Thai Journal of Mathematics Volume 17 (2019) Number 2 : 343-357
http://thaijmath.in.cmu.ac.th

On φ - \mathcal{T}-Symmetric (ε)-Para Sasakian Manifolds

Punam Gupta
Department of Mathematics \& Statistics, School of Mathematical
\& Physical Sciences, Dr. Harisingh Gour University
Sagar-470 003, M.P., India
e-mail : punam_2101@yahoo.co.in

Abstract

The purpose of the present paper is to study the globally and locally φ - \mathcal{T}-symmetric (ε)-para Sasakian manifold. The globally φ - \mathcal{T}-symmetric (ε)-para Sasakian manifold is either Einstein manifold or has a constant scalar curvature. The necessary and sufficient condition for Einstein manifold to be globally $\varphi-\mathcal{T}$ -symmetric is given. A 3-dimensional (ε) -para Sasakian manifold is locally φ -\mathcal{T}-symmetric if and only if the scalar curvature r is constant. A 3-dimensional (ε)-para Sasakian manifold with η-parallel Ricci tensor is locally φ - \mathcal{T}-symmetric. In the last, an example of 3 -dimensional locally φ - \mathcal{T}-symmetric (ε)-para Sasakian manifold is given.

Keywords : \mathcal{T}-curvature tensor; (ε)-para Sasakian manifold; globally and locally φ - \mathcal{T}-symmetric manifold; η-parallel Ricci tensor.
2010 Mathematics Subject Classification : 53B30; 53C25; 53C50.

1 Introduction

Let M be an m-dimensional semi-Riemannian manifold and ∇ the Levi-Civita connection on M. A semi-Riemannian manifold M is said to recurrent [1] if the Riemann curvature tensor R satisfies the relation

$$
\left(\nabla_{U} R\right)(X, Y, Z, V)=\alpha(U) R(X, Y, Z, V), \quad X, Y, Z, V, U \in T M
$$

where α is 1 -form. If $\alpha=0$, then M is called symmetric in the sense of Cartan [2].

In 1977, Takahashi 3 introduced the notion of locally φ-symmetry on a Sasakian manifold, which is weaker than the local symmetry. A Sasakian manifold is said to have locally φ-symmetry if it satisfies

$$
\varphi^{2}\left(\left(\nabla_{U} R\right)(X, Y) Z\right)=0
$$

where X, Y, Z, U are horizontal vector fields. If X, Y, Z, U are arbitrary vector fields, then it is known as globally φ-symmetric Sasakian manifold. A φ-symmetric space condition is weak condition for a Sasakian manifold in comparision to the symmetric space condition. Local symmetry is a very strong condition for the class of K-contact or Sasakian manifolds. Indeed, such spaces must have constant curvature equal to 1 (4,5$)$. On the other hand, local symmetry is also a very strong condition for the class of (ε)-para Sasakian manifold. Such spaces must have constant curvature equal to $-\varepsilon$ [6]. In 2010, Tripathi et al. 6] proved that the condition of semi-symmetry $(R \cdot R=0)$, symmetry and have a constant curvature $-\varepsilon$ is equivalent for (ε)-para Sasakian manifold.

Three-dimensional locally φ-symmetric Sasakian manifold is studied by Watanabe [7]. Many authors like De [8], De et al. [9], De and Pathak [10], Shaikh and De 11] have extended this notion to 3-dimensional Kenmotsu, trans-Sasakian and LP-Sasakian manifolds. Yildiz et al. [12] studied the case for 3 -dimensional α Sasakian manifolds and gave the example for locally φ-symmetric 3 -dimensional α-Sasakian manifolds. De and De 13 studied the φ-concircularly symmetric Kenmotsu manifold and gave the example of such manifold in dimension 3. De et al. [14] studied the 3 -dimensional globally and locallly φ-quasiconformally symmetric Sasakian manifolds and also gave the example.

In the present work, globally and locally φ - \mathcal{T}-symmetric (ε)-para Sasakian manifold are studied. The paper is organized as follows: Section 2 and 3 is devoted to the study of \mathcal{T}-curvature tensor and (ε)-para Sasakian manifold, respectively. In section 4 , the definition of globally and locally φ - \mathcal{T}-symmetric manifold are given. Globally φ - \mathcal{T}-symmetric (ε)-para Sasakian manifold is either Einstein or has a constant scalar curvature under some condition. The necessary and sufficient condition for locally φ - \mathcal{T}-symmetric 3 -dimensional (ε)-para Sasakian manifold to be locally φ-symmetric is given. In section 5 , the definition of η-parallel (ε)-para Sasakian manifold is given. A 3 -dimensional (ε)-para Sasakian manifold with η parallel Ricci tensor is locally φ - \mathcal{T}-symmetric. In the last section, the example of a locally φ - \mathcal{T}-symmetric in 3 -dimensional (ε)-para Sasakian manifold is given.

$2 \mathcal{T}$-Curvature Tensor

The definition of \mathcal{T}-curvature tensor [15] is given by
Definition 2.1. In an m-dimensional semi-Riemannian manifold (M, g), the \mathcal{T} -
curvature tensor of type $(1,3)$ defined by

$$
\begin{align*}
\mathcal{T}(X, Y) Z= & a_{0} R(X, Y) Z \\
& +a_{1} S(Y, Z) X+a_{2} S(X, Z) Y+a_{3} S(X, Y) Z \\
& +a_{4} g(Y, Z) Q X+a_{5} g(X, Z) Q Y+a_{6} g(X, Y) Q Z \\
& +a_{7} r(g(Y, Z) X-g(X, Z) Y) \tag{2.1}
\end{align*}
$$

for all $X, Y, Z \in T M$, where a_{0}, \ldots, a_{7} are some constants; and R, S, Q and r are the curvature tensor, the Ricci tensor, the Ricci operator of type $(1,1)$ and the scalar curvature respectively.

