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Abstract : The notion of n-tupled fixed point is inaugurated by Imdad et al. [1]
in 2013. In this paper, some n-tupled coincidence and common fixed point theo-
rems (for even n) are established in partially ordered complete G-metric spaces.
Presented theorems can not be obtained from the existing theorems in the frame
of reference of allied metric spaces and do not reconcile with the remarks of Samet
et al. [2] and Jleli et al. [3]. In fact in a note Agarwal et al. [4] and Asadi et
al. [5], recommended new statements to which the technique used in [2,3] were not
applicable. Our results, unify, generalize and extend various known results from
the current literature. Also, an example is presented to show the validity of the
hypotheses of our results and to distinguish them from the existing ones.
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1 Introduction

In the last few decades, fixed point theory has been one of the most inter-
esting field in nonlinear functional analysis. Fixed point of mappings in ordered
metric space are of great use in many mathematical problems in applied and pure
mathematics. It can be applied in various areas for instance approximation the-
ory, optimization and variational inequalities. One of the newest branches of this
theory is devoted to the study of G- metric spaces. The notion of G- metric space
was introduced by Mustafa in collaboration with Sims [6]. This was a generaliza-
tion of metric spaces in which a non-negative real number was assigned to every
triplet of an arbitrary set. Mustafa et al. studied many fixed point results for a
self mappings in G-metric space under certain conditions (see [6–8]).
On the other hand, Bhaskar and Lakshmikantham [9] introduced the concept of
a coupled fixed point of a mapping F : X ×X → X and establish some coupled
fixed point theorems in partially ordered complete metric space. After that, Lak-
shmikantham and Ciric [10] introduced the notion of mixed g-monotone mapping
and coupled coincidence point and proved some coupled coincidence point and cou-
pled common fixed point theorems in partially ordered metric space. Afterwords,
Brinde and Borcut [11] introduced the concept of tripled fixed point and proved
some related theorems. In this continuation, Karapinar et al. [12] inaugurated the
notion of quadruple fixed point and established some results on the existence and
uniqueness of quadruple fixed points. Most recently, Imdad et al. [1] launched
the concept of n-tupled coincidence as well as n-tupled fixed point (for even n)
and utilize these two definitions to obtain n-tupled coincidence as well as n-tupled
common fixed point theorems for nonlinear φ-contraction mappings in partially
ordered complete metric spaces.

In this manuscript, we furnish n-tupled fixed point results for a pair of weakly
compatible mapping with mixed g-monotone property in generalized ordered met-
ric spaces for nonlinear contractive condition related to an alternating distance
function, which generalize result of Y.J. Cho [13], B.S. Choudhury and P. Maity
[14], H. Aydi et al. [15], H. Nashine [16], Z. Mustafa [17] and H. Lee [18].

The following definitions and results will be needed in the sequel.

2 Preliminaries

Definition 2.1. [19] A function ψ : [0,+∞) → [0,+∞) is called an alternating
distance function if the following properties are satisfied:

(i) ψ is continuous and monotonically non-decreasing;
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(ii) ψ (t)=0 if and only if t = 0.

We borrow the definition of n-tupled fixed point and n-tupled coincidence
point from Imdad et al. [1].
Throughout the paper, we consider n to be an even integer.

Definition 2.2. [1] An element (x1, x2, . . . , xn) ∈ Xn is called an n-tupled fixed
point of the mapping F : Xn → X if

F (x1, x2, x3, . . . , xn) = x1,
F (x2, x3, . . . , xn, x1) = x2,
F (x3, . . . , xn, x1, x2) = x3,

...
F (xn, x1, x2, . . . , xn−1) = xn.

In the following example we establish n-tupled fixed point.

Example 2.3. Let X = R, then (X,≤) be a partially ordered set with usual
ordering. Let F : Xn → X be a mapping defined by

F (x1, x2, x3, . . . , xn) = x1+x2+x3+ ...+xn

n , for all (x1, x2, x3, . . . , xn) ∈ X
Then (n, n, n, . . . , n) is an n-tupled fixed point of F.

Definition 2.4. [1] An element (x1, x2, . . . , xn) ∈ Xn is called an n-tupled coin-
cidence point of the mapping F : Xn → X and g : X → X if

F (x1, x2, x3, . . . , xn) = gx1,
F (x2, x3, . . . , xn, x1) = gx2,
F (x3, . . . , xn, x1, x2) = gx3,

...
F (xn, x1, x2, . . . , xn−1) = gxn.

Following example establishes n-tupled coincidence point.

Example 2.5. Let X = R, then (X,≤) be a partially ordered set with usual
ordering. Let F : Xn → X and g : X → X be two mappings defined by

F (x1, x2, x3, . . . , xn) = x1+x2+x3+...+xn

n , for all (x1, x2, x3, . . . , xn) ∈ X and
gx = x.
Then (n, n, n, . . . , n) is an n-tupled coincidence point of F.

Definition 2.6. Let (X,�) be a partially ordered set and (X,G) be a G-metric
space then (X,G,�) is called regular if the following conditions hold:

(i)If a non-decreasing sequence {xn} ⊆ X such that xn → x then xn � x, ∀n ∈ N;

(ii)If a non-increasing sequence {yn} ⊆ X such that yn → y then y � yn,∀n ∈ N.

