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1 Introduction

In 1966, Hartman-Stampacchia [1] were interested in studying the variational
inequalites. After that it have been widely studied, since it covered diverse disci-
plines such as partial differential equations, optimal control, optimization, math-
ematical programming, mechanics, and finance (see [2–7]). So, in 1990s the vari-
ational inequality problem became more and more important in nonlinear anal-
ysis and optimization. Several methods for solving variational inequalities, fixed
point problems and zeros of monotone operators were proposed by many authors,
see [8–11].

Throughout this paper, let N and R be the set of positive integers and real
numbers, respectively. Let H be a real Hilbert space with the inner product 〈·, ·〉
and norm ‖ · ‖. Let C be a nonempty closed convex subset of H. The letter I
stands for the identity mapping on H. For a given sequence {xn} in H, we denote
the strong convergence and the weak convergence of {xn} to x ∈ H by xn → x
and xn ⇀ x, respectively. We also denote ωw(xn) is the set of all weak cluster
point of {xn}.

A mapping F : H → H is called strongly monotone if there exists η ∈ R with
η > 0 such that

〈Fx− Fy, x− y〉 ≥ η‖x− y‖2, ∀x, y ∈ H.

Such F is called a η-strongly monotone mapping.
A mapping F : H → H is called inverse strongly monotone continuous if there

exists α ∈ R with α > 0 such that

〈Fx− Fy, x− y〉 ≥ α‖Fx− Fy‖2, ∀x, y ∈ H.

Such F is called α-inverse strongly monotne.
A mapping F : H → H is called L-Lipschitz continuous if there exsits a

positive number L such that

‖Fx− Fy‖ ≤ L‖x− y‖, ∀x, y ∈ H.

We can esaily see that if F is an α-inverse strongly monotone mapping, then F
is 1

α -Lipschitz continuous. If L = 1, such F is called a nonexpansive mapping. A
fixed point of a mapping T : H → H is a point x ∈ H such that Tx = x. The set
of all fixed points of T is denoted by Fix(T ). It is well known that if T : H → H
is a nonexpansive mapping, then Fix(T ) is closed convex subset of H.

A self-mapping T of a subset C of a normed linear space is said to be quasi-
nonexpansive provided T has at least one fixed point in C, and if p ∈ C is any
fixed point of T then ‖Tx− p‖ ≤ ‖x− p‖ holds for all x ∈ C.

The Varational Inequality Problem (VIP) is to find x∗ ∈ C such that

〈Fx∗, x− x∗〉 ≥ 0, ∀x ∈ C, (1.1)

where C is a nonempty closed convex subset of H. We denote the set of solutions
of variational inequality problem (1.1) by V I(C,F ).
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It is known that if F is a strongly monotone and Lipschitzian mapping on C,
then V I(C,F ) has a unique solution. It is well known that a variational inequality
with respect to a closed convex subset in a Hilbert space V I(C,F ) is equivalent
to a fixed-point equation

u∗ = PC(u∗ − µF (u∗)) (1.2)

where PC is the (nearest point) projection from H onto C; i.e.,

PCx = argmin
y∈C

‖x− y‖, for x, y ∈ H,

and where µ ≥ 0 is an arbitrarily fixed constant. Then it can be sloved by using
the fixed-point method. Nevertheless, the formulation (1.2) concerns about the
projection PC , which is really hard to calculate because of the complication of the
convex set C.

In order to overcome this problem caused by the metric projection, Yamada
[12] made a hybrid steepest-descent method in 2001, it is new iterative algorithm
for solving (1.1). His algorithm state as follows.

Let T : H → H be a nonexpansive mapping with Fix(T ) 6= ∅. Suppose
that a mapping F : H → H is L-Lipschitzian and η-strongly inverse strongly
monotone over T (H). Then with any x0 ∈ H, any µ ∈ (0, 2η

L2 ) and any sequence
{αn}n≥1 ⊂ (0, 1] satisfying the condition below:

(L1) lim
n→∞

αn = 0,

(L2)
∑
n≥1 αn =∞,

(L3) lim
n→∞

αn−αn+1

α2
n+1

= 0,

generate a sequence {xn} by the following:

xn+1 := Txn − αn+1µF (Txn), n ≥ 0. (1.3)

Then, he showed that {xn} converges strongly to the unique solution of V I(C,F ).

