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1 Introduction

Let M be an m-dimensional semi-Riemannian manifold and V the Levi-Civita
connection on M. A semi-Riemannian manifold M is said to recurrent [I] if the
Riemann curvature tensor R satisfies the relation

(VUR)(X,Y,Z,V)ZQ(U)R(X,Y,Z,V), XaKZvVvUGTMa

where « is 1-form. If @ = 0, then M is called symmetric in the sense of Cartan

2].
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In 1977, Takahashi [3] introduced the notion of locally @-symmetry on a
Sasakian manifold, which is weaker than the local symmetry. A Sasakian manifold
is said to have locally p-symmetry if it satisfies

¥* (VuR) (X,Y)Z) =0,

where X, Y, Z, U are horizontal vector fields. If X, Y, Z, U are arbitrary vector
fields, then it is known as globally p-symmetric Sasakian manifold. A ¢-symmetric
space condition is weak condition for a Sasakian manifold in comparision to the
symmetric space condition. Local symmetry is a very strong condition for the
class of K-contact or Sasakian manifolds. Indeed, such spaces must have constant
curvature equal to 1 ([4, B]). On the other hand, local symmetry is also a very
strong condition for the class of (g)-para Sasakian manifold. Such spaces must have
constant curvature equal to —e [6]. In 2010, Tripathi et al. [6] proved that the
condition of semi-symmetry (R - R = 0), symmetry and have a constant curvature
— ¢ is equivalent for (¢)-para Sasakian manifold.

Three-dimensional locally ¢-symmetric Sasakian manifold is studied by Watan-
abe [7]. Many authors like De [8], De et al. [9], De and Pathak [10], Shaikh and
De [I1I] have extended this notion to 3-dimensional Kenmotsu, trans-Sasakian and
LP-Sasakian manifolds. Yildiz et al. [I2] studied the case for 3-dimensional -
Sasakian manifolds and gave the example for locally ¢-symmetric 3-dimensional
a-Sasakian manifolds. De and De [I3] studied the ¢-concircularly symmetric Ken-
motsu manifold and gave the example of such manifold in dimension 3. De et al.
[14] studied the 3-dimensional globally and locallly ¢-quasiconformally symmetric
Sasakian manifolds and also gave the example.

In the present work, globally and locally ¢-T-symmetric (¢)-para Sasakian
manifold are studied. The paper is organized as follows: Section 2 and 3 is devoted
to the study of T-curvature tensor and (¢)-para Sasakian manifold, respectively.
In section 4, the definition of globally and locally (-7 -symmetric manifold are
given. Globally ¢-T-symmetric (¢)-para Sasakian manifold is either Einstein or
has a constant scalar curvature under some condition. The necessary and sufficient
condition for locally -T-symmetric 3-dimensional (g)-para Sasakian manifold to
be locally ¢-symmetric is given. In section 5, the definition of 7-parallel (¢)-para
Sasakian manifold is given. A 3-dimensional (¢)-para Sasakian manifold with -
parallel Ricci tensor is locally ¢-T-symmetric. In the last section, the example of
a locally ¢-T-symmetric in 3-dimensional (¢)-para Sasakian manifold is given.

2 T-Curvature Tensor

The definition of T-curvature tensor [I5] is given by

Definition 2.1. In an m-dimensional semi-Riemannian manifold (M, g), the 7 -
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curvature tensor of type (1,3) defined by

T(X,Y)Z = aR(X,Y)Z
+ a1 S(Y,2)X +asS(X,2)Y +a3S(X,Y)Z
+a19Y,2)QX +a59(X,2)QY +as g(X,Y)QZ
+arr(gV,2) X —g(X,2)Y), (2.1)

for all XY, Z € TM, where ag, ..., a7 are some constants; and R, S, (Q and r are
the curvature tensor, the Ricci tensor, the Ricci operator of type (1,1) and the
scalar curvature respectively.