For the rest of the definitions and other notions utilized in our paper one can
refer to M. Imdad [1] and Mustafa et al. [6].
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3 Main Results

3.1 n-Tupled Coincidence Point Theorems

Our main theorem runs as follows:

Theorem 3.1. Let (X,�) be a partially ordered set and suppose that there exists
a G-metric on X such that (X,G) is a complete G-metric space. Let F : Xn →
Xand g : X → X be two mappings on X. Let φ : [0,∞)→ [0,∞) be a continuous
function with φ(t) = 0 if and only if t = 0 and ψ be an alternating distance function
such that for,
(x1, x2, . . . , xn), (y1, y2, . . . , yn), (z1, z2, . . . , zn) ∈ X, we have

ψ(G(F (x1, x2, . . . , xn), F (y1, y2, . . . , yn), F (z1, z2, . . . , zn)))

≤ ψ
(

max{G(gx1, gy1, gz1), G(gx2, gy2, gz2), . . . , G(gxn, gyn, gzn)}
)

− φ
(

maxG(gx1, gy1, gz1), G(gx2, gy2, gz2), . . . , G(gxn, gyn, gzn)
)
,

(3.1)

with gx1 � gy1 � gz1, gx2 � gv2 � gz2, . . .,gxn � gvn � gzn. Suppose that F has
the mixed g-monotone property, F (Xn) ⊆ g(X), g is continuous and commutes
with F. Also, assume that, either

(a) F is continuous, or

(b) X has the following properties:

(i) if a non-decreasing sequence {xn} is such that xn → x, then xn � x for all n;

(ii) if a non-increasing sequence {yn} is such that yn → y, then y � yn for all n.
If there exist x10, x

2
0, x

3
0, . . . , x

n
0 ∈ X such that

gx10 � F (x10, x
2
0, x

3
0, . . . , x

n
0 ),

F (x20, x
3
0, . . . , x

n
0 , x

1
0) � gx20,

...
F (xn0 , x

1
0, x

2
0, . . . , x

n−1
0 ) � gxn0 .

Then F and g have an n-tupled coincidence point in X.

Proof. Let x10, x
2
0, . . . , x

n
0 ∈ X such that

gx10 � F (x10, x
2
0, x

3
0, . . . , x

n
0 ),

F (x20, x
3
0, . . . , x

n
0 , x

1
0) � gx20,

...
F (xn0 , x

1
0, x

2
0, . . . , x

n−1
0 ) � gxn0 .

(3.2)

We choose x11, x
2
1, . . . , x

n
1 ∈ X such that

gx11 = F (x10, x
2
0, x

3
0, . . . , x

n
0 ),

gx21 = F (x20, x
3
0, . . . , x

n
0 , x

1
0),

...
gxn1 = F (xn0 , x

1
0, x

2
0, . . . , x

n−1
0 ),

(3.3)
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this can be done in view of F (Xn) ⊆ g(X). Similarly, we can choose x12, x
2
2, . . . , x

n
2 ∈

X such that 
gx12 = F (x11, x

2
1, x

3
1, . . . , x

n
1 ),

gx22 = F (x21, x
3
1, . . . , x

n
1 , x

1
1),

...
gxn2 = F (xn1 , x

1
1, x

2
1, . . . , x

n−1
1 ).

Continuing this process, one can construct n sequences {x1m}, {x2m}, . . . , {xnm}
(m ≥ 0) in X such that

gx1m+1 = F (x1m, x
2
m, x

3
m, . . . , x

n
m),

gx2m+1 = F (x2m, x
3
m, . . . , x

n
m, x

1
m),

...
gxnm+1 = F (xnm, x

1
m, x

2
m, . . . , x

n−1
m ).

(3.4)

Now, with the help of mathematical induction method, we shall show that for all
m ≥ 0,

gx1m � gx1m+1, gx2m+1 � gx2m, gx3m � gx3m+1, . . . , gxnm+1 � gxnm. (3.5)

By (3.2) and (3.3), we get

gx10 � gx11, gx21 � gx20, gx30 � gx31, . . . , gxn1 � gxn0 ,

i.e. (3.5) holds for m = 0. Assume that, (3.5) holds for some m > 0. From
the mixed g-monotone property of F and in account of (3.4), we have

gx1m+1 = F (x1m, x
2
m, x

3
m, . . . , x

n
m) � F (x1m+1, x

2
m, x

3
m, . . . , x

n
m)

� F (x1m+1, x
2
m+1, x

3
m, . . . , x

n
m)

...

� F (x1m+1, x
2
m+1, x

3
m+1, . . . , x

n
m+1)

= gx1m+2.

gx2m+2 = F (x2m+1, x
3
m+1, . . . , x

n
m+1, x

1
m+1) � F (x2m+1, x

3
m+1, . . . , x

n
m+1, x

1
m)

� F (x2m+1, x
3
m+1, . . . , x

n
m, x

1
m)

...

� F (x2m+1, x
3
m, . . . , x

n
m, x

1
m)

� F (x2m, x
3
m, . . . , x

n
m, x

1
m)

= gx2m+1.

Analogously, it can be proved that

gxnm+2 = F (xnm+1, x
1
m+1, x

2
m+1, . . . , x

n−1
m+1) � F (xnm, x

1
m, x

2
m, . . . , x

n−1
m )

= gxnm+1.
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Therefore, it follows from the method of induction that, inequality (3.5) holds, for
all m ≥ 0. Hence

gx10 � gx11 � gx12 � . . . � gx1m � gx1m+1 � . . . ,
. . . � gx2m+1 � gx2m � . . . � gx22 � gx21 � gx20,
gx30 � gx31 � gx32 � . . . � gx3m � gx3m+1 � . . . ,

...
. . . � gxnm+1 � gxnm � . . . � gxn2 � gxn1 � gxn0 .

(3.6)

Then from (3.1) and (3.5), we have

ψ
(
G( gx1m+1, gx

1
m, gx

1
m )

)
= ψ

(
G
(
F (x1m, x

2
m, . . . , x

n
m), F (x1m−1, x

2
m−1, . . . , x

n
m−1),

F (x1m−1, x
2
m−1, . . . , x

n
m−1)

))

≤ ψ
(

max
{
G(gx1m, gx

1
m−1, gx

1
m−1), G(gx2m, gx

2
m−1, gx

2
m−1),

G(gx3m, gx
3
m−1, gx

3
m−1), . . . , G(gxnm, gx

n
m−1, gx

n
m−1)

})
− φ

(
max

{
G(gx1m, gx

1
m−1, gx

1
m−1), G(gx2m, gx

2
m−1, gx

2
m−1),

G(gx3m, gx
3
m−1, gx

3
m−1), . . . , G(gxnm, gx

n
m−1, gx

n
m−1)

})
.