In the case where C =
⋂N
i=1 Fix(Ti) 6= ∅ with N ∈ N and Ti : H → H is

nonexpansive. He also offered similarly algorithm,

xn+1 := T[n+1]xn − αn+1µF (T[n+1]xn), n ≥ 0, (1.4)

where T[n] = Tn mod N with the mod function taking values in {1, 2, . . . , N},
µ ∈ (0, 2η

L2 ) and the sequence {αn} satisfies condition (L1),(L2),(L4) and (L5),
where

(L4)
∑∞
n=1 ‖αn − αn+N‖ <∞,

(L5) C = Fix(T1T2 · · ·TN−1TN ) = Fix(TNT1 · · ·TN−2TN−1) = . . .
= Fix(T2T3 · · ·TNT1).
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Yamada [12] proved that the sequence {xn}n≥0 defined by (1.4) converges strongly
to the unique solution x∗ of (1.1).

Later, in 2003, Xu and Kim [13] could replaced condition (L3) by the condition

(L3)′ lim
n→∞

αn

αn+1
= 1, or equivalently, lim

n→∞
αn−αn+1

αn+1
= 0.

Clearly that condition (L3)′ is strictly weaker than that of (L3), including with
conditions (L1) and (L2). In 2005, Yamada and Ogura [14] proposed Hybrid
steepest descent method for variational inequality problem over the fixed point set
of certain quasi-nonexpansive mappings.

Afterward, in 2010, Liu and Cui [15] employed weak condition (L4) used in [12]
and [13] by showing that if C is nonempty, then

C =

N⋂
i=1

Fix(Ti) = Fix(T1T2 · · ·TN−1TN ). (1.5)

In 2011, Boung and Duong [16] mixed the concept of the hybrid steepest-
descent method for variational inequalities with the Krasnosel’skii-Mann type al-
gorithm for fixed-point problems together turn into a new itertive algorithm to
solve (1.1).

In 2014, motivated by the [16], Zhou and Wang [17] developed an explicit iter-
ative algorithm which is simpler than Boung and Duong’s algorithm to solve (1.1),

where the feasible set C =
⋂N
i=1 Fix(Ti) and prove a strong convergence theorem

in the absence of conditions (1.5), (L3), (L3)′, (L4) and (L5). To be precise, let

{Ti}Ni=1 be nonexpansive self-mappings of H such that C =
⋂N
i=1 Fix(Ti) 6= ∅. Let

{αn} and {ρin} be the same as before. For any point x0 ∈ H, define a sequence
{xn}n ≥ 0 in the following:

xn+1 = (I − αnµF )TnNT
n
N−1 . . . T

n
1 xn, n ≥ 0, (1.6)

where µ ∈ (0, 2η/L2) and Tni := (1− ρin)I + ρinTi, for i = 1, . . . N .

Recently, in 2017, Tian and Jiang [18] interested in the mapping F which is
inverse strongly monotone mapping based on Zhou and Wang’s algorithm for case
N = 1. i.e.,

xn+1 = (I − αnµF )[(1− ρn)I + ρnT ](xn), for each n ∈ N. (1.7)

They modified the conditions of parameters in [17] and weaken the condition of
F . They got a weak convergence theorem result for zero points of inverse strongly
monotone mapping and fixed points of nonexpansive mapping. The weak limit of
their algorithm is also a solution of the variational inequality problem (1.1).

In this paper, we extend a new iterative algorithm in [18] for a finite qusi-
nonexpansive mapping Ti(i = 1, . . . , n). In case of Ti is a nonexpansive mapping
for i = 1, . . . , n, it will be our corollary.
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2 Preliminaries

In this section, we introduce some useful lemmas which can be used for the
main result.

