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Abstract : In this paper, we first give conditions on the integer coefficients a, b, c
of the quadratic equations of the form ax2+bx+c = 0 and ax2+bx−c = 0 so that
their solutions are rational. Moreover, the coefficients a, b, c are in an arithmetic
progression with a common difference d. Then, some interesting properties of
those rational solutions are shown. Finally, the programming codes in scilab are
given in order to generate those coefficients once the common difference d is given.
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1 Introduction

It is well known that once we are given a polynomial function, the rational
roots theorem can tell how those rational roots, if exist, of the function are like.
The problem is we do not know whether the rational roots exist or not until we
start solving it. On the other hand, another interesting question arises that how
can we give a polynomial function that guarantees the rational roots. This question
brought the work of this paper. In particular, under some nice conditions on the
coefficients of the quadratic equation, one can guarantee rational roots.
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Given a, b, c ∈ N with a 6= 0, the quadratic equations of the form

p(x) = ±ax2 ± bx± c = 0 (1.1)

have different types of roots which are easily determined by the quadratic for-

mula, x =
−b±

√
b2 − 4ac

2a
. For example, p1(x) = x2 + 2x + 4 = 0 has complex

roots, while p2(x) = x2 + 2x − 4 = 0 has real roots but not rational. While
p3(x) = x2 + 2x − 3 = 0 and p4(x) = 66c2 + 68x − 70 = 0 have rational roots.
Surprisingly, the coefficients of both p3(x) and p4(x), (1, 2, 3) and (66, 68, 70), are
in arithmetic progression with the common difference 1 and 2, respectively. We
suddenly wondered if there are other quadratic equations in (1.1) such that the
roots are rational and (a, b, c) is in arithmetic progression with the common differ-
ence d ∈ Z. Before searching for the answer, let us notice that the equation (1.1)
can be classified into 8 different equations. Assuming a, b, c ∈ N∪ {0} with a 6= 0,
one has

p1(x) = ax2 + bx+ c = 0 p2(x) = ax2 + bx− c = 0

p3(x) = ax2 − bx+ c = 0 p4(x) = ax2 − bx− c = 0 (1.2)

p5(x) = −ax2 + bx+ c = 0 p6(x) = −ax2 + bx− c = 0

p7(x) = −ax2 − bx+ c = 0 p8(x) = −ax2 − bx− c = 0

Note that p1 = −p8, p2 = −p7, p3 = −p6, and p4 = −p5 and also if r is a root
of p1 and s is a root of p2, then −r and −s are roots of p3 and p4, respectively.
Moreover, for p∗1 = cx2 + bx+ a = 0 and p∗2 = cx2 + bx− a = 0, if the two nonzero
rational r and s are the respective roots of p1 and p2 then it is easy to show that
− 1

r and − 1
s are a root of p∗1 and p∗2, respectively.

Now, let A be the set of all arithmetic progression triples (a, b, c) with a ∈ N
and the common difference d ∈ Z.

Thus, it suffices to consider only the equations of the forms:

p1(x) = ax2 + bx+ c = 0

p2(x) = ax2 + bx− c = 0
(1.3)

where (a, b, c) ∈ A. In the case of the common difference d = 1, Schwartzman [1]
has already shown that there are infinitely many quadratic equations of the form
p2 such that the roots are rational. In his paper, Schwartzman did not mention the
form p1 because for this particular case, d = 1, all the roots are complex. Also, he
claimed without proof that the coefficients b of p2 are necessarily elements of the
Fibonacci numbers. Otherwise, p2 = 0 could not have rational roots. However,
the condition is not sufficient. For example, 2x2 + 3x− 4 = 0 has no rational root
even though 3 is an element of the Fibonacci numbers.

In this paper, based on Schwartzman’s conjecture, we proved it in a more
general result for the quadratic equation of the form p2. We also showed that
under some conditions on d the quadratic equation of the form p1 can possibly



Quadratic Polynomials with Rational Roots ... 295

have rational roots. In fact, we proved that once the common difference d is given,
there are only a finite number of elements (a, b, c) ∈ A such that the quadratic
equation of the form p1 has rational roots. In other words, the set

Pd = {(a, b, c) ∈ A | q(x) = ax2 + bx+ c = 0 has rational roots }

is finite. In addition, once the common difference d is given, the upper bound of
the number n(Pd) can be found. Finally, the algorithms based on the scilab code
are given for generating all possible quadratic equations of the form p1 and p2 for
a given d. In particular, in the case of p1 the least upper bound of n(Pd) is also
confirmed by the algorithms.

2 Main Results

This section gives the conditions on which p1(x) = 0 and p2(x) = 0 have
rational roots and following by some interesting properties of those solutions.