(3.7)

Again, from (3.1) and (3.5), we get

ψ
(
G( gx2m+1, gx

2
m, gx

2
m )

)
= ψ

(
G
(
F (x2m, x

3
m, . . . , x

n
m, x

1
m),

F (x2m−1, x
3
m−1, . . . , x

n
m−1, x

1
m−1), F (x2m−1, x

3
m−1, . . . , x

n
m−1, x

1
m−1)

))

≤ ψ
(

max
{
G(gx2m, gx

2
m−1, gx

2
m−1), G(gx3m, gx

3
m−1, gx

3
m−1),

. . . , G(gxnm, gx
n
m−1, gx

n
m−1), G(gx1m, gx

1
m−1, gx

1
m−1)

})
− φ

(
max

{
G(gx2m, gx

2
m−1, gx

2
m−1), G(gx3m, gx

3
m−1, gx

3
m−1),

. . . , G(gxnm, gx
n
m−1, gx

n
m−1), G(gx1m, gx

1
m−1, gx

1
m−1)

})
.

(3.8)
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In a similar way, we obtain

ψ
(
G( gxnm+1, gx

n
m, gx

n
m )

)
= ψ

(
G
(
F (xnm, x

1
m, x

2
m, . . . , x

n−1
m ),

F (xnm−1, x
1
m−1, x

2
m−1, . . . , x

n−1
m−1), F (xnm−1, x

1
m−1, x

2
m−1, . . . , x

n−1
m−1)

))

≤ ψ
(

max
{
G(gxnm, gx

n
m−1, gx

n
m−1), G(gx1m, gx

1
m−1, gx

1
m−1),

G(gx2m, gx
2
m−1, gx

2
m−1), . . . , G(gxn−1m , gxn−1m−1, gx

n−1
m−1)

})
− φ

(
max

{
G(gxnm, gx

n
m−1, gx

n
m−1), G(gx1m, gx

1
m−1, gx

1
m−1),

G(gx2m, gx
2
m−1, gx

2
m−1), . . . , G(gxn−1m , gxn−1m−1, gx

n−1
m−1)

})
.

(3.9)

As ψ is a non-decreasing function, for a1, a2, a3, . . . an ∈ [0,+∞), we have

ψ(max{a1, a2, a3, . . . an}) = max{ψ(a1), ψ(a2), ψ(a3), . . . , ψ(an)}.

Due to (3.7), (3.8) and (3.9), it follows that

ψ
(

max
{
G(gx1m+1, gx

1
m, gx

1
m), G(gx2m+1, gx

2
m, gx

2
m), ..., G(gxnm+1, gx

n
m, gx

n
m)
})

≤ ψ
(

max
{
G(gx1m, gx

1
m−1, gx

1
m−1), G(gx2m, gx

2
m−1, gx

2
m−1),

G(gx3m, gx
3
m−1, gx

3
m−1), . . . , G(gxnm, gx

n
m−1, gx

n
m−1)

})
− φ

(
max

{
G(gx1m, gx

1
m−1, gx

1
m−1), G(gx2m, gx

2
m−1, gx

2
m−1),

G(gx3m, gx
3
m−1, gx

3
m−1), . . . , G(gxnm, gx

n
m−1, gx

n
m−1)

})
.

Let, Am = max
{
G(gx1m, gx

1
m−1, gx

1
m−1), G(gx2m, gx

2
m−1, gx

2
m−1),

G(gx3m, gx
3
m−1, gx

3
m−1), . . . , G(gxnm, gx

n
m−1, gx

n
m−1)

}
.

(3.10)

From the above inequality, we arrive at

ψ(Am) ≤ ψ(Am−1)− φ(Am−1). (3.11)

As the function φ is non negative, we obtain

ψ(Am) ≤ ψ(Am−1)⇒ Am ≤ Am−1.

Thus, {Am} is a positive non increasing sequence. Hence there exists r ≥ 0 such
that Am → r as m → ∞. Letting the limit as m → ∞ in (3.11) and using the



328 Thai J. Math. 17 (2019)/ D.K. Singh et al.

continuity of ψ and φ, we get

ψ(r) ≤ ψ(r)− φ(r).

Hence, φ(r) = 0 and by the property of φ, we find r = 0. Therefore

lim
m→∞

Am = 0. (3.12)

Our next step is to show that {gx1m}, {gx2m}, {gx3m}, . . . , {gxnm} are G-Cauchy
sequences. On the contrary assume that, at least one of {gx1m}, {gx2m}, {gx3m}, . . . ,
{gxnm} is not a Cauchy sequence. Then, there exists an ε > 0 for which we can
find sequences of positive integer {m(k)} and {l(k)} with l(k) > m(k) ≥ k, such
that

Bk = max
{
G
(
gx1m(k), gx

1
l(k), gx

1
l(k)

)
, G
(
gx2m(k), gx

2
l(k), gx

2
l(k)

)
,

. . . , G
(
gxnm(k), gx

n
l(k), gx

n
l(k)

)}
≥ ε.

(3.13)

Moreover, corresponding to m(k) we can choose l(k) in such a way that it is the
smallest integer with l(k) > m(k) and satisfying (3.13). Then

max
{
G
(
gx1m(k), gx

1
l(k)−1, gx

1
l(k)−1

)
, G
(
gx2m(k), gx

2
l(k)−1, gx

2
l(k)−1

)
,

. . . , G
(
gxnm(k), gx

n
l(k)−1, gx

n
l(k)−1

)}
< ε.

(3.14)

By the rectangle inequality of G-metric and from (3.14), we arrive at

G
(
gx1m(k), gx

1
l(k), gx

1
l(k)

)
≤ G

(
gx1m(k), gx

1
l(k)−1, gx

1
l(k)−1

)
+G

(
gx1l(k)−1, gx

1
l(k), gx

1
l(k)

)
< ε+G

(
gx1l(k)−1, gx

1
l(k), gx

1
l(k)

)
.