In particular, the 7-curvature tensor is reduced to
1. the Riemann curvature tensor R if
CL():L a1:a2:a3:a4:a5:a6=a7=0,

2. the quasiconformal curvature tensor C, [16] if

1 Qo
ay=—az =a4=—as, az3=as=0, ar=-—— +2a1 |,
m\m-—1

3. the conformal curvature tensor C [I7, p. 90] if

1
a=1 a=—-a=a=-a=—-——-F, a3=as=0,
m—2
1
ar=————+————
T m=1)(m-2)
4. the conharmonic curvature tensor L [18] if
1
aw=1 a=-a=0=-a=-——>73, az=0a=0, a7=0,
m—2

5. the concircular curvature tensor V ([19, 20, p. 87)) if

1
a=1, aa=aw=a=wu=a=a6=0, ar=—-———"—+,
m(m — 1)
6. the pseudo-projective curvature tensor P, [21] if
1 ap
ap = —aa, a3:a4:a5:a6:0, a7 = — — +ai |,
m \m—1

7. the projective curvature tensor P [20, p. 84] if

aozl, a1 = —as = — a3=a4=a5:a6:a720,

(m—1)’
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8. the M -projective curvature tensor [22] if

1

7, = = :(]7
o(m—1) BTWTW

apg=1, a1 =—-ax=a4=—a5=—

9. the Wy-curvature tensor [22], eq (1.4)] if

1

m7 az = az = aq4 = ag = a7 = 0,

a():l, ap = —a5 = —

10. the Wi-curvature tensor [22), eq (1.4)] if

1
ap =1, 01:*a5:m, az = az = aq = ag = a7 = 0,
11. the Wi-curvature tensor [22] if
1
ap = 1, 01 =02 = Ty az = a4 = a5 = ag = a7 = 0,
12. the Wi-curvature tensor [22] if
1
ap =1, =0 == Ty ag =a4 =as =ag = a7 =0,
13. the Wa-curvature tensor [23] if
1
ap =1, 4= =05 = = Ty ay = az =ag = ag = ay =0,
14. the Ws-curvature tensor [22] if
1
ap =1, a2=—a4=—m7 ap =ag = as = ag = ay = 0,
15. the Wy-curvature tensor [22] if
1
ap =1, @5 = —06 = Ty ar =az =az =aq =ar =0,

16. the Ws-curvature tensor [24] if

ap =1, a2:—a5:—m7

17. the Ws-curvature tensor [24] if

1

m=1) az = a3z = a4 = as = a7 = 0,

aozl, a;] = —ag = —
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18. the Wr-curvature tensor [24] if

1
a =1, a1 =—-a=— ; az=ag=as =ag = ay =0,
(m—1)
19. the Ws-curvature tensor [24] if
1
0,021, ay = —az = — y ag—a4—a5=a6—a7—0,
(m—1)
20. the Wy-curvature tensor [24] if
1
CLQZI, a3 = — a4 = s a1=a2=a5=a6=a720.
(m—1)

3 (e)-Para Sasakian Manifold

A manifold M is said to admit an almost paracontact structure if it admit a
tensor field ¢ of type (1,1), a vector field £ and a 1-form 7 satisfying

p=I-n®¢ nE)=1 ¢=0, nop=0. (3.1)
Let g be a semi-Riemannian metric with index(g) = v such that
g(X,0Y) =g(X,Y) —en(X)n(Y), X, Y eTM, (3-2)

where ¢ = +1. Then M is called an (g)-almost paracontact metric manifold
equipped with an (¢)-almost paracontact metric structure (p,€,m,g,¢). In par-
ticular, if index(g) = 1, then an (¢)-almost paracontact metric manifold is said to
be a Lorentzian almost paracontact manifold. In particular, if the metric g is pos-
itive definite, then an (¢)-almost paracontact metric manifold is the usual almost
paracontact metric manifold [25].

The equation is equivalent to

g (X, 9Y) =g (pX,Y) (3.3)
along with
9 (X, &) = en(X). (3.4)
From and it follows that
g(§,¢) =« (3.5)

Definition 3.1. An (¢)-almost paracontact metric structure is called an (g)-para
Sasakian structure if

(Vxo)Y = —g(eX, oY), —en(Y)9*X, XY €TM, (3.6)

where V is the Levi-Civita connection with respect to g. A manifold endowed with
an (g)-para Sasakian structure is called an (¢)-para Sasakian manifold [6].
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For e =1 and ¢g Riemannian, M is the usual para Sasakian manifold [26] 27].
For ¢ = —1, g Lorentzian and & replaced by —&, M becomes a Lorentzian para
Sasakian manifold [28§].