In particular, the \mathcal{T}-curvature tensor is reduced to

1. the Riemann curvature tensor R if

$$
a_{0}=1, \quad a_{1}=a_{2}=a_{3}=a_{4}=a_{5}=a_{6}=a_{7}=0
$$

2. the quasiconformal curvature tensor \mathcal{C}_{*} [16] if

$$
a_{1}=-a_{2}=a_{4}=-a_{5}, \quad a_{3}=a_{6}=0, \quad a_{7}=-\frac{1}{m}\left(\frac{a_{0}}{m-1}+2 a_{1}\right)
$$

3. the conformal curvature tensor \mathcal{C} [17, p. 90] if

$$
\begin{gathered}
a_{0}=1, \quad a_{1}=-a_{2}=a_{4}=-a_{5}=-\frac{1}{m-2}, \quad a_{3}=a_{6}=0 \\
a_{7}=\frac{1}{(m-1)(m-2)}
\end{gathered}
$$

4. the conharmonic curvature tensor \mathcal{L} [18] if

$$
a_{0}=1, \quad a_{1}=-a_{2}=a_{4}=-a_{5}=-\frac{1}{m-2}, \quad a_{3}=a_{6}=0, \quad a_{7}=0
$$

5. the concircular curvature tensor $\mathcal{V}([19, ~ 20, ~ p . ~ 87]) ~ i f ~$

$$
a_{0}=1, \quad a_{1}=a_{2}=a_{3}=a_{4}=a_{5}=a_{6}=0, \quad a_{7}=-\frac{1}{m(m-1)}
$$

6. the pseudo-projective curvature tensor \mathcal{P}_{*} [21] if

$$
a_{1}=-a_{2}, \quad a_{3}=a_{4}=a_{5}=a_{6}=0, \quad a_{7}=-\frac{1}{m}\left(\frac{a_{0}}{m-1}+a_{1}\right)
$$

7. the projective curvature tensor \mathcal{P} [20, p. 84] if

$$
a_{0}=1, \quad a_{1}=-a_{2}=-\frac{1}{(m-1)}, \quad a_{3}=a_{4}=a_{5}=a_{6}=a_{7}=0
$$

8. the M-projective curvature tensor [22] if

$$
a_{0}=1, \quad a_{1}=-a_{2}=a_{4}=-a_{5}=-\frac{1}{2(m-1)}, \quad a_{3}=a_{6}=a_{7}=0,
$$

9. the W_{0}-curvature tensor [22, eq (1.4)] if

$$
a_{0}=1, \quad a_{1}=-a_{5}=-\frac{1}{(m-1)}, \quad a_{2}=a_{3}=a_{4}=a_{6}=a_{7}=0,
$$

10. the W_{0}^{*}-curvature tensor [22, eq (1.4)] if

$$
a_{0}=1, \quad a_{1}=-a_{5}=\frac{1}{(m-1)}, \quad a_{2}=a_{3}=a_{4}=a_{6}=a_{7}=0,
$$

11. the W_{1}-curvature tensor [22] if

$$
a_{0}=1, \quad a_{1}=-a_{2}=\frac{1}{(m-1)}, \quad a_{3}=a_{4}=a_{5}=a_{6}=a_{7}=0
$$

12. the W_{1}^{*}-curvature tensor [22] if

$$
a_{0}=1, \quad a_{1}=-a_{2}=-\frac{1}{(m-1)}, \quad a_{3}=a_{4}=a_{5}=a_{6}=a_{7}=0,
$$

13. the W_{2}-curvature tensor [23] if

$$
a_{0}=1, \quad a_{4}=-a_{5}=-\frac{1}{(m-1)}, \quad a_{1}=a_{2}=a_{3}=a_{6}=a_{7}=0,
$$

14. the W_{3}-curvature tensor [22] if

$$
a_{0}=1, \quad a_{2}=-a_{4}=-\frac{1}{(m-1)}, \quad a_{1}=a_{3}=a_{5}=a_{6}=a_{7}=0,
$$

15. the W_{4}-curvature tensor [22] if

$$
a_{0}=1, \quad a_{5}=-a_{6}=\frac{1}{(m-1)}, \quad a_{1}=a_{2}=a_{3}=a_{4}=a_{7}=0,
$$

16. the W_{5}-curvature tensor [24] if

$$
a_{0}=1, \quad a_{2}=-a_{5}=-\frac{1}{(m-1)}, \quad a_{1}=a_{3}=a_{4}=a_{6}=a_{7}=0,
$$

17. the W_{6}-curvature tensor [24] if

$$
a_{0}=1, \quad a_{1}=-a_{6}=-\frac{1}{(m-1)}, \quad a_{2}=a_{3}=a_{4}=a_{5}=a_{7}=0,
$$

18. the W_{7}-curvature tensor [24] if

$$
a_{0}=1, \quad a_{1}=-a_{4}=-\frac{1}{(m-1)}, \quad a_{2}=a_{3}=a_{5}=a_{6}=a_{7}=0
$$

19. the W_{8}-curvature tensor [24] if

$$
a_{0}=1, \quad a_{1}=-a_{3}=-\frac{1}{(m-1)}, \quad a_{2}=a_{4}=a_{5}=a_{6}=a_{7}=0
$$

20. the W_{9}-curvature tensor [24] if

$$
a_{0}=1, \quad a_{3}=-a_{4}=\frac{1}{(m-1)}, \quad a_{1}=a_{2}=a_{5}=a_{6}=a_{7}=0
$$

3 (ε)-Para Sasakian Manifold

A manifold M is said to admit an almost paracontact structure if it admit a tensor field φ of type $(1,1)$, a vector field ξ and a 1-form η satisfying

$$
\begin{equation*}
\varphi^{2}=I-\eta \otimes \xi, \quad \eta(\xi)=1, \quad \varphi \xi=0, \quad \eta \circ \varphi=0 \tag{3.1}
\end{equation*}
$$

Let g be a semi-Riemannian metric with index $(g)=\nu$ such that

$$
\begin{equation*}
g(\varphi X, \varphi Y)=g(X, Y)-\varepsilon \eta(X) \eta(Y), \quad X, Y \in T M \tag{3.2}
\end{equation*}
$$

where $\varepsilon= \pm 1$. Then M is called an (ε)-almost paracontact metric manifold equipped with an (ε)-almost paracontact metric structure $(\varphi, \xi, \eta, g, \varepsilon)$. In particular, if index $(g)=1$, then an (ε)-almost paracontact metric manifold is said to be a Lorentzian almost paracontact manifold. In particular, if the metric g is positive definite, then an (ε)-almost paracontact metric manifold is the usual almost paracontact metric manifold [25].