(3.15)

Thus, from (3.12), we acquire

lim
k→∞

G
(
gx1m(k), gx

1
l(k), gx

1
l(k)

)
≤ lim

k→∞
G
(
gx1m(k), gx

1
l(k)−1, gx

1
l(k)−1

)
≤ ε. (3.16)

In a same manner, we get

lim
k→∞

G
(
gx2m(k), gx

2
l(k), gx

2
l(k)

)
≤ lim

k→∞
G
(
gx2m(k), gx

2
l(k)−1, gx

2
l(k)−1

)
≤ ε. (3.17)

Similarly, we have

lim
k→∞

G
(
gxnm(k), gx

n
l(k), gx

n
l(k)

)
≤ lim

k→∞
G
(
gxnm(k), gx

n
l(k)−1, gx

n
l(k)−1

)
≤ ε. (3.18)
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Again from rectangle inequality of G-metric and from (3.12), we obtain

G
(
gx1m(k), gx

1
l(k), gx

1
l(k)

)
≤ G

(
gx1m(k), gx

1
m(k)−1, gx

1
m(k)−1

)
+G

(
gx1m(k)−1, gx

1
l(k)−1, gx

1
l(k)−1

)
+G

(
gx1l(k)−1, gx

1
l(k), gx

1
l(k)

)
≤ G

(
gx1m(k), gx

1
m(k)−1, gx

1
m(k)−1

)
+G

(
gx1m(k)−1, gx

1
m(k), gx

1
m(k)

)
+G

(
gx1m(k), gx

1
l(k)−1, gx

1
l(k)−1

)
+G

(
gx1l(k)−1, gx

1
l(k), gx

1
l(k)

)
< G

(
gx1m(k), gx

1
m(k)−1, gx

1
m(k)−1

)
+G

(
gx1m(k)−1, gx

1
m(k), gx

1
m(k)

)
+ ε+G

(
gx1l(k)−1, gx

1
l(k), gx

1
l(k)

)
.

Taking the limit when k →∞ in above inequality and using (3.12), we acquire

lim
k→∞

G
(
gx1m(k), gx

1
l(k), gx

1
l(k)

)
≤ lim

k→∞
G
(
gx1m(k)−1, gx

1
l(k)−1, gx

1
l(k)−1

)
≤ ε. (3.19)

Similarly, we arrive at

lim
k→∞

G
(
gx2m(k), gx

2
l(k), gx

2
l(k)

)
≤ lim

k→∞
G
(
gx2m(k)−1, gx

2
l(k)−1, gx

2
l(k)−1

)
≤ ε (3.20)

and

lim
k→∞

G
(
gxnm(k), gx

n
l(k), gx

n
l(k)

)
≤ lim

k→∞
G
(
gxnm(k)−1, gx

n
l(k)−1, gx

n
l(k)−1

)
≤ ε. (3.21)

From (3.13) and in account of inequalities (3.19)-(3.21), we have

lim
k→∞

max
{
G
(
gx1m(k), gx

1
l(k), gx

1
l(k)

)
, G
(
gx2m(k), gx

2
l(k), gx

2
l(k)

)
, . . . ,

G
(
gxnm(k), gx

n
l(k), gx

n
l(k)

)}
= lim

k→∞
max

{
G
(
gx1m(k)−1, gx

1
l(k)−1, gx

1
l(k)−1

)
, G
(
gx2m(k)−1, gx

2
l(k)−1, gx

2
l(k)−1

)
,

. . . , G
(
gxnm(k)−1, gx

n
l(k)−1, gx

n
l(k)−1

)}
= ε.

(3.22)
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Therefore from inequality (3.1) and (3.4), we obtain

ψ

(
G
(
gx1m(k), gx

1
l(k), gx

1
l(k)

))

= ψ

(
G
(
F (x1m(k)−1, x

2
m(k)−1, . . . , x

n
m(k)−1), F (x1l(k)−1, x

2
l(k)−1, . . . , x

n
l(k)−1),

F (x1l(k)−1, x
2
l(k)−1, . . . , x

n
l(k)−1)

))

≤ ψ

(
max

{
G
(
gx1m(k)−1, gx

1
l(k)−1, gx

1
l(k)−1

)
, G
(
gx2m(k)−1, gx

2
l(k)−1, gx

2
l(k)−1

)
, ...,

G
(
gxnm(k)−1, gx

n
l(k)−1, gx

n
l(k)−1

)})

− φ

(
max

{
G
(
gx1m(k)−1, gx

1
l(k)−1, gx

1
l(k)−1

)
, G
(
gx2m(k)−1, gx

2
l(k)−1, gx

2
l(k)−1

)
, ...,

G
(
gxnm(k)−1, gx

n
l(k)−1, gx

n
l(k)−1

)})
.

Which gives

ψ

(
G
(
gx1m(k), gx

1
l(k), gx

1
l(k)

))
≤ ψ(Bk−1)− φ(Bk−1). (3.23)

Analogously, one can show that

ψ

(
G
(
gx2m(k), gx

2
l(k), gx

2
l(k)

))
≤ ψ(Bk−1)− φ(Bk−1). (3.24)

and

ψ

(
G
(
gxnm(k), gx

n
l(k), gx

n
l(k)

))
≤ ψ(Bk−1)− φ(Bk−1). (3.25)

By the monotone property of ψ and in account of inequalities (3.23)-(3.25), we
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have

ψ(Bk) = ψ

(
max

{
G
(
gx1m(k), gx

1
l(k), gx

1
l(k)

)
, G
(
gx2m(k), gx

2
l(k), gx

2
l(k)

)
,

. . . , G
(
gxnm(k), gx

n
l(k), gx

n
l(k)

)})

= max

{
ψ
(
G
(
gx1m(k), gx

1
l(k), gx

1
l(k)

))
, ψ
(
G
(
gx2m(k), gx

2
l(k), gx

2
l(k)

))
,

. . . , ψ
(
G
(
gxnm(k), gx

n
l(k), gx

n
l(k)

))}
,

that is,
ψ(Bk) ≤ ψ(Bk−1)− φ(Bk−1).

Taking The limit as k →∞ in the above inequality, using (3.22), we obtain

ψ(ε) ≤ ψ(ε)− φ(ε).