Lemma 2.1. [19] Let H be a real Hilbert space. Let {xi, i = 1, 2, ..., n} ⊂ H. For
αi ∈ (0, 1), i = 1, 2, ..., n such that

∑n
i=1 αi = 1. Then the following identity holds:∥∥∥∥∥

n∑
i=1

αixi

∥∥∥∥∥
2

=

n∑
i=1

αi‖xi‖2 −
n∑

i,j=1,i6=j

αiαj‖xi − xj‖2.

Definition 2.2. Let C be a closed convex subset of a metric space (X, d). A
mapping T : C → C is said to be semi-compact if for a sequence {xn} in C
with lim

n→∞
d(xn, Txn) = 0, there exists a subsequence {xnj

} of {xn} such that

xxj
→ p ∈ C

Definition 2.3. A point x ∈ C is said to be a zero point of T if Tx = 0. We
denote T−10 = {x ∈ C : Tx = 0}. We say that T−10 the set of zero point of T .

It is easy to see that T−10 = Fix(I −µT ) for all µ > 0 where I is the identity
mapping.

Lemma 2.4. [20] Let H be a real Hilbert space. Let T : H → H be a mapping.

1. T is nonexpansive if and only if I − T is 1
2 -inverse strongly monotone.

2. If T is ν-inverse strongly monotone, then for γ > 0, γT is ν
γ -inverse strongly

monotone,

3. For α ∈ (0, 1), T is α-averaged if and only if I − T is 1
2α -inverae strongly

monotone.

Lemma 2.5. [21] Let H be a real Hilbert space and T : H → H is a nonexpansive
mapping with Fix(T ) 6= ∅. If {xn} is a sequence in H weakly converging to x and
if {(I − T )xn} converges strongly to y, then (I − T )x = y.

Lemma 2.6. [22] Let C be a nonempty closed convex subset of a real Hilbert space
H. Let {xn} be a sequence in H satisfying the properties:

1. lim
n→∞

‖xn − u‖ exists for each u ∈ C;

2. ωw(xn) ⊂ C.

Then {xn} converges weakly to a point in C.

Lemma 2.7. [23] Let C be a nonempty closed convex subset of a real Hilbert space
H. Let {xn} be a sequence in H. Suppose that,

‖xn+1 − u‖ ≤ ‖xn − u‖, ∀u ∈ C,

for every n = 1, 2, . . . . Then, the sequence {PCxn} converges strongly to a point
in C.
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3 Main Results

In this section, we demonstrate our main results. First of all, we need to
propose the remark as the following:

Remark 3.1. If z ∈
⋂N
i=1 Fix(Ti)∩F−10 for N ∈ N, then z ∈ V I(

⋂N
i=1 Fix(Ti), F ).

Proof. Let z ∈
⋂N
i=1 Fix(Ti) ∩ F−10. Then we have z = Tiz for all i and 0 = Fz.

It follows that 〈Fz, x− z〉 = 〈0, x− z〉 = 0 for all x ∈
⋂N
i=1 Fix(Ti).

This remark shows that if we can show that z ∈
⋂N
i=1 Fix(Ti)∩F−10 for some

z ∈ C where C is a nonempty closed convex subset of a Hilbert space H, then z
is a solution of variational inequalities on common fixed points of nonexpansive
mappings with respect to mapping F , i.e., z ∈ V I(

⋂N
i=1 Fix(Ti), F ).

Now, we prove the first main result.

Theorem 3.2. Let H be a real Hilbert space and {Ti}Mi=1 be a finite family of
quasi-nonepansive mappings of H into itself such that each I − Ti is a demiclosed
at zero. Let F be a k-inverse strongly monotone mapping of H into itself. Assume
that Ω :=

⋂M
i=1 Fix(Ti)∩F−10 6= ∅. Let {xn} and {yn} be sequences generated by

x1 = x ∈ H and {
yn = λnxn +

∑M
i=1 λn,iTixn

xn+1 = (I − µαnF )yn
(3.1)

for each n ∈ N where lim infn→∞ λn,i > 0, λn +
∑M
i=1 λn,i = 1, {λn} ⊂ [a, b] for

some a, b ∈ (0, 1) and {µαn} ⊂ [c, d] for some c, d ∈ (0, 2k). Then

(i) ‖xn+1 − u‖ ≤ ‖xn − u‖ for all n ∈ N and u ∈ Ω.