The equation (3.2) is equivalent to

$$
\begin{equation*}
g(X, \varphi Y)=g(\varphi X, Y) \tag{3.3}
\end{equation*}
$$

along with

$$
\begin{equation*}
g(X, \xi)=\varepsilon \eta(X) \tag{3.4}
\end{equation*}
$$

From (3.1) and (3.4) it follows that

$$
\begin{equation*}
g(\xi, \xi)=\varepsilon \tag{3.5}
\end{equation*}
$$

Definition 3.1. An (ε)-almost paracontact metric structure is called an (ε)-para Sasakian structure if

$$
\begin{equation*}
\left(\nabla_{X} \varphi\right) Y=-g(\varphi X, \varphi Y) \xi-\varepsilon \eta(Y) \varphi^{2} X, \quad X, Y \in T M \tag{3.6}
\end{equation*}
$$

where ∇ is the Levi-Civita connection with respect to g. A manifold endowed with an (ε)-para Sasakian structure is called an (ε)-para Sasakian manifold [6].

For $\varepsilon=1$ and g Riemannian, M is the usual para Sasakian manifold [26, 27. For $\varepsilon=-1, g$ Lorentzian and ξ replaced by $-\xi, M$ becomes a Lorentzian para Sasakian manifold [28].

For (ε)-para Sasakian manifold, it is easy to prove that

$$
\begin{gather*}
R(X, Y) \xi=\eta(X) Y-\eta(Y) X, \tag{3.7}\\
R(\xi, X) Y=\eta(Y) X-\varepsilon g(X, Y) \xi, \tag{3.8}\\
R(\xi, X) \xi=X-\eta(X) \xi, \tag{3.9}\\
R(X, Y, Z, \xi)=\eta(Y) g(X, Z)-\eta(X) g(Y, Z), \tag{3.10}\\
\eta(R(X, Y) Z)=\varepsilon(\eta(Y) g(X, Z)-\eta(X) g(Y, Z)), \tag{3.11}\\
S(X, \xi)=-(m-1) \eta(X), \tag{3.12}\\
Q \xi=-\varepsilon(m-1) \xi, \tag{3.13}\\
S(\xi, \xi)=-(m-1), \tag{3.14}\\
S(\varphi X, \varphi Y)=S(Y, Z)+(m-1) \eta(X) \eta(Y), \tag{3.15}\\
\nabla_{X} \xi=\varepsilon \varphi X . \tag{3.16}
\end{gather*}
$$

For detail study of (ε)-para Sasakian manifold, see [6].

$4 \quad \varphi$ - \mathcal{T}-Symmetric (ε)-Para Sasakian Manifold

We begin with the following definition.
Definition 4.1. An (ε)-para Sasakian manifold is said to be locally φ - \mathcal{T}-symmetric manifold if

$$
\begin{equation*}
\varphi^{2}\left(\left(\nabla_{W} \mathcal{T}\right)(X, Y) Z\right)=0, \tag{4.1}
\end{equation*}
$$

for arbitrary vector fields X, Y, Z, W orthogonal to ξ. If X, Y, Z, W are arbitrary vector fields, then it is known as globally φ - \mathcal{T}-symmetric manifold.

This notion of locally φ-symmetric was introduced by Takahashi for Sasakian manifolds [3].

Theorem 4.2. Let M be a m-dimensional globally φ - \mathcal{T}-symmetric (ε)-para Sasakian manifold. Then
(i) M is Einstein manifold if $a_{0}+(m-1) a_{1}+a_{2}+a_{6} \neq 0$.
(ii) M has constant scalar curvature if $a_{0}+(m-1) a_{1}+a_{2}+a_{6}=0$ and $a_{4}+$ $(m-1) a_{7} \neq 0$.

Proof. Let M be a m-dimensional globally φ - \mathcal{T}-symmetric (ε)-para Sasakian manifold. Then by using (3.1) and 4.1), we have

$$
\left(\nabla_{W} \mathcal{T}\right)(X, Y) Z-\eta\left(\left(\nabla_{W} \mathcal{T}\right)(X, Y) Z\right) \xi=0,
$$

from which it follows that

$$
\begin{equation*}
g\left(\left(\nabla_{W} \mathcal{T}\right)(X, Y) Z, U\right)-\eta\left(\left(\nabla_{W} \mathcal{T}\right)(X, Y) Z\right) g(\xi, U)=0 \tag{4.2}
\end{equation*}
$$

Using (2.1) in 4.2), we obtain

$$
\begin{aligned}
& 0=a_{0}\left(\nabla_{W} R\right)(X, Y, Z, U)+a_{1}\left(\nabla_{W} S\right)(Y, Z) g(X, U)+a_{2}\left(\nabla_{W} S\right)(X, Z) g(Y, U) \\
& +a_{3}\left(\nabla_{W} S\right)(X, Y) g(Z, U)+a_{4}\left(\nabla_{W} S\right)(X, U) g(Y, Z)+a_{5}\left(\nabla_{W} S\right)(Y, U) g(X, Z) \\
& +a_{6}\left(\nabla_{W} S\right)(Z, U) g(X, Y)+a_{7}\left(\nabla_{W} r\right)(g(Y, Z) g(X, U)-g(X, Z) g(Y, U)) \\
& +\eta(U)\left(a_{0}\left(\nabla_{W} R\right)(X, Y, Z, \xi)+a_{1}\left(\nabla_{W} S\right)(Y, Z) g(X, \xi)+a_{2}\left(\nabla_{W} S\right)(X, Z) g(Y, \xi)\right. \\
& +a_{3}\left(\nabla_{W} S\right)(X, Y) g(Z, \xi)+a_{4} g(Y, Z)\left(\nabla_{W} S\right)(X, \xi)+a_{5} g(X, Z)\left(\nabla_{W} S\right)(Y, \xi) \\
& \left.+a_{6} g(X, Y)\left(\nabla_{W} S\right)(Z, \xi)+a_{7}\left(\nabla_{W} r\right)(g(Y, Z) g(X, \xi)-g(X, Z) g(Y, \xi))\right) .
\end{aligned}
$$