Which gives φ(ε) = 0 =⇒ ε = 0, a contradiction. We conclude that {gx1m}, {gx2m},
{gx3m}, . . . , {gxnm} are G-Cauchy sequences in the G-metric space (X,G), which
is G-complete. Then there exist x1, x2, . . . , xn ∈ X such that

lim
m→∞

G(gx1m, gx
1
m, x

1) = lim
m→∞

G(gx1m, x
1, x1) = 0,

lim
m→∞

G(gx2m, gx
2
m, x

2) = lim
m→∞

G(gx2m, x
2, x2) = 0,

...
lim

m→∞
G(gxnm, gx

n
m, x

n) = lim
m→∞

G(gxnm, x
n, xn) = 0.

(3.26)

From (3.26) and by the continuity of g, we arrive at
lim

m→∞
G(g(gx1m), g(gx1m), gx1) = lim

m→∞
G(g(gx1m), gx1, gx1) = 0,

lim
m→∞

G(g(gx2m), g(gx2m), gx2) = lim
m→∞

G(g(gx2m), gx2, gx2) = 0,

...
lim

m→∞
G(g(gxnm), g(gxnm), gxn) = lim

m→∞
G(g(gxnm), gxn, gxn) = 0.

(3.27)

Thus, g(gx1m) is convergent to gx1, g(gx2m) is convergent to gx2, . . . , g(gxnm) is
convergent to gxn. Since,

gx1m+1 = F (x1m, x
2
m, x

3
m, . . . , x

n
m),

gx2m+1 = F (x2m, x
3
m, . . . , x

n
m, x

1
m),

gx3m+1 = F (x3m, . . . , x
n
m, x

1
m, x

2
m),

...
gxnm+1 = F (xnm, x

1
m, x

2
m, . . . , x

n−1
m ).
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Therefore, from the commutativity of F and g, we have
g(gx1m+1) = g(F (x1m, x

2
m, x

3
m, . . . , x

n
m)) = F (gx1m, gx

2
m, gx

3
m, . . . , gx

n
m),

g(gx2m+1) = g(F (x2m, x
3
m, . . . , x

n
m, x

1
m)) = F (gx2m, gx

3
m, . . . , gx

n
m, gx

1
m),

...

g(gxnm+1) = g(F (xnm, x
1
m, x

2
m, . . . , x

n−1
m )) = F (gxnm, gx

1
m, gx

2
m, . . . , gx

n−1
m ).

(3.28)
Let the condition (a) holds, i.e., F is continuous. Taking limit as m→∞ in (3.28),
utilizing the continuity of F and in account of (3.26) and (3.27), we get

F (x1m, x
2
m, x

3
m, . . . , x

n
m) = gx1,

F (x2m, x
3
m, . . . , x

n
m, x

1
m) = gx2,

F (x3m, . . . , x
n
m, x

1
m, x

2
m) = gx3,

...
F (xnm, x

1
m, x

2
m, . . . , x

n−1
m ) = gxn.

Hence the element (x1, x2, x3, . . . , xn) ∈ Xn is an n-tupled coincidence point of
the mapping F : Xn → X and g : X → X.
Let us assume that, the condition (b) holds, that is, (X,G) is regular. Since,
{gx1m}, {gx3m}, . . . , {gxn−1m } are non decreasing and {gx2m}, {gx4m}, . . . , {gxnm} are
non increasing sequences. Due to the regularity of (X,G,�), we have

gx1m � gx1, gx2m � gx2,
gx3m � gx3, gx4m � gx4,

...
...

gxn−1m � gxn−1, gxnm � gxn.

Now, using inequality (3.1) and from the rectangular inequality of G-metric, we
acquire

ψ

(
G
(
F (x1, x2, x3, . . . , xn), gx1m+1, gx

1
m+1

))

= ψ

(
G
(
F (x1, x2, x3, . . . , xn), F (x1m, x

2
m, x

3
m, . . . , x

n
m), F (x1m, x

2
m, x

3
m, . . . , x

n
m)
))

≤ ψ

(
max

{
G(gx1, gx1m, gx

1
m), G(gx2, gx2m, gx

2
m), . . . , G(gxn, gxnm, gx

n
m)
})

− φ

(
max

{
G(gx1, gx1m, gx

1
m), G(gx2, gx2m, gx

2
m), . . . , G(gxn, gxnm, gx

n
m)
})

.

Making the limit as m→∞ in above inequality give rises to

ψ

(
G
(
F (x1, x2, x3, . . . , xn), gx1m+1, gx

1
m+1

))
= 0.
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Which yields

F (x1, x2, x3, . . . , xn) = gx1.

Repeating the same technique, one can show that
F (x2m, x

3
m, . . . , x

n
m, x

1
m) = gx2,

F (x3m, . . . , x
n
m, x

1
m, x

2
m) = gx3,

...
F (xnm, x

1
m, x

2
m, . . . , x

n−1
m ) = gxn.

Thus, we proved (x1, x2, x3, . . . , xn) ∈ Xn is an n-tupled coincidence point of the
mapping F : Xn → X and g : X → X.
This conclude the Theorem.

3.2 n-Tupled Common Fixed Point Theorems

Theorem 3.2. In addition to the hypotheses of Theorem 3.1, suppose that for ev-
ery (x1, x2, x3, . . . , xn), (y1, y2, y3, . . . , yn) ∈ Xn there exists (z1, z2, z3, . . . , zn) ∈
Xn such that (F (z1, z2, . . . , zn), . . . , F (zn, z1, . . . , zn−1)) ∈ Xn

is comparable with (F (x1, x2, . . . , xn), . . . , F (xn, x1, . . . , xn−1)) and
(F (y1, y2, . . . , yn), . . . , F (yn, y1, . . . , yn−1)).
Then F and g have a unique n-tupled common fixed point.

Proof. From Theorem 3.1, the set of n-tupled coincidence points of F and g is
non empty. Assume that (x1, x2, x3, . . . , xn), (y1, y2, y3, . . . , yn) are two n-tupled
coincidence points of F and g, that is

F (x1, x2, x3, . . . , xn) = gx1; F (y1, y2, y3, . . . , yn) = gy1,
F (x2, x3, . . . , xn, x1) = gx2; F (y2, y3, . . . , yn, y1) = gy2,

...
...

F (xn, x1, x2, . . . , xn−1) = gxn; F (yn, y1, y2, . . . , yn−1) = gyn.

