2 , 1]

by θ(r) = 1
1+r . Let (X, p) be a complete partial metric space and T : X →

CBp(X) be a multivalued mapping. Assume that there exists r ∈ [0, 1) such that
θ(r)p(x, Tx) ≤ p(x, y) implies Hp(Tx, Ty) ≤ rp(x, y) for all x, y ∈ X. Then T
has a fixed point.

Proof. Define g ∈ R by g(x1, x2, x3, x4, x5) = rx1. put α = θ(r). Since h = r and
α(1 + h) ≤ 1, by using Theorem 3.2, T has a fixed point.

Theorem 3.4. Let X be a complete partial metric space and T : X → CBp(X) be
a multivalued mapping. Assume that there exist a, b, c ∈ [0, 1) such that a+b+c < 1
and 1−b−c

1+a p(x, Tx) ≤ p(x, y) implies Hp(Tx, Ty) ≤ ap(x, y)+bp(x, Tx)+cp(y, Ty)
for all x, y ∈ X. Then T has a fixed point.

Proof. Define g ∈ R by g(x1, x2, x3, x4, x5) = ax1 + bx2 + cx3. Put α = 1−b−c
1+a .

Since h = a+b+c and α(1+h) ≤ 1, by using Theorem 3.2, T has a fixed point.

Theorem 3.5. Let X be a complete metric space and T : X → CBP (X) be a mul-

tivalued mapping. Assume that there exists r ∈ [2
−1
1 , 1) such that θ(r)p(x, Tx) ≤

p(x, y) implies H(Tx, Ty) ≤ rmax{p(x, y), p(x, Tx), p(y, Ty)} for all x, y ∈ X.
Then T has a fixed point.

Proof. Define g ∈ R by g(x1, x2, x3, x4, x5) = rmax{x1, x2, x3}. Put α = θ(r).
Since h = r and α(1 + h) ≤ 1, by using Theorem 3.2, T has a fixed point.

Theorem 3.6. Let X be a complete partial metric space and T : X → CBp(X)
be a multivalued mapping. Assume that there exist β, γ ∈ [0, 1) such that

1
2β+γ+1p(x, Tx) ≤ p(x, y) implies Hp(Tx, Ty) ≤ γp(x, y) + βp(x, Tx) + βp(y, Ty)
for all x, y ∈ X. Then T has a fixed point.

Proof. Define g ∈ R by g(x1, x2, x3, x4, x5) = γx1 + βx2 + βx3. put α = 1
2β+γ+1 .

Since h = 2β+ 1 and α(1 +h) ≤ 1, by using Theorem 3.2, T has a fixed point.

Theorem 3.7. Let X be a complete partial metric space and T : X → CBp(X)
be a multivalued mapping. Assume that there exist r ∈ [0, 1), and L ∈ [0, 1) such
that 1

1+r+Lp(x, Tx) ≤ p(x, y) implies

Hp(Tx, Ty) ≤ rp(x, y) + Lmin{p(x, Ty)− p(x, x), p(y, Tx)− p(y, y)},

for all x, y ∈ X. Then T has a fixed point.



366 Thai J. Math. 17 (2019)/ E. Nazari

Proof. Define g ∈ R by g(x1, x2, x3, x4, x5) = rx1 + Lmin{x4, x5}. Put α =
1

1+r+L . Since h = r and α(1 + h) ≤ 1, by using Theorem 3.2, T has a fixed
point.
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