Let $\left\{e_{i}\right\}, i=1, \ldots, m$ be an orthonormal basis of tangent space at any point of the manifold. Taking $X=U=e_{i}$ in 4.3), we get

$$
\begin{align*}
0= & \left(a_{0}+(m-1) a_{1}+a_{2}+a_{3}+a_{5}+a_{6}\right)\left(\nabla_{W} S\right)(Y, Z) \\
& -a_{0} \varepsilon \sum_{i=1}^{m}\left(\nabla_{W} R\right)\left(e_{i}, Y, Z, \xi\right) g\left(e_{i}, \xi\right) \\
& +\left(a_{4}+(m-1) a_{7}\right)\left(\nabla_{W} r\right) g(Y, Z)+a_{7}\left(\nabla_{W} r\right)(g(Y, Z)-\varepsilon \eta(Y) \eta(Z)) \\
& -\left(a_{2}+a_{6}\right)\left(\nabla_{W} S\right)(Z, \xi) \eta(Y)-\left(a_{3}+a_{5}\right)\left(\nabla_{W} S\right)(Y, \xi) \eta(Z) . \tag{4.4}
\end{align*}
$$

Putting $Z=\xi$ in (4.4), we have

$$
\begin{align*}
0= & \left(a_{0}+(m-1) a_{1}+a_{2}+a_{6}\right)\left(\nabla_{W} S\right)(Y, \xi) \\
& -a_{0} \varepsilon \sum_{i=1}^{m}\left(\nabla_{W} R\right)\left(e_{i}, Y, \xi, \xi\right) g\left(e_{i}, \xi\right) \\
& +\left(a_{4}+(m-1) a_{7}\right)\left(\nabla_{W} r\right) g(Y, \xi) \\
& -\left(a_{2}+a_{6}\right)\left(\nabla_{W} S\right)(\xi, \xi) \eta(Y) . \tag{4.5}
\end{align*}
$$

Since, we have

$$
\begin{align*}
\left(\nabla_{W} R\right)\left(e_{i}, Y, \xi, \xi\right)= & g\left(\left(\nabla_{W} R\right)\left(e_{i}, Y\right) \xi, \xi\right) \\
= & g\left(\nabla_{W} R\left(e_{i}, Y\right) \xi, \xi\right)-g\left(R\left(\nabla_{W} e_{i}, Y\right) \xi, \xi\right) \\
& -g\left(R\left(e_{i}, \nabla_{W} Y\right) \xi, \xi\right)-g\left(R\left(e_{i}, Y\right) \nabla_{W} \xi, \xi\right) \tag{4.6}
\end{align*}
$$

at any point $p \in M$. We know that $\left\{e_{i}\right\}$ is an orthonormal basis, therefore $\nabla_{W} e_{i}=$ 0 at p. Using (3.4) and (3.7) in (4.6), we have

$$
\begin{equation*}
\left(\nabla_{W} R\right)\left(e_{i}, Y, \xi, \xi\right)=g\left(\nabla_{W} R\left(e_{i}, Y\right) \xi, \xi\right)-g\left(R\left(e_{i}, Y\right) \nabla_{W} \xi, \xi\right) . \tag{4.7}
\end{equation*}
$$

By using the property of curvature tensor

$$
g\left(R\left(e_{i}, Y\right) \xi, \xi\right)=-g\left(R(\xi, \xi) Y, e_{i}\right)=0
$$

we have

$$
\begin{equation*}
g\left(\nabla_{W} R\left(e_{i}, Y\right) \xi, \xi\right)+g\left(R\left(e_{i}, Y\right) \xi, \nabla_{W} \xi\right)=0 \tag{4.8}
\end{equation*}
$$

By (4.7) and (4.8), we get

$$
\begin{equation*}
\left(\nabla_{W} R\right)\left(e_{i}, Y, \xi, \xi\right)=0 \tag{4.9}
\end{equation*}
$$

We know that

$$
\begin{equation*}
\left(\nabla_{W} S\right)(Y, \xi)=\nabla_{W} S(Y, \xi)-S\left(\nabla_{W} Y, \xi\right)-S\left(Y, \nabla_{W} \xi\right) \tag{4.10}
\end{equation*}
$$

Using (3.12), (3.16) in 4.10), we get

$$
\begin{align*}
\left(\nabla_{W} S\right)(Y, \xi) & =\nabla_{W}(-(m-1) \eta(Y))+(m-1) \eta\left(\nabla_{W} Y\right)-S(Y, \varepsilon \varphi W) \\
& =-(m-1) \varepsilon g(Y, \varepsilon \varphi W)-\varepsilon S(Y, \varphi W) \\
& =-(m-1) g(Y, \varphi W)-\varepsilon S(Y, \varphi W) . \tag{4.11}
\end{align*}
$$

By 4.11, we have

$$
\begin{equation*}
\left(\nabla_{W} S\right)(\xi, \xi)=0 \tag{4.12}
\end{equation*}
$$

Using (4.9), (4.11), (4.12) in 4.5), we have

$$
\begin{align*}
0= & \left(a_{0}+(m-1) a_{1}+a_{2}+a_{6}\right)(-(m-1) g(Y, \varphi W)-\varepsilon S(Y, \varphi W)) \\
& +\varepsilon\left(a_{4}+(m-1) a_{7}\right)\left(\nabla_{W} r\right) \eta(Y) . \tag{4.13}
\end{align*}
$$

Replacing Y by φY in (4.13) and using (3.2), (3.15), we get

$$
S(Y, W)=-\varepsilon(m-1) g(Y, W), \quad a_{0}+(m-1) a_{1}+a_{2}+a_{6} \neq 0 .
$$

If $a_{0}+(m-1) a_{1}+a_{2}+a_{6}=0$ and $a_{4}+(m-1) a_{7} \neq 0$, then by 4.5), we have $\nabla_{W} r=0$, that is, $r=$ constant.