Now, we shall prove that gx1 = gy1, gx2 = gy2, . . . , gxn = gyn.
By supposition, there exists (z1, z2, z3, ..., zn) ∈ Xn such that (F (z1, z2, z3, ..., zn),
F (z2, z3, . . . , zn, z1), . . . , F (zn, z1, z2, . . . , zn−1)) is comparable with
(F (x1, x2, x3, . . . , xn), F (x2, x3, . . . , xn, x1), . . . , F (xn, x1, x2, . . . , xn−1)) and
(F (y1, y2, y3, . . . , yn), F (y2, y3, . . . , yn, y1), . . . , F (yn, y1, y2, . . . , yn−1)).
Put, z10 = z1, z20 = z2, . . . , zn0 = zn and choose z1, z2, z3, . . . , zn ∈ X such that

gz11 = F (z10 , z
2
0 , z

3
0 , . . . , z

n
0 ),

gz21 = F (z20 , z
3
0 , . . . , z

n
0 , z

1
0),

...
gzn1 = F (zn0 , z

1
0 , z

2
0 , . . . , z

n−1
0 ).



334 Thai J. Math. 17 (2019)/ D.K. Singh et al.

Then similarly, as in the proof of Theorem 3.1 one can inductively define sequences
{gz1m}, {gz2m}, {gz3m}, . . . , {gznm} in X such that

gz1m+1 = F (z1m, z
2
m, z

3
m, . . . , z

n
m),

gz2m+1 = F (z2m, z
3
m, . . . , z

n
m, z

1
m),

...
gznm+1 = F (znm, z

1
m, z

2
m, . . . , z

n−1
m ).

Moreover, set x10 = x1, x20 = x2, . . . , xn0 = xn and y10 = y1, y20 = y2, . . . , yn0 = yn

and on the same way define the sequences {gx1m}, {gx2m}, {gx3m}, . . . , {gxnm} and
{gy1m}, {gy2m}, {gy3m}, . . . , {gynm}. Then we can easily show that

gx1m+1 = F (x1m, x
2
m, x

3
m, . . . , x

n
m); gy1m+1 = F (y1m, y

2
m, y

3
m, . . . , y

n
m),

gx2m+1 = F (x2m, x
3
m, . . . , x

n
m, x

1
m); gy2m+1 = F (y2m, y

3
m, . . . , y

n
m, y

1
m),

...
...

gxnm+1 = F (xnm, x
1
m, x

2
m, . . . , x

n−1
m ); gynm+1 = F (ynm, y

1
m, y

2
m, . . . , y

n−1
m ).

As

(F (x1, x2, x3, . . . , xn), . . . , F (xn, x1, x2, . . . , xn−1)) = (gx11, gx
2
1, . . . , gx

n
1 )

= (gx1, gx2, . . . , gxn)

and

(F (z1, z2, z3, . . . , zn), . . . , F (zn, z1, z2, . . . , zn−1)) = (gz11 , gz
2
1 , . . . , gz

n
1 )

are comparable, then

gx1 � gz11 , gz21 � gx2, gx3 � gz31 , . . . , gzn1 � gxn.
Similarly, we can show that for all m ≥ 1,

gx1 � gz1m, gz2m � gx2, gx3 � gz3m, . . . , gznm � gxn.

Thus, from (3.1), we obtain

ψ
(
G(gx1, gx1, gz1m+1)

)
= ψ

(
G(F (x1, x2, x3, . . . , xn), F (x1, x2, x3, . . . , xn), F (z1m, z

2
m, z

3
m, . . . , z

n
m)
)

≤ ψ

(
max

{
G(gx1, gx1, gz1m), G(gx2, gx2, gz2m), G(gx3, gx3, gz3m),

. . . , G(gxn, gxn, gznm)
})

− φ

(
max

{
G(gx1, gx1, gz1m), G(gx2, gx2, gz2m), G(gx3, gx3, gz3m),

. . . , G(gxn, gxn, gznm)
})

.
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Also

ψ
(
G(gx2, gx2, gz2m+1)

)
= ψ

(
G(F (x2, x3, . . . , xn, x1), F (x2, x3, . . . , xn, x1), F (z2m, z

3
m, . . . , z

n
m, z

1
m)
)

≤ ψ

(
max

{
G(gx2, gx2, gz2m), G(gx3, gx3, gz3m), . . . ,

G(gxn, gxn, gznm), G(gx1, gx1, gz1m)
})

− φ

(
max

{
G(gx2, gx2, gz2m), G(gx3, gx3, gz3m), . . . ,

G(gxn, gxn, gznm), G(gx1, gx1, gz1m)
})

.

In a similar way, one can show that

ψ
(
G(gxn, gxn, gznm+1)

)
= ψ

(
G(F (xn, x1, x2, ..., xn−1), F (xn, x1, x2, ..., xn−1), F (znm, z

1
m, z

2
m, ..., z

n−1
m )

)
≤ ψ

(
max

{
G(gxn, gxn, gznm), G(gx1, gx1, gz1m), G(gx2, gx2, gz2m),

. . . , G(gxn−1, gxn−1, gzn−1m )
})

− φ

(
max

{
G(gxn, gxn, gznm), G(gx1, gx1, gz1m), G(gx2, gx2, gz2m),

. . . , G(gxn−1, gxn−1, gzn−1m )
})

.

Using the monotone property of ψ and from the above inequalities, we arrive at

ψ

(
max

{
G(gx1, gx1, gz1m+1), G(gx2, gx2, gz2m+1), . . . , G(gxn, gxn, gznm+1)

})
= max

{
ψ
(
G(gx1, gx1, gz1m+1)

)
, ψ
(
G(gx2, gx2, gz2m+1)

)
,

. . . , ψ
(
G(gxn, gxn, gznm+1)

)}
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≤ ψ

(
max

{
G(gx1, gx1, gz1m), G(gx2, gx2, gz2m), G(gx3, gx3, gz3m),

. . . , G(gxn, gxn, gznm)
})

− φ

(
max

{
G(gx1, gx1, gz1m), G(gx2, gx2, gz2m), G(gx3, gx3, gz3m),

. . . , G(gxn, gxn, gznm)
})

.