(ii) ‖xn − Tixn‖ → 0 as n→∞ for all i ∈ N.

(iii) ωw(xn) ⊂ F−10.

(iv) the sequence {xn} converges weakly to a point z ∈ Ω where z = limn→∞ PΩxn
and z is also a special point in V I(

⋂M
i=1 Fix(Ti), F ).

Proof. Let u ∈
⋂M
i=1 Fix(Ti) ∩ F−10. For each n ∈ N, we have

‖yn − u‖ =‖λnxn +

M∑
i=1

λn,iTixn − u‖

≤λn‖xn − u‖+

M∑
i=1

λn,i‖Tixn − u‖

≤λn‖xn − u‖+

M∑
i=1

λn,i‖xn − u‖

=‖xn − u‖.
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From (3.1) and above inequality, we have

‖xn+1 − u‖2 =‖(I − µαnF )yn − u‖2

=‖yn − µαnFyn − u+ µαnFu‖2

≤‖yn − u‖2 + µ2α2
n‖Fyn − Fu‖2 − 2µαn < yn − u, Fyn − Fu >

≤‖yn − u‖2 + µ2α2
n‖Fyn − Fu‖2 − 2µαnk‖Fyn − Fu‖2

=‖yn − u‖2 + µαn(µαn − 2k)‖Fyn − Fu‖2

≤‖yn − u‖2 ≤ ‖xn − u‖2.

So (i) had been proved. This implies that there exists c ∈ R be such that

c = lim
n→∞

‖xn − u‖ = lim
n→∞

‖yn − u‖,

and the sequence {xn} and {yn} are bounded. On the other hand, by Lemma 2.1
we have

‖yn − u‖2 =‖λnxn +

M∑
i=1

λn,iTixn − u‖2

=‖λn(xn − u) +

M∑
i=1

λn,i(Tixn − u)‖2

≤λn‖(xn − u)‖2 +

M∑
i=1

λn,i‖Tixn − u‖2 − λnλn,l‖xn − Tlxn‖2

≤(λn +

N∑
i=1

λn,i)‖(xn − u)‖2 − λnλn,l‖xn − Tlxn‖2, for l = 1, 2, . . . ,M.

For l = 1, 2, . . . ,M , we get

λnλn,l‖xn − Tlxn‖2 ≤ ‖xn − u‖2 − ‖yn − u‖2.

It follows that

xn − Tixn → 0, n→∞. (3.2)

So (ii) is proved.
Next we prove (iii), by making some tools as follows. Let x ∈ ωw(xn). Then

there exits a subsequence {xnj
} of {xn} such that {xnj

} ⇀ x. Since I − Ti
is demiclosed at zero, we obtain that x ∈ Fix(Ti) for all i = 1, 2, . . . , n. So x ∈⋂M
i=1 Fix(Ti). Hence ωw(xn) ⊂

⋂M
i=1 Fix(Ti). Now we show that ωw(xn) ⊂ F−10.

Setting βn = µαn

2k and V = I − 2kF . Then V is nonexpansive (By Lemma 2.4)
and

xn+1 =(I − µαnF )yn + βnyn − βnyn
=yn − 2kβnFyn + βnyn − βnyn
=(I − βn)yn + βn(I − 2kF )yn

=(1− βn)yn + βnV yn. (3.3)
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Then, we have

‖xn+1 − u‖2 = ‖(1− βn)yn + βnV yn − u‖2

= ‖(1− βn)(yn − u) + βn(V yn − u)‖2

≤ (1− βn)‖yn − u‖2 + βn‖V yn − V u‖2 − βn(1− βn)‖yn − V yn‖2

≤ ‖yn − u‖2 − βn(1− βn)‖yn − V yn‖2,

which implies

βn(1− βn)‖yn − V yn‖2 ≤ ‖yn − u‖2 − ‖xn+1 − u‖2.