Remark 4.3. The first condition of Theorem 4.2 is satisfied if $\mathcal{T} \in\left\{R, \mathcal{C}_{*}, \mathcal{V}, \mathcal{P}_{*}, \mathcal{P}\right.$, $\left.\mathcal{M}, \mathcal{W}_{0}^{*}, \mathcal{W}_{1}, \mathcal{W}_{1}^{*}, \mathcal{W}_{2}, \ldots, \mathcal{W}_{6}, \mathcal{W}_{9}\right\}$ and second condition is satisfied if $\mathcal{T} \in\left\{\mathcal{L}, \mathcal{W}_{7}\right\}$. If $\mathcal{T} \in\left\{\mathcal{C}, \mathcal{W}_{0}, \mathcal{W}_{8}\right\}$ none of the condition is satisfied.

Theorem 4.4. An Einstein manifold is globally φ - \mathcal{T}-symmetric iff it is globally φ-symmetric and $a_{0} \neq 0$.

Proof. By using (2.1) and 4.1), we have the result.
Remark 4.5. For all known curvature tensors $a_{0} \neq 0$.

5 3-Dimensional Locally φ - \mathcal{T}-Symmetric (ε)-Para Sasakian Manifold

It is well known that in a 3-dimensional semi-Riemannian manifold the conformal curvature tensor \mathcal{C} vanishes, therefore

$$
\begin{align*}
R(X, Y) Z= & g(Y, Z) Q X-g(X, Z) Q Y+S(Y, Z) X-S(X, Z) Y \\
& -\frac{r}{2}(g(Y, Z) X-g(X, Z) Y) \tag{5.1}
\end{align*}
$$

Take $Z=\xi$ in (5.1) and using (3.4), (3.7), (3.12), we get

$$
\begin{equation*}
\left(\frac{\varepsilon r}{2}+1\right)(\eta(Y) X-\eta(X) Y)=\varepsilon(\eta(Y) Q X-\eta(X) Q Y) \tag{5.2}
\end{equation*}
$$

Putting $Y=\xi$ in (5.2 and using (3.13), we get

$$
\begin{equation*}
Q X=\left(\frac{r}{2}+\varepsilon\right) X-\left(\frac{r}{2}+3 \varepsilon\right) \eta(X) \xi \tag{5.3}
\end{equation*}
$$

Then by (5.3), we easily obtain

$$
\begin{equation*}
S(X, Y)=\left(\frac{r}{2}+\varepsilon\right) g(X, Y)-\left(\frac{\varepsilon r}{2}+3\right) \eta(X) \eta(Y) \tag{5.4}
\end{equation*}
$$

and

$$
\begin{align*}
R(X, Y) Z= & \left(\frac{r}{2}+2 \varepsilon\right)(g(Y, Z) X-g(X, Z) Y) \\
& +\left(\frac{\varepsilon r}{2}+3\right)(\eta(X) \eta(Z) Y-\eta(Y) \eta(Z) X) \\
& +\left(\frac{r}{2}+3 \varepsilon\right)(g(X, Z) \eta(Y) \xi-g(Y, Z) \eta(X) \xi) \tag{5.5}
\end{align*}
$$

Lemma 5.1. A 3-dimensional (ε)-para Sasakian manifold is a manifold of constant curvature $-\varepsilon$ if and only if $r=-6 \varepsilon$.

Corollary 5.2. Let M be a 3-dimensional (ε)-para Sasakian manifold. Then

$$
\begin{align*}
\mathcal{T}(X, Y) Z= & \left(\left(\frac{r}{2}+\varepsilon\right)\left(a_{0}+a_{1}+a_{4}\right)+a_{7} r+\varepsilon a_{0}\right) g(Y, Z) X \\
& -\left(\left(\frac{r}{2}+\varepsilon\right)\left(a_{0}-a_{2}-a_{5}\right)+a_{7} r+\varepsilon a_{0}\right) g(X, Z) Y \\
& +\left(\frac{r}{2}+\varepsilon\right)\left(a_{3}+a_{6}\right) g(X, Y) Z-\left(\frac{\varepsilon r}{2}+3\right) a_{3} \eta(X) \eta(Y) Z \\
& -\left(\frac{\varepsilon r}{2}+3\right)\left(a_{0}+a_{1}\right) \eta(Y) \eta(Z) X+\left(\frac{\varepsilon r}{2}+3\right)\left(a_{0}-a_{2}\right) \eta(X) \eta(Z) Y \\
& +\left(\frac{r}{2}+3 \varepsilon\right)\left(a_{0}-a_{5}\right) g(X, Z) \eta(Y) \xi-\left(\frac{r}{2}+3 \varepsilon\right) a_{6} g(X, Y) \eta(Z) \xi \\
& -\left(\frac{r}{2}+3 \varepsilon\right)\left(a_{0}+a_{4}\right) g(Y, Z) \eta(X) \xi \tag{5.6}
\end{align*}
$$

Theorem 5.3. Let M be a 3-dimensional (ε)-para Sasakian manifold. M is locally $\varphi-\mathcal{T}$-symmetric manifold if and only if the scalar curvature r is constant.
Proof. Let M be a 3 -dimensional (ε)-para Sasakian manifold. Differentiate covariantly on both sides of (5.6), we have