(3.29)

Set,

αm = max
{
G(gx1, gx1, gz1m+1), G(gx2, gx2, gz2m+1), G(gx3, gx3, gz3m+1),

. . . , G(gxn, gxn, gznm+1)
}
.

Then, from (3.29), we get

ψ(αm) ≤ ψ(αm−1)− φ(αm−1). (3.30)

Since, φ is non negative, therefore we obtain ψ(αm) ≤ ψ(αm−1) =⇒ αm ≤ αm−1.
Therefore {αm} is a monotonically decreasing sequence of non-negative real num-
bers. So, there exists α ≥ 0 such that αm → α as m→∞.
Letting the limit as m→∞ in (3.30), one can get

ψ(α) ≤ ψ(α)− φ(α).

Which gives, φ(α) = 0 and by the property of φ we get α = 0. Hence

lim
m→∞

αm = 0.

Which yields

lim
m→∞

G(gx1, gx1, gz1m+1) = 0, lim
m→∞

G(gx2, gx2, gz2m+1) = 0, . . . ,

lim
m→∞

G(gxn, gxn, gznm+1) = 0.

Similarly, one can show that

lim
m→∞

G(gy1, gy1, gz1m+1) = 0, lim
m→∞

G(gy2, gy2, gz2m+1) = 0, . . . ,

lim
m→∞

G(gyn, gyn, gznm+1) = 0.

Now, by the rectangle inequality of G-metric, we have
G(gx1, gx1, gy1) ≤ G(gx1, gx1, gz1m+1) +G(gz1m+1, gz

1
m+1, gy

1)→ 0,
G(gx2, gx2, gy2) ≤ G(gx2, gx2, gz2m+1) +G(gz2m+1, gz

2
m+1, gy

2)→ 0,
...

G(gxn, gxn, gyn) ≤ G(gxn, gxn, gznm+1) +G(gznm+1, gz
n
m+1, gy

n)→ 0,
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as m→∞. From the above inequality, we obtain

gx1 = gy1, gx2 = gy2, . . . , gxn = gyn. (3.31)

Since, 
F (x1, x2, x3, . . . , xn) = gx1,
F (x2, x3, . . . , xn, x1) = gx2,

...
F (xn, x1, x2, . . . , xn−1) = gxn.

And by the commutativity of F and g, we have
g(F (x1, x2, x3, . . . , xn)) = F (gx1, gx2, gx3, . . . , gxn) = ggx1,
g(F (x2, x3, . . . , xn, x1)) = F (gx2, gx3, . . . , gxn, gx1) = ggx2,

...
g(F (xn, x1, x2, . . . , xn−1)) = F (gxn, gx1, gx2, . . . , gxn−1) = ggxn.

Now, put gx1 = u1, gx2 = u2, . . . , gxn = un, then above inequality turns into
F (u1, u2, u3, . . . , un) = gu1,
F (u2, u3, . . . , un, u1) = gu2,

...
F (un, u1, u2, . . . , un−1) = gun.

(3.32)

Hence, (u1, u2, u3, . . . , un) is an n-tupled coincidence point of F and g. Now, put
y1 = u1, y2 = u2, . . . , yn = un in (3.31), we get

gx1 = gu1, gx2 = gu2, . . . , gxn = gun.

This gives,
gu1 = u1, gu2 = u2, . . . , gun = un. (3.33)

From (3.32) and (3.33), we get
F (u1, u2, u3, . . . , un) = gu1 = u1,
F (u2, u3, . . . , un, u1) = gu2 = u2,

...
F (un, u1, u2, . . . , un−1) = gun = un.

Thus, (u1, u2, u3, . . . , un) is n-tupled common fixed point of F and g. To prove the
uniqueness, assume that (v1, v2, v3, . . . , vn) is an another n-tupled common fixed
point of F and g. From (3.31), we obtain

gu1 = u1 = gv1 = v1,
gu2 = u2 = gv2 = v2,

...
gun = un = gvn = vn.

And this makes end to the proof.



338 Thai J. Math. 17 (2019)/ D.K. Singh et al.

Following example establishes the usability of Theorem 3.1.

Example 3.3. Let X = R be equipped with the G-metric defined by
G(x, y, z) = max{|x− y|, |y − z|, |z − x|},
for all x, y, z ∈ X and the order � defined by x � y ⇔ x ≤ y.
Then (X,G,≤) is a complete partially ordered G-metric space.
Take ψ = 22t

23 for all t ∈ [0,∞).
Consider the (continuous) mapping F : Xn → X given by

F (x1, x2, x3, . . . , xn) =
x1 − 2x2 + 3x3 − . . .− nxn

2n(n+ 1)

for all (x1, x2, x3, . . . , xn) ∈ X and n ≥ 1. And the mapping g : X → X given by
gx = x

2 .
Clearly F has the mixed g-monotone property, g is continuous and commutes with
F and F (Xn) ⊆ g(X).
Then for (x1, x2, . . . , xn), (y1, y2, . . . , yn), (z1, z2, . . . , zn) ∈ X ,
with gx1 ≥ gy1 ≥ gz1, gx2 ≤ gy2 ≤ gz2, . . . , gxn ≤ gyn ≤ gzn, we have

ψ

(
G
(
F (x1, x2, x3, . . . , xn), F (y1, y2, y3, . . . , yn), F (z1, z2, z3, . . . , zn)

))

= ψ

(
G
(x1 − 2x2 + 3x3 − . . .− nxn

2n(n+ 1)
,
y1 − 2y2 + 3y3 − . . .− nyn

2n(n+ 1)
,

z1 − 2z2 + 3z3 − . . .− nzn

2n(n+ 1)

))

= ψ

(∣∣∣ (x1 − 2x2 + 3x3 − . . .− nxn)− (z1 − 2z2 + 3z3 − . . .− nzn)

2n(n+ 1)

∣∣∣)

=
22

23

(∣∣∣ (gx1 − gz1)− 2(gx2 − gz2) + 3(gx3 − gz3)− . . .− n(gxn − gzn)

n(n+ 1)