For (e)-para Sasakian manifold, it is easy to prove that

R(X,Y)E =n(X)Y —n(Y)X, (3.7)

R(&X)Y =n(Y)X —eg(X,Y)E, (3.8)

R(, X)€ =X —n(X)g, (3.9)
R(X,Y,Z,§) =n(Y)g(X,Z) —n(X)g(Y,Z), (3.10)
N(R(X,Y)Z)=e(n(Y)g(X,Z)—n(X)g(Y,2)), (3.11)
S(X,8) = —(m - )n(X), (3.12)

Q¢ = —e(m —1)¢, (3.13)

5,6 =—(m—1), (3.14)

S(eX,9Y) =S(Y,Z) + (m—1n(X)n(Y), (3.15)
Vxé =epX. (3.16)

For detail study of (¢)-para Sasakian manifold, see [0].

4 @-T-Symmetric (¢)-Para Sasakian Manifold
We begin with the following definition.

Definition 4.1. An (¢)-para Sasakian manifold is said to be locally ¢-T-symmetric
manifold if

¢ (VwT)(X,Y)Z) =0, (4.1)

for arbitrary vector fields X, Y, Z, W orthogonal to . If X, Y, Z, W are arbitrary
vector fields, then it is known as globally -7-symmetric manifold.

This notion of locally ¢-symmetric was introduced by Takahashi for Sasakian
manifolds [3].

Theorem 4.2. Let M be a m-dimensional globally p-T -symmetric (€)-para Sasa-
kian manifold. Then

(1) M is Einstein manifold if ag + (m — 1)ay + az + ag # 0.

(ii) M has constant scalar curvature if ag + (m — 1)a; + az + ag = 0 and ag +
(m —1)ay #0.
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Proof. Let M be a m- dlmensmnal globally ¢-T-symmetric (¢)-para Sasakian man-
ifold. Then by using and ( .7 we have

(VwT) X, Y)Z =n(VwT)(X,Y)Z)§ =0,
from which it follows that
g(VwTIX,Y)Z,U) —n(VwT)(X,Y)Z) g(§,U) = 0. (4.2)

Using in , we obtain

0=ao(VwR)(X,Y,Z,U)+ a1 (VwS) (Y, Z) g(X,U)+az (Vw 5) (X, Z) g(Y,U)

+a3 (VwS)(X,Y)g(Z,U) + as (VwS)(X,U)g (Y, Z) + a5 (Vw S)(Y,U)g (X, Z)

+ag (VwS)(Z,U)g(X.Y) + a7 (Vwr) (9 (Y, 2) (X, U) — g (X, Z) g(Y,U))
+n(U) (a0 (VwR)(X,Y, Z,§)+ ar(Vw §) (Y, Z) g(X, §) +az (Vw S) (X, Z) g(Y, )

+a3 (VwS)(X,Y)g(Z,§) + asg (Y, 2) (VwS)(X,§) + a5 g (X, Z) (Vw S)(Y, £)

+ae 9(X, )(VWS)(Z &)+ a7 (Vwr) (g (Y, 2) 9(X,€) —g (X, Z2)g(Y.€))). (4.3)

Let {e;}, i = 1,...,m be an orthonormal basis of tangent space at any point of
the manifold. Taking X = U =e; in (4.3)), we get

0 = (ao+(m—1ay+az+az+as+as) (VwS)(Y,Z)

—apé Z(VWR) (eia }/a Z7 f) 9(67;7 g)
=1

+ (as + (m —1)az) (Vwr)g (Y, Z) + a7 (Vwr) (9 (Y, Z) — en(Y)n(Z))
— (a2 +ag) (VwS)(Z,)n(Y) — (a3 + as) (Vw S)(Y, E)n(Z). (4.4)