It follows that

yn − V yn → 0, n→∞. (3.4)

From (3.2) and Lemma 2.1, we have

‖xn − yn‖2 = ‖xn − (λnxn +

M∑
i=1

λn,iTixn)‖2

= ‖
M∑
i=1

λn,ixn −
M∑
i=1

λn,iTixn‖2

= ‖
M∑
i=1

λn,i(xn − Tixn)‖2

≤
M∑
i=1

λn,i‖xn − Tixn‖2 −
M∑

i,l=1,i6=l

λn,iλn,l‖xn − Tixn‖2

≤
M∑
i=1

λn,i‖xn − Tixn‖2 → 0, as n→∞.

Hence

xn − yn → 0, n→∞. (3.5)

Let z ∈ ωw(xn), there exists subsequence {xnj
} of {xn} converges weakly to

z. We may assume that αnj
→ α for some α such that µα ∈ [c, d]. Since xnj

⇀ z
and (3.5), we have ynj ⇀ z . Thus we can show that ynjp

⇀ z.

Next we show that z ∈ F−10. Since {ynj
} is bounded sequence and F is

1
k -continuous Lipschiz, there is K > 0 such that ‖ynj

‖ ≤ K for all j ∈ N and

‖Fynj‖ ≤ ‖Fynj − Fx1‖+ ‖Fx1‖

≤ 1

k
‖ynj

− x1‖+ ‖Fx1‖

≤ 1

k
K +

1

k
‖x1‖+ ‖Fx1‖.
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Hence {Fynj} is bounded. It is noted that

‖(I − µαnjF )ynj − (I − µαF )ynj‖ ≤ |µαnj − µα|‖Fynj‖

From αnj
→ α, we obtain

‖(I − µαnj
F )ynj

− (I − µαF )ynj
‖ → 0, j →∞. (3.6)

From (3.3) and (3.4), we get

‖yn − xn+1‖ = ‖yn − [(1− βn)yn + βnV yn]‖ = βn‖V yn − yn‖ → 0, n→∞.

Hence yn − xn+1 → 0, as n→∞. From (3.1), we get

‖ynj − (I − µαnjF )ynj‖ → 0, j →∞. (3.7)

Since

‖ynj
− (I − µαF )ynj

‖ ≤ ‖ynj
− (I − µαnj

F )ynj
‖

+ ‖(I − µαnj
F )ynj

− (I − µαF )ynj
‖,

by (3.6) and (3.7), we get

‖ynj
− (I − µαF )ynj

‖ → 0, j →∞.

It follows that [I − (I − µαF )]z = 0 and so z = (I − µαF )z, which implies

z ∈ Fix(I − µαF ) = F−10.

Thus

ωw(xn) ⊂
M⋂
i=1

Fix(Ti)
⋂
F−10.

From Lemma 2.6, we obtain that

xn ⇀ z ∈
M⋂
i=1

Fix(Ti)
⋂
F−10,

and Lemma 2.7 assures that

z = lim
n→∞

P⋂M
i=1 Fix(Ti)

⋂
F−10xn.

From Remark 3.1, we also obtain that z ∈ V I(
⋂M
i=1 Fix(Ti), F ). Now we have

been already proved (iii) and (iv).
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Theorem 3.3. Let H, F , {Ti}Mi=1, Ω, {λn}, {λn,i} be the same as Theorem 3.2.
Let {xn} be sequence generated by (3.1). Then

(i) ‖xn+1 − u‖ ≤ ‖xn − u‖ for all n ∈ N and u ∈ Ω.

(ii) ‖xn − Tixn‖ → 0 as n→∞ for all i ∈ N.

(iii) ωw({x}) ⊂ F−10.

(iv) If Ti is semi-compact for some i ∈ N, then the sequence {xn} converges

strongly to a point z ∈ Ω and z is also a special point in V I(
⋂M
i=1 Fix(Ti), F ).

Proof. Let u ∈
⋂M
i=1 Fix(Ti) ∩ F−10.

(i) It follows directly from Theorem 3.2(i) that ‖xn+1−u‖ ≤ ‖xn−u‖ for all n ∈ N
and u ∈ Ω. It follows that lim

n→∞
‖xn − u‖ exists.