$$
\begin{align*}
& \left(\nabla_{W} \mathcal{T}\right)(X, Y) Z=\frac{\nabla_{W} r}{2}\left(a_{0}+a_{1}+a_{4}+2 a_{7}\right) g(Y, Z) X \\
& -\frac{\nabla_{W} r}{2}\left(a_{0}-a_{2}-a_{5}+2 a_{7}\right) g(X, Z) Y \\
& +\frac{\nabla_{W} r}{2}\left(a_{3}+a_{6}\right) g(X, Y) Z \\
& -\frac{\nabla_{W} r}{2} a_{3} \eta(X) \eta(Y) Z \\
& -\left(\frac{\varepsilon r}{2}+3\right) a_{3}\left(\nabla_{W} \eta\right)(X) \eta(Y) Z \\
& -\left(\frac{\varepsilon r}{2}+3\right) a_{3} \eta(X)\left(\nabla_{W} \eta\right)(Y) Z \\
& -\frac{\nabla_{W} r}{2}\left(a_{0}+a_{1}\right) \eta(Y) \eta(Z) X \\
& -\left(\frac{\varepsilon r}{2}+3\right)\left(a_{0}+a_{1}\right)\left(\nabla_{W} \eta\right)(Y) \eta(Z) X \\
& -\left(\frac{\varepsilon r}{2}+3\right)\left(a_{0}+a_{1}\right) \eta(Y)\left(\nabla_{W} \eta\right)(Z) X \\
& +\frac{\nabla_{W} r}{2}\left(a_{0}-a_{2}\right) \eta(X) \eta(Z) Y \\
& +\left(\frac{\varepsilon r}{2}+3\right)\left(a_{0}-a_{2}\right)\left(\nabla_{W} \eta\right)(X) \eta(Z) Y \\
& +\left(\frac{\varepsilon r}{2}+3\right)\left(a_{0}-a_{2}\right) \eta(X)\left(\nabla_{W} \eta\right)(Z) Y \\
& +\frac{\nabla_{W} r}{2}\left(a_{0}-a_{5}\right) g(X, Z) \eta(Y) \xi \\
& +\left(\frac{r}{2}+3 \varepsilon\right)\left(a_{0}-a_{5}\right) g(X, Z)\left(\nabla_{W} \eta\right)(Y) \xi \\
& +\left(\frac{r}{2}+3 \varepsilon\right)\left(a_{0}-a_{5}\right) g(X, Z) \eta(Y) \nabla_{W} \xi \\
& -\left(\frac{r}{2}+3 \varepsilon\right)\left(a_{0}+a_{4}\right) g(Y, Z)\left(\nabla_{W} \eta\right)(X) \xi \\
& -\left(\frac{r}{2}+3 \varepsilon\right)\left(a_{0}+a_{4}\right) g(Y, Z) \eta(X) \nabla_{W} \xi \\
& -\left(\frac{r}{2}+3 \varepsilon\right) a_{6} g(X, Y) \eta(Z) \nabla_{W} \xi \\
& -\frac{\nabla_{W} r}{2}\left(a_{0}+a_{4}\right) g(Y, Z) \eta(X) \xi \\
& -\frac{\nabla_{W} r}{2} a_{6} g(X, Y) \eta(Z) \xi \\
& -\left(\frac{r}{2}+3 \varepsilon\right) a_{6} g(X, Y)\left(\nabla_{W} \eta\right)(Z) \xi . \tag{5.7}
\end{align*}
$$

Applying φ^{2} on both sides of 5.7, we have

$$
\begin{align*}
\varphi^{2}\left(\nabla_{W} \mathcal{T}\right)(X, Y) Z= & \frac{\nabla_{W} r}{2}\left(a_{0}+a_{1}+a_{4}+2 a_{7}\right) g(Y, Z)(X-\eta(X) \xi) \\
& -\frac{\nabla_{W} r}{2}\left(a_{0}-a_{2}-a_{5}+2 a_{7}\right) g(X, Z)(Y-\eta(Y) \xi) \\
& +\frac{\nabla_{W} r}{2}\left(a_{3}+a_{6}\right) g(X, Y)(Z-\eta(Z) \xi) \\
& -\frac{\nabla_{W} r}{2} a_{3} \eta(X) \eta(Y)(Z-\eta(Z) \xi) \\
& -\left(\frac{\varepsilon r}{2}+3\right) a_{3}\left(\nabla_{W} \eta\right)(X) \eta(Y)(Z-\eta(Z) \xi) \\
& -\left(\frac{\varepsilon r}{2}+3\right) a_{3} \eta(X)\left(\nabla_{W} \eta\right)(Y)(Z-\eta(Z) \xi) \\
& -\frac{\nabla_{W} r}{2}\left(a_{0}+a_{1}\right) \eta(Y) \eta(Z)(X-\eta(X) \xi) \\
& -\left(\frac{\varepsilon r}{2}+3\right)\left(a_{0}+a_{1}\right)\left(\nabla_{W} \eta\right)(Y) \eta(Z)(X-\eta(X) \xi) \\
& -\left(\frac{\varepsilon r}{2}+3\right)\left(a_{0}+a_{1}\right) \eta(Y)\left(\nabla_{W} \eta\right)(Z)(X-\eta(X) \xi) \\
& +\frac{\nabla_{W} r}{2}\left(a_{0}-a_{2}\right) \eta(X) \eta(Z)(Y-\eta(Y) \xi) \\
& +\left(\frac{\varepsilon r}{2}+3\right)\left(a_{0}-a_{2}\right)\left(\nabla_{W} \eta\right)(X) \eta(Z)(Y-\eta(Y) \xi) \\
& +\left(\frac{\varepsilon r}{2}+3\right)\left(a_{0}-a_{2}\right) \eta(X)\left(\nabla_{W} \eta\right)(Z)(Y-\eta(Y) \xi) \\
& +\left(\frac{r}{2}+3 \varepsilon\right)\left(a_{0}-a_{5}\right) g(X, Z) \eta(Y) \varphi^{2} \nabla_{W} \xi \\
& -\left(\frac{r}{2}+3 \varepsilon\right) a_{6} g(X, Y) \eta(Z) \varphi^{2} \nabla_{W} \xi \\
& -\left(\frac{r}{2}+3 \varepsilon\right)\left(a_{0}+a_{4}\right) g(Y, Z) \eta(X) \varphi^{2} \nabla_{W} \xi \tag{5.8}
\end{align*}
$$

Using the fact that X, Y, Z are horizontal vector fields in 5.8, we get

$$
\begin{align*}
\varphi^{2}\left(\nabla_{W} \mathcal{T}\right)(X, Y) Z= & \frac{\nabla_{W} r}{2}\left(a_{0}+a_{1}+a_{4}+2 a_{7}\right) g(Y, Z) X \\
& -\frac{\nabla_{W} r}{2}\left(a_{0}-a_{2}-a_{5}+2 a_{7}\right) g(X, Z) Y \\
& +\frac{\nabla_{W} r}{2}\left(a_{3}+a_{6}\right) g(X, Y) Z \tag{5.9}
\end{align*}
$$

If one of them $a_{0}+a_{1}+a_{4}+2 a_{7}, a_{0}-a_{2}-a_{5}+2 a_{7}$ and $a_{3}+a_{6}$ is not equal to zero, then by using (4.1), we get the result.