Putting Z = £ in (4.4), we have

0 = (ag+(m—1)as +az+as) (VwS)(Y,§)
—age Z(VWR) (e:,Y,€,6) g(ei §)
+ (a4 + (m = 1)az) (Vwr)g (Y, §)
— (a2 +ap) (VwS)(EEn(Y). (4.5)

Since, we have
(VwR) (€:,Y.§,€) = g((VwR) (e, Y)E,§)

9(VwR(e;,Y)E,§) — g(R(Vwe;, Y)E, §)

at any point p 6 M We know that {e;} is an orthonormal basis, therefore Vyye; =

0 at p. Using (3.4) and . in ., we have

(VwR) (e:,Y,&,8) = g(VwR (e;,Y)E,6) — g(R (e, Y)VwE, ). (4.7)
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By using the property of curvature tensor

9(R(ei,Y)§,€) = —g(R(&,§)Y, ei) =0,

we have
9(VwR(e;, Y)E,€) + g(R(ei, Y)E, V) = 0. (4.8)

By (4.7) and (4.8), we get
We know that

(VwS)(Y,§) = Vw S(Y,§) = S(VwY,§) — S(Y, V). (4.10)

Using (3.12)), (3.16) in (4.10]), we get

(VwS)(Y,§) = Vw(=(m—=1n))+(m-1n(VwY) -5V, eeW)
= —(m—1eg(Y,epW) — eS(Y, W)
—(m —1)g(Y,oW) —eS(Y, oW). (4.11)
By , we have

(VwS)(&€) = 0. (4.12)

Using , , in , we have

0 = (ag+(m—1)ay +az+ag) (—(m —1)g(Y,oW) —eS(Y, oW))

+e(ag + (m — 1)a7) (Vwr)n(Y). (4.13)

Replacing Y by Y in (4.13) and using (3.2)), (3.15)), we get
SY,W)=—e(m—1)g(Y,W), ag+ (m—1)a; +az + ag # 0.

If ag+ (m — 1)as + a2 + ag = 0 and aq + (m — 1)ay # 0, then by (4.5), we have
Vwr = 0, that is, » = constant. O

Remark 4.3. The first condition of Theorem is satisfied if T €{R,C., V, Ps, P,
MWE WL, W Wa, oo, Wes, Wyt and second condition is satisfied if T € {L, Wr}.
If T € {C, Wy, Ws} none of the condition is satisfied.

Theorem 4.4. An FEinstein manifold is globally o-T -symmetric iff it is globally
w-symmetric and ag # 0.

Proof. By using (2.1) and (4.1, we have the result. O

Remark 4.5. For all known curvature tensors ag # 0.
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5 3-Dimensional Locally ¢-7-Symmetric
(¢)-Para Sasakian Manifold

It is well known that in a 3-dimensional semi-Riemannian manifold the con-
formal curvature tensor C vanishes, therefore

RX,Y)VZ = gV,2)QX —g(X,2)QY + S(Y,Z2)X — S(X,2)Y
~S(6(Y.2)X — g(X, 2)Y). (5.1)

Take Z = ¢ in (51) and using 3-4), B-7), (B12), we get

(%r + 1) (V)X —n(X)Y) = (n(Y)QX — n(X)QY). (5:2)

Putting Y = ¢ in (5.2)) and using (3.13)), we get
r r
OX = (5 +e) X - (5 +32) n(X)¢, (5.3)

Then by (5.3)), we easily obtain
r er
S(X,Y) = (5 +2) 9(X.¥) = (5 +3) n(X)n(r) (5.4)
and

RX,V)Z = (5+2) V. 2)X - ¢(X,2)Y)

+ (% + 3) ((X)n(2)Y = n(Y)n(Z)X)

+ (5 +3¢) (90X, 2V - gV, Zm(X)e). (5.5)

Lemma 5.1. A 3-dimensional (¢)-para Sasakian manifold is a manifold of con-
stant curvature —e if and only if r = —6¢.