Using the same proof as in Theorem 3.2(ii) and (iii), we obtain (ii) and (iii).
(iv), Now, suppose that Ti is semi-compact for some i ∈ N. Then there exists
subsequence xnj

of {xn} such that xnj
→ z ∈ H. Next, we will show that

z ∈
⋂M
i=1 Fix(Ti). For i ∈ N, we have

‖z − Tiz‖ ≤‖z − xnj
‖+ ‖xnj

− Tixnj
‖+ ‖Tixnj

− Tiz‖
≤‖z − xnj

‖+ ‖xnj
− Tixnj

‖+ ‖xnj
− z‖ → 0 as j →∞,

hence which implies z = Tiz, z ∈
⋂M
i=1 Fix(Ti). Now, we show that z ∈

⋂M
i=1 Fix(Ti)∩

F−10. Using the same proof as in Theorem 3.2, we can show that

xn − yn → 0, n→∞, (3.8)

and there is a subsequence {ynj
} of {yn} such that

‖ynj − (I − µαF )ynj‖ → 0, j →∞. (3.9)

Futhermore, αnjp
→ α, for some α ∈ [ cµ ,

d
µ ]. It follows from (3.8), (3.9) and

nonexpansitivity of I − µαnjp
F that

‖z − (I − µαnjp
F )z‖ ≤‖z − xnjp

‖+ ‖xnjp
− (I − µαnjp

F )xnjp
‖

+ ‖(I − µαnjp
F )xnjp

− (I − µαnjp
F )z‖

≤2‖z − xnjp
‖+ ‖xnjp

− (I − µαnjp
F )xnjp

‖ → 0 as p→∞.

Hence ‖z − (I − µαnjp
F )z‖ → 0, as p → 0, which implies (I − µαF )z = z.

So z ∈ Fix(I − µαnjp
F ) = F−10. Since lim

n→∞
‖xn − z‖ exists and lim

n→∞
‖xnj

−
z‖ = 0, then lim

n→∞
‖xn − z‖ = 0. Moreover, by Remark 3.1 we also get that

z ∈ V I(
⋂M
i=1 Fix(Ti), F ). Therefore the proof is complete.

The following results shows necessary and sufficient conditions for strong con-
vergence of the proposed algorithm.
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Theorem 3.4. Let H,{Ti}Mi=1, F , Ω, {λn}, {λn,i} be the same as Theorem 3.3.
Let {xn} be a sequence generated by (3.1). Then {xn} converges strongly to z ∈ Ω
if and only if lim infn→∞ d(xn,Ω) = 0.

Proof. (⇒) The necessity is obvious.

(⇐) Conversely, assume that lim infn→∞ d(xn,Ω) = 0. By Theorem 3.2(i), we
have ‖xn+1 − p‖ ≤ ‖xn − p‖,∀p ∈ Ω. It follows that d(xn+1,Ω) ≤ d(xn,Ω). Thus
lim
n→∞

d(xn,Ω) exists. By our hypothesis, we get limn→∞ d(xn,Ω) = 0. Next show

that {xn} is Cauchy sequence in H. Let ε > 0 be arbitrary. Since lim
n→∞

d(xn,Ω) =

0, there exists n0 such that for all n ≥ n0, d(xn,Ω) < ε
3 . Thus inf{‖xn0 − p‖ : p ∈

Ω} < ε
3 . Then there exists p∗ ∈ Ω such that ‖xn0 − p∗‖ < ε

2 . For m,n ≥ n0, we
get

‖xn+m − xn‖ ≤ ‖xn+m − p∗‖+ ‖xn − p∗‖
≤ 2‖xn0 − p∗‖
< ε.

Thus {xn} is a Cauchy sequence in X. Hence lim
n→∞

xn = q for some q ∈ X.

By Theorem 3.2(ii) we have that lim
n→∞

‖xn − Tixn‖ = 0,∀i ∈ N. Since I − Ti is

demiclosed at 0, we obtain that q ∈ Fix(Ti) for all i ∈ N. Because xn → q, then
we have xn ⇀ q. So using the same prove as in Theorem 3.2(iii), we can show
that q ∈ F−10. Thus q ∈ Ω.