Remark 5.4. One of them $a_{0}+a_{1}+a_{4}+2 a_{7}, a_{0}-a_{2}-a_{5}+2 a_{7}$ and $a_{3}+a_{6}$ is not equal to zero, for all the known curvature tensors.

$6 \quad \eta$-Parallel Ricci Tensor

Definition 6.1. The Ricci tensor S of an (ε)-para-Sasakian manifold is called η-parallel Ricci tensor if it satisfies

$$
\left(\nabla_{X} S\right)(\varphi Y, \varphi Z)=0
$$

for all vector fields X, Y and Z.
Theorem 6.2. In a 3 -dimensional (ε)-para Sasakian manifold with η-parallel Ricci tensor, the scalar curvature r is constant.

Proof. By equation (5.4), we get

$$
\begin{equation*}
S(\varphi Y, \varphi Z)=\left(\frac{r}{2}+\varepsilon\right)(g(Y, Z)-\varepsilon \eta(Y) \eta(Z)) . \tag{6.1}
\end{equation*}
$$

Differentiating (6.1) covariantly with respect to X, we get

$$
\begin{aligned}
\left(\nabla_{X} S\right)(\varphi Y, \varphi Z)= & \frac{\nabla_{X} r}{2}(g(Y, Z)-\varepsilon \eta(Y) \eta(Z))-\varepsilon\left(\frac{r}{2}+\varepsilon\right)\left(\left(\nabla_{X} \eta\right)(Y) \eta(Z)\right. \\
& \left.+\eta(Y)\left(\nabla_{X} \eta\right)(Z)\right) .
\end{aligned}
$$

Suppose the Ricci tensor is η-parallel. Then from the above, we obtain

$$
\begin{equation*}
\frac{\nabla_{X} r}{2}(g(Y, Z)-\varepsilon \eta(Y) \eta(Z))=\varepsilon\left(\frac{r}{2}+\varepsilon\right)\left(\left(\nabla_{X} \eta\right)(Y) \eta(Z)+\eta(Y)\left(\nabla_{X} \eta\right)(Z)\right) . \tag{6.2}
\end{equation*}
$$

Let $\left\{e_{i}\right\}, i=1,2,3$ be the orthonormal basis of tangent space at each point of the manifold. Taking $Y=e_{i}=Z$ in (6.2), we have $\nabla_{X} r=0$. Hence scalar curvature r is constant.

From Theorems 5.3 and 6.2 , we can state the following:
Corollary 6.3. A 3 -dimensional (ε)-para Sasakian manifold with η-parallel Ricci tensor is locally φ - \mathcal{T}-symmetric.

7 Example of a Locally φ - \mathcal{T}-Symmetric (ε)-Para Sasakian Manifold of Dimension 3

Consider the 3-dimensional manifold $M=\left\{(x, y, z) \in \mathbf{R}^{3}, z \neq 0\right\}$, where (x, y, z) are the standard coordinates of \mathbf{R}^{3}. The vector fields

$$
e_{1}=z \frac{\partial}{\partial x}, \quad e_{2}=z \frac{\partial}{\partial y}, \quad e_{3}=-z \frac{\partial}{\partial z}
$$

are linearly independent at each point of M. Let g be the semi-Riemannian metric defined by

$$
\begin{array}{lll}
g\left(e_{1}, e_{3}\right)=0, & g\left(e_{1}, e_{2}\right)=0, & g\left(e_{2}, e_{3}\right)=0, \\
g\left(e_{1}, e_{1}\right)=1, & g\left(e_{2}, e_{2}\right)=1, & g\left(e_{3}, e_{3}\right)=\varepsilon,
\end{array}
$$

where $\varepsilon= \pm 1$. Let η be the 1 -form defined by $\eta(Z)=\varepsilon g\left(Z, e_{3}\right)$ for any $Z \in T M$. Let φ be the (1,1)-tensor field defined by

$$
\varphi e_{1}=\varepsilon e_{1}, \quad \varphi e_{2}=\varepsilon e_{2}, \quad \varphi e_{3}=0
$$

Using the linearity of φ and g, we have

$$
\begin{gathered}
\varphi^{2} X=X-\eta(X) e_{3}, \\
\eta\left(e_{3}\right)=1, \\
g(\varphi X, \varphi Y)=g(X, Y)-\varepsilon \eta(X) \eta(Y), \\
g\left(X, e_{3}\right)=\varepsilon \eta(X), \\
\left(\nabla_{X} \varphi\right) Y=-g(\varphi X, \varphi Y) e_{3}-\varepsilon \eta(Y) \varphi^{2} X,
\end{gathered}
$$

for any $X, Y \in T M$. Then for $\xi=e_{3}$, the structure $(\varphi, \xi, \eta, g, \varepsilon)$ defines an (ε) para Sasakian structure on M. Let ∇ be the Levi-Civita connection with respect to the metric g. Then we have

$$
\left[e_{1}, e_{2}\right]=0, \quad\left[e_{1}, e_{3}\right]=e_{1}, \quad\left[e_{1}, e_{2}\right]=e_{2}
$$

The Koszul's formula for the Riemannian connection ∇ of the metric g is given by

$$
\begin{aligned}
2 g\left(\nabla_{X} Y, Z\right)= & X g(Y, Z)+Y g(Z, X)-Z g(X, Y) \\
& -g(X,[Y, Z])-g(Y,[X, Z])+g(Z,[X, Y]) .
\end{aligned}
$$

By using Koszul's formula, we have

$$
\begin{array}{ccc}
\nabla_{e_{1}} e_{1}=-\varepsilon e_{3}, & \nabla_{e_{2}} e_{1}=0, & \nabla_{e_{3}} e_{1}=-e_{1}, \\
\nabla_{e_{1}} e_{2} 0, & \nabla_{e_{2}} e_{2}=\varepsilon e_{3}, & \nabla_{e_{3}} e_{2}=-e_{2}, \\
\nabla_{e_{1}} e_{3}=e_{1}, & \nabla_{e_{2}} e_{3}=e_{2}, & \nabla_{e_{3}} e_{3}=0 .
\end{array}
$$

From the above results, it is easy to check that equations (3.1), (3.2), (3.3), (3.4), (3.5) and (3.6) hold. Hence the manifold is an (ε)-para Sasakian manifold.