Corollary 5.2. Let M be a 3-dimensional (¢)-para Sasakian manifold. Then
r
T(X,Y)Z = ((5 + 5) (ap + a1 + as) + azr + an) gV, 2)X

— ((g —|—5> (ag — ag — as) +Cl77‘+<5a0> 9(X, 2)Y

+¢) (a3 + as) (X, Y)Z (%r +3) agn(X)n(Y)Z
+3) (ao+a1) n(¥)n(2)X + (5 +3) (a0—az) n(X)n(2)Y
3¢) (a0 — as) g(X, Z)n(¥ )& — (5 +3¢) asg (X, Y )n(2)¢

3¢) (a0 + as) g(Y, Z)n(X ). (5.6)

+ \ +
N 7 N 7N N
DS RI o| Q1
+  +
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Theorem 5.3. Let M be a 3-dimensional (¢)-para Sasakian manifold. M is locally
o-T -symmetric manifold if and only if the scalar curvature r is constant.

Proof. Let M be a 3-dimensional (¢)-para Sasakian manifold. Differentiate covari-

antly on both sides of (5.6), we have

VWT‘
2

(VwT)(X,Y)Z =

VWT
2
VWT

A

VWT
2

(a() + a1 +aq + 2a7) g(Y, Z)X
(ag —ag — a5 +2a7) g(X, 2)Y
(az +ag) 9(X,Y)Z

agn(X)n(Y)Z

- (% + 3) ag (Vwn) (X)n(Y)Z

(243

2

VwT
2

(L4

2

(5
Vwr

M

er
—+3
+(5+

er
+(5+3
VWT

2

2

-G

f—|—35

N N N

) asn(X) (Twn) () Z

(a0 +a1) n(Y)n(Z) X

) (a0 +ar) (Vwn) (V)n(2) X

) (a0 +a1) n(¥) (Vwn) (2)X
(a0 — a2) n(X)n(2)Y

) (a0 = a2) (Vwn) (X)n(2)Y

) (a0 = az) n(X) (Twn) (2)Y
(a0 —as) g(X, Z)n(Y)¢

(a0 — as) 9(X, Z) (Vwn) (Y)¢
(a0 — a5) g(X, Z)n(Y ) Vw¢
(a0 + ax) (Y, Z) (V) (X)€

5 +3¢) (a0 +aq) g(Y, Z)n(X)Vw§

_ g n 36) asg(X,Y)n(Z)Vwé

VW’I’

2
VWT

(a0 +a4) g(Y, Z)n(X)¢

- acg (X, Y)n(Z)¢

2

— (5 +3¢) asg(X.Y) (Vwm) (2)¢. (5.7)
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Applying ¢? on both sides of (5.7)), we have

PVWTXY)Z = Y27 (ag 4 oy + s+ 2a7) oY, 2)(X ~ n(X)E)
VYT (ay 4 — a5 + 2a1) (X, Z)(Y — n(Y)€)
+ 20 (g + ag) g (X, Y)(Z — 0(2)6)
YU (XD (Y)(Z = 0(2)€)

— (5 +3) as (Vwn) (X)n(¥)(Z = n(2)¢)
— (5 +3) an(xX) (Twn) (V)(Z = n(2)¢)
YT 4y 4 ) (Y In(Z) (X~ n(X)E)

— (5 +3) (a0 +a) (Vwn) (Vn(2)(X = n(X)¢)

- (% + 3) (a0 +a1) n(Y) (Vwn) (£)(X = (X))

- (% + 35) (a0 + aa) g(Y, Z)n(X)* V€. (5.8)

Using the fact that X, Y, Z are horizontal vector fields in (5.8)), we get

\Y
AV (X, Y)Z = ;” (a0 + a1 + as + 2a7) g(Y, Z) X

VwT‘
2
VW’I”
2

(ap — ag — a5 + 2a7) 9(X, 2)Y

_|_

(as +ag) g(X,Y)Z. (5.9)

If one of them ag + a1 + a4 + 2a7, ag — as — a5 + 2a7 and a3 + ag is not equal to
zero, then by using (4.1)), we get the result. O

Remark 5.4. One of them ag + a1 + a4 + 2a7, ag — as — a5 + 2a7 and az + ag is
not equal to zero, for all the known curvature tensors.
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6 n-Parallel Ricci Tensor

Definition 6.1. The Ricci tensor S of an (¢)-para-Sasakian manifold is called
n-parallel Ricci tensor if it satisfies

(VxS) (Y, 9Z) =0
for all vector fields X, Y and Z.