Now, we using Theorem 3.4 and add more condition to get the follwing results.

Corollary 3.5. Let H,{Ti}Mi=1, F , Ω be the same as Theorem 3.3. Assume that
there exists an increasing function f : [0,∞)→ [0,∞) with f(r) > 0 for all r > 0
such that

d(xn, Tixn) ≥ f(d(xn,Ω)) for some i ∈ N.

Then the sequence {xn} defined by (3.1) converges strongly to a point in Ω.

Proof. Assume that d(xn, Tixn) ≥ f(d(xn,Ω)) for some i ∈ N. By Theorem 3.2(ii),
we have xn − Tixn → 0, n → 0. It follows that lim

n→∞
d(xn,Ω) = 0. By Theorem

3.4, we obtain the desired result.

4 Numerical Example for Theorem 3.2

We now give some numerical example supporting our main result. Let H = R2

with the usual norm (‖ · ‖2). Define the mappings F : R2 → R2 by

F (x1, x2) = (x− 1, x2), ∀x1, x2 ∈ R.
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and define Ti : R2 → R2 from the example in [24] by

Ti(x1, x2) =

 (x1,
x2

3i
sin

1

x2
) if x2 6= 0,

(x1, 0) if x2 = 0,
i ∈ N,

for all x1, x2 ∈ R. Then we have F is 1-inverse strongly monotone mapping
and F−10 = {(1, 0)}, Ti are quasi-nonexpansive mapping for all i ∈ N and⋂M
i=1 Fix(Ti) = R× {0}. Define the real sequence {λn} and {λn,i} as follow:

λn =
1

3

(
n+ 1

n+ 2

)
, n = 1, 2, 3, . . .

and

λn,i =


1

3i+1

(
n+1
n+2

)
n > i;

1−
∑n
i=1

1
3i

(
n+1
n+2

)
n = i;

0 otherwise,

i ∈ N, n ∈ N,

That is,

λn,i =
1− 1

3

(
2
3

)
0 0 0 . . .

1
32

(
3
4

)
1−

[
1
3

(
3
4

)
+ 1

32

(
3
4

)]
0 0 . . .

1
32

(
4
5

)
1
33

(
4
5

)
1−

[
1
3

(
4
5

)
+ 1

32

(
4
5

)
+ 1

33

(
4
5

)]
0 . . .

...
...

...
...

...

 ,

We see that lim
n→∞

λn = 1
3 and lim

n→∞
λn,i = 1

3i+1 . Now, let our starting point is

x1 = (3, 2) and let {xn} be the sequence generated by (3.1). Suppose that xn is
in the form xn = (xn1 , x

n
2 ), where xn1 , x

n
2 ∈ R. The critrion for stopping our testing

method is taken as : ‖xn − (1, 0)‖2 < 10−6. Choose µαn = 0.1. The value of xn
and ‖xn − (1, 0)‖2 are shown in Table 1.

Table 1: Numerical result for Theorem 3.2
n xn1 xn2 ‖xn − (1, 0)‖2
1 3.00000000 2.00000000 2.82842712
2 2.80000000 0.62373191 1.90500433
3 2.62000000 0.21826510 1.63463746
4 2.45800000 0.03234654 1.45835876
5 2.31220000 0.00688208 1.31221804
...

...
...

...
137 1.00000119 0.00000000 0.00000011
138 1.00000107 0.00000000 0.00000011
139 1.00000096 0.00000000 0.00000009
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The graph below shows the relation between the absolute error (‖xn−(0, 1)‖2)
and number of iteration(n).

Figure 1: Graph for absolute errors of algorithm (3.1)

We observe from Table 1 that xn → (1, 0) ∈ Ω. We also note that the absolute
error bounded of ‖x13 − (1, 0)‖2 < 10−6 and we can use

x139 = (1.00000096, 0.00000000)

to approximate the solution of (3.2) with accuracy at least 6 D.P.
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