Using the above results, it is easy to find out the following results

$$
\begin{array}{ccc}
R\left(e_{1}, e_{2}\right) e_{1}=\varepsilon e_{2}, & R\left(e_{2}, e_{3}\right) e_{1}=0, & R\left(e_{1}, e_{3}\right) e_{1}=2 \varepsilon e_{3}, \\
R\left(e_{1}, e_{2}\right) e_{2}-\varepsilon e_{1}, & R\left(e_{2}, e_{3}\right) e_{2} 2 \varepsilon e_{3}, & R\left(e_{1}, e_{3}\right) e_{2}=0 \\
R\left(e_{1}, e_{2}\right) e_{3}=0, & R\left(e_{2}, e_{3}\right) e_{3}=0, & R\left(e_{1}, e_{3}\right) e_{3}=0
\end{array}
$$

Then

$$
S\left(e_{1}, e_{1}\right)=-(\varepsilon+2), \quad S\left(e_{2}, e_{2}\right)=-(\varepsilon+2), \quad S\left(e_{3}, e_{3}\right)=0,
$$

and

$$
r=-2(\varepsilon+2)
$$

Hence the scalar curvature r is constant. From Theorem 5.3 M is a 3 -dimensional locally φ - \mathcal{T}-symmetric (ε) -para Sasakian manifold.

Acknowledgement : This work is supported by the UGC-BSR Start-up Grant Project No. F. 30-12/2014 (BSR).

References

[1] H.S. Ruse, Three-dimensional spaces of recurrent curvature, Proc. of the London Math. Soc. Second Series 50 (1949) 438-446.
[2] E. Cartan, Sur une classe remarquable d'espaces de Riemann, Bull. de la Société Mathématique de France 54 (1926) 214-264.
[3] T. Takahashi, Sasakian φ-symmetric spaces, Tohoku Math. Jour. 29 (1977) 91-113.
[4] M. Okumura, Some remarks on spaces with a certain contact structure, Tôhoku Math. Jour. 14 (1962) 135-145.
[5] S. Tanno, Locally symmetric K-contact Riemannian manifolds, Proc. Japan Acad. 43 (1968) 581-583.
[6] M.M. Tripathi, E. Kılıç, S. Yüksel Perktaş, S. Keleş, Indefinite almost paracontact metric manifolds, Int. Jour. Math. Math. Sci. 2010 (2010) Article ID 846195.
[7] Y. Watanabe, Geodesic symmetric and locally φ-symmetric spaces, Kodai Math. Jour. 3 (1980) 48-55.
[8] U.C. De, On φ-symmetric Kenmotsu manifolds, Int. Elec. Jour. Geom. 1 (2008) 33-38.
[9] U.C. De, A. Yildiz, A.F. Yaliniz, Locally φ-symmetric normal almost contact metric manifolds of dimension 3, Appl. Math. Lett. 22 (2009) 723-727.
[10] U.C. De, G. Pathak, On 3-dimensional Kenmotsu Manifolds, Ind. Jour. Pure Appl. Math. 35 (2) (2004) 159-165.
[11] A.A. Shaikh, U.C. De, On 3-dimensional LP-Sasakian Manifolds, Soochow Jour. Math. 26 (4) (2000) 359-368.
[12] A. Yildiz, M. Turan, U.C. De, B.E. Acet, On three dimensional Lorentzian α-Sasakian manifolds, Bull. Math. Anal. Appl. 1 (3) (2009) 90-98.
[13] U.C. De, K. De, On φ-concircularly symmetric Kenmotsu manifolds, Thai Jour. Math. 10 (1) (2012) 1-11.
[14] U.C. De, C. Özqür, A.K. Mondal, On φ-quasiconformally symmetric Sasakian manifolds, Indag. Math. N.S. 20 (2) (2009) 191-200.
[15] M.M. Tripathi, P. Gupta, \mathcal{T}-Curvature tensor on a semi-Riemannian manifolds, Jour. Adv. Math. Stud. 4 (1) (2011) 117-129.
[16] K. Yano, S. Sawaki, Rifemannian manifolds admitting a conformal transformation group, Jour. Diff. Geom. 2 (1968) 161-184.
[17] L.P. Eisenhart, Riemannian Geometry, Princeton University Press, 1949.
[18] Y. Ishii, On conharmonic transformations, Tensor (N.S.) 7 (1957) 73-80.
[19] K. Yano, Concircular geometry I. concircular transformations, Math. Institute, Tokyo Imperial Univ. Proc. 16 (1940) 195-200.
[20] K. Yano, S. Bochner, Curvature and Betti Numbers, Ann. Math. Stud. 32, Princeton University Press, 1953.
[21] B. Prasad, A pseudo projective curvature tensor on a Riemannian manifold, Bull. Cal. Math. Soc. 94 (3) (2002) 163-166.
[22] G.P. Pokhariyal, R.S. Mishra, Curvature tensors and their relativistic significance II, Yoko. Math. Jour. 19 (2) (1971) 97-103.
[23] G.P. Pokhariyal, R.S. Mishra, Curvature tensors and their relativistic significance, Yoko. Math. Jour. 18 (1970) 105-108.
[24] G.P. Pokhariyal, Relativistic significance of curvature tensors, Int. Jour. Math. Math. Sci. 5 (1) (1982) 133-139.
[25] I. Satō, On a structure similar to the almost contact structure, Tensor (N.S.) 30 (3) (1976) 219-224.
[26] I. Satō, On a structure similar to almost contact structures II, Tensor (N.S.) 31 (2) (1977) 199-205.
[27] S. Sasaki, On paracontact Riemannian manifolds, TRU Math. 16 (2) (1980) 75-86.
[28] K. Matsumoto, On Lorentzian paracontact manifolds, Bull. Yamagata Univ. Natur. Sci. 12 (2) (1989) 151-156.
(Received 29 November 2014)
(Accepted 31 August 2015)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