Theorem 6.2. In a 3-dimensional (€)-para Sasakian manifold with n-parallel
Ricci tensor, the scalar curvature r is constant.

Proof. By equation (5.4)), we get

S(eY.92) = (5 +¢) (9(Y, 2) = en(¥)(2)).. (6.1)
Differentiating covariantly with respect to X, we get
(Vx8) (o, 02) = VX (g(v,2) —en(¥n(2)) — (5 +) (Vem) (V)n(2)

+n(Y) (Vxn) (2)).
Suppose the Ricci tensor is n-parallel. Then from the above, we obtain

VXT
2

(9(Y,2) = en(¥)n(2)) = (5 + <) (Txm) (V)n(2) +n(Y) (Vxn) (2)).
(6.2)
Let {e;}, i = 1,2,3 be the orthonormal basis of tangent space at each point of the
manifold. Taking Y =e; = Z in , we have V xr = 0. Hence scalar curvature
7 is constant. O

From Theorems [5.3] and we can state the following:

Corollary 6.3. A 3-dimensional (€)-para Sasakian manifold with n-parallel Ricci
tensor is locally ©-T -symmetric.

7 Example of a Locally ¢-7-Symmetric (¢)-Para
Sasakian Manifold of Dimension 3

Consider the 3-dimensional manifold M = {(x, y,z) € R3, 2 # 0}, where
(7,9, ) are the standard coordinates of R3. The vector fields

0
€1 =2, €y = 22—, €3 = —

oz ay "0z
are linearly independent at each point of M. Let g be the semi-Riemannian metric
defined by
gler,e3) =0, g(er,e2) =0, g(ea, e3) =0,
gler,er) =1, gles, e2) =1, gles, e3) =¢,
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where € = £1. Let ) be the 1-form defined by 1(Z) = €g(Z, e3) for any Z € TM.
Let ¢ be the (1,1)-tensor field defined by

pe; = gey, peg = geg, pes = 0.
Using the linearity of ¢ and g, we have
O’ X = X —n(X)es,
nles) =1,
9(pX, 9Y) = g(X,Y) — en(X)n(Y),
9(X, e3) = en(X),

(Vx@)Y = —g(pX,¢Y)es — en(Y)p? X,

for any X,Y € TM. Then for £ = e3, the structure (p,&,7,g,e) defines an (¢)-
para Sasakian structure on M. Let V be the Levi-Civita connection with respect
to the metric g. Then we have

le1, e2] =0, [e1,e3] = e1, [e1, e2] = ea.
The Koszul’s formula for the Riemannian connection V of the metric g is given by

29(VxY,2) = Xg(Y,Z)+Yg(Z,X)—-Zg(X.,Y)
—g(X, [Y, Z]) - g(Y, [Xa Z]) + g(Z, [X7 YD

By using Koszul’s formula, we have

Ve, e1 = —ces, Ve,e1 =0, Ve,e1 = —eq,
Ve e2 =0, Veep =—ce3, Ve = —ey,
Ve €3 = eq, Ve, €3 = €2, Veses = 0.

From the above results, it is easy to check that equations (3.1)), (3.2, (3.3, (3.4),
(3.5) and (3.6 hold. Hence the manifold is an (g)-para Sasakian manifold.

Using the above results, it is easy to find out the following results

R(e1,e2)e; = eea, R(ez,e3)er =0,  R(ey,e3)e; = 2ees,
R(e1,ez)ez = —cer, R(ez,e3)es =2ece3,  R(ey,e3)es =0,
R(ey,e2)es =0, R(es,e3)es =0, R(e1,e3)es = 0.
Then
S(er,e1) =—(e+2), S(ea,ea)=—(e+2), S(es,e3)=0,
and

r=-2(+2).

Hence the scalar curvature r is constant. From Theorem M 1is a 3-dimensional
locally @-T-symmetric (¢) -para Sasakian manifold.
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