∣∣∣)

≤ 22

23n(n+ 1)

(
|gx1 − gz1|+ 2|gx2 − gz2|+ 3|gx3 − gz3|+ ...+ n|gxn − gzn|

)
≤ 11

23

(
max{|gx1 − gz1|, |gx2 − gz2|, |gx3 − gz3|, . . . , |gxn − gzn|}

)
=

11

23

(
max{G(gx1, gy1, gz1), G(gx2, gy2, gz2), G(gx3, gy3, gz3),

. . . , G(gxn, gyn, gzn)}
)

≤ ψ
(

max{G(gx1, gy1, gz1), G(gx2, gy2, gz2), G(gx3, gy3, gz3),

. . . , G(gxn, gyn, gzn)}
)
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− φ
(

max{G(gx1, gy1, gz1), G(gx2, gy2, gz2), G(gx3, gy3, gz3),

. . . , G(gxn, gyn, gzn)}
)
.

Hence, inequality (3.1) of Theorem 3.1 is satisfied with the choice of φ(t) = 11t
23 and

φ(t) = 10t
23 . Finally, we assert that all the conditions of Theorem 3.1 are satisfied.

Clearly, (0, 0, 0, . . . , 0) is an n-tupled unique common fixed point of F and g.

Corollary 3.4. Let (X,�) be a partially ordered set and suppose that there exists
a G-metric on X such that (X,G) is a complete G-metric space. Let F : Xn →
Xand g : X → X be two mappings on X. Assume that there exists k ∈ [0, 1) such
that for,
(x1, x2, . . . , xn), (y1, y2, . . . , yn), (z1, z2, . . . , zn) ∈ X, we have

G(F (x1, x2, . . . , xn), F (y1, y2, . . . , yn), F (z1, z2, . . . , zn))

≤ k.max{G(gx1, gy1, gz1), G(gx2, gy2, gz2), . . . , G(gxn, gyn, gzn)},

with gx1 � gy1 � gz1, gx2 � gv2 � gz2, . . .,gxn � gvn � gzn. Suppose that F has
the mixed g-monotone property, F (Xn) ⊆ g(X), g is continuous and commutes
with F. Also, assume that, either

(a) F is continuous, or

(b) X has the following properties:

(i) if a non-decreasing sequence {xn} is such that xn → x, then xn � x for all n;

(ii) if a non-increasing sequence {yn} is such that yn → y, then y � yn for all n.
If there exist x10, x

2
0, x

3
0, . . . , x

n
0 ∈ X such that

gx10 � F (x10, x
2
0, x

3
0, . . . , x

n
0 ),

F (x20, x
3
0, . . . , x

n
0 , x

1
0) � gx20,

...
F (xn0 , x

1
0, x

2
0, . . . , x

n−1
0 ) � gxn0 .

Then F and g have an n-tupled coincidence point in X.

Proof. It is sufficient to take ψ(t) = t and φ(t) = (1− k)t for all t ≥ 0 in Theorem
3.1.

Corollary 3.5. Let (X,�) be a partially ordered set and suppose that there exists
a G-metric on X such that (X,G) is a complete G-metric space. Let F : Xn →
Xand g : X → X be two mappings on X. Assume that there exists k ∈ [0, 1) such
that for,
(x1, x2, . . . , xn), (y1, y2, . . . , yn), (z1, z2, . . . , zn) ∈ X, we have

G(F (x1, x2, . . . , xn), F (y1, y2, . . . , yn), F (z1, z2, . . . , zn))

≤ k

n

(
G(gx1, gy1, gz1) +G(gx2, gy2, gz2) + . . .+G(gxn, gyn, gzn)

)
,
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with gx1 � gy1 � gz1, gx2 � gv2 � gz2, . . .,gxn � gvn � gzn. Suppose that F has
the mixed g-monotone property, F (Xn) ⊆ g(X), g is continuous and commutes
with F. Also, assume that, either

(a) F is continuous, or

(b) X has the following properties:

(i) if a non-decreasing sequence {xn} is such that xn → x, then xn � x for all n;

(ii) if a non-increasing sequence {yn} is such that yn → y, then y � yn for all n.
If there exist x10, x

2
0, x

3
0, . . . , x

n
0 ∈ X such that

gx10 � F (x10, x
2
0, x

3
0, . . . , x

n
0 ),

F (x20, x
3
0, . . . , x

n
0 , x

1
0) � gx20,

...
F (xn0 , x

1
0, x

2
0, . . . , x

n−1
0 ) � gxn0 .

Then F and g have an n-tupled coincidence point in X.

Proof. We have

max
{
G(gx1, gy1, gz1), G(gx2, gy2, gz2), . . . , G(gxn, gyn, gzn)

}
≤ G(gx1, gy1, gz1) +G(gx2, gy2, gz2) + . . .+G(gxn, gyn, gzn)

≤ nmax{G(gx1, gy1, gz1), G(gx2, gy2, gz2), . . . , G(gxn, gyn, gzn)}.

gx1 � gy1 � gz1, gx2 � gv2 � gz2, . . .,gxn � gvn � gzn.
Therefore, Corollary 3.5 follows from Corollary 3.4.

Remark 3.6. In Theorem 3.1, if we restrict F : X × X → X, then we obtain
Theorem 3.1 and 3.2 by Yeol Je Cho et al. in [13].

Remark 3.7. Theorem 3.1 and 3.2 of B.S. Choudhury and P. Maity [14] are
particular case of Corollary 3.5 by taking n = 2 and g = I.

Remark 3.8. Corollary 3.1 and 3.2 of H. Aydi et al. [15] are particular case of
Corollary 3.5 by taking n = 2.

Remark 3.9. Theorem 3.1 and 3.2 of H. Nashine [16] are particular case of
Corollary 3.5 by taking n = 2 and restricting k ∈ [0, 12 ).

Remark 3.10. Corollary 2.2 of Z. Mustafa [17] is a particular case of Corollary
3.5 by taking n = 4.

Remark 3.11. In Theorem 3.1, if we take n = 2 and g = I then we obtain
Theorem 2.1 and 2.2 of H. Lee [18].
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