2.1 Rational Roots of p2(x) = 0

Since (a, b, c) ∈ A, is in arithmetic progression with the common difference d
so that with a = n ∈ N, p2 can be written as

p2(x) = nx2 + (n+ d)x− (n+ 2d) = 0. (2.1)

The roots of p2 are rational if and only if the discriminant of p2 is a perfect square.
That is, for some M ∈ Z, one must have

(n+ d)2 + 4n(n+ 2d) = M2 or 5n2 + 10nd+ (d2 −M2) = 0 (2.2)

Solving equation (2.2) for n yields

n = −d±
√

4d2 +M2

5
. (2.3)

In order to get an integer radicand in equation (2.3), it is necessary to have

4d2 +M2 ≡ 0 mod 5

M2 ≡ d2 mod 5

M ≡ ±d mod 5.

(2.4)

Unfortunately, the condition (2.4) on M is necessary to have an integer radicand
but not sufficient to guarantee whether the radicand is perfect. Now, for each d,
let us consider the set

Md =

{
M ∈ N | M ≡ ±d mod 5 &

4d2 +M2

5
is a perfect square

}
.

We claim thatMd is an infinite set. To prove the claim, we first need the following
lemmas.
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Lemma 2.1. For each n, let Fn and Ln be a Fibonacci number and a Lucas
number, respectively. Then we have

L2
n = 5F 2

n + 4(−1)n, (2.5)

and hence for each d ∈ Z the formula (dLn)2 = 5(dFn)2 + 4d2(−1)n holds.

Proof. By the fundamental identities of Fibonacci and Lucas numbers

F 2
n − F 2

n−1 = Fn−1Fn + (−1)n and Ln = Fn+1 + Fn−1,

the proof is straightforward.

Then we have the following Corollary.

Corollary 2.2. For each k ∈ N and d ∈ Z, we have dL2k+1 ∈Md and hence Md

is an infinite set.

Proof. By Lemma 2.1, we have

(dL2k+1)2 = 5(dF2k+1)2 + 4d2(−1)2k+1 = 5(dF2k+1)2 − 4d2.

Let M = dL2k+1. Then (dF2k+1)2 =
M2 + 4d2

5
which implies that M ∈Md.

To prove the main theorem we need another following lemma.

Lemma 2.3. Given d ∈ Z, if 5x2 − 4d2 is a perfect square and x is divisible by d
then x = ±dF2k+1 for some k.

Proof. Let d ∈ Z. Assume that 5x2 − 4d2 is a perfect square and x is divisible by
d. Then there exists an integer k such that x = dk. Thus,

5x2 − 4d2 = 5(dk)2 − 4d2 = d2(5k2 − 4).

Since d2(5k2 − 4) is a perfect square, it forces 5k2 − 4 to be perfect. So that
5k2 − 4 = r2 for some positive integer r.

Next we will show that k = ±F2l+1 for some l. Consider the Pell’s equation

x2 − 5y2 = −4. (2.6)

One can show that, see e.g., [2] and [3], each integer solution of the equation (2.6)
is one of the forms

x1n + y1n
√

5 = ±(−1 +
√

5)(9 + 4
√

5)n

x2n + y2n
√

5 = ±(1 +
√

5)(9 + 4
√

5)n

x3n + y3n
√

5 = ±(4 + 2
√

5)(9 + 4
√

5)n
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where

x1n = ± (
√

5− 1)(9 + 4
√

5)n − (
√

5 + 1)(9− 4
√

5)n

2

y1n = ± (
√

5− 1)(9 + 4
√

5)n + (
√

5 + 1)(9− 4
√

5)n

2
√

5

x2n = ± (
√

5 + 1)(9 + 4
√

5)n − (
√

5− 1)(9− 4
√

5)n

2

y2n = ± (
√

5 + 1)(9 + 4
√

5)n + (
√

5− 1)(9− 4
√

5)n

2
√

5

x3n = ± (4 + 2
√

5)(9 + 4
√

5)n − (−4 + 2
√

5)(9− 4
√

5)n

2

y3n = ± (4 + 2
√

5)(9 + 4
√

5)n + (−4 + 2
√

5)(9− 4
√

5)n

2
√

5
.

We also know that the mth element in the Fibonaci sequence is

Fm =
1√
5

(
1 +
√

5

2

)m

− 1√
5

(
1−
√

5

2

)m

In particular, for m = 6n− 1;n ∈ N, one has

±F6n−1 = ±

 1√
5

(
1 +
√

5

2

)6n−1

− 1√
5

(
1−
√

5

2

)6n−1


= ± (
√

5− 1)(9 + 4
√

5)n + (
√

5 + 1)(9− 4
√

5)n

2
√

5

= ±y1n.

For m = 6n+ 1;n ∈ N, one has

±F6n+1 = ±

 1√
5

(
1 +
√

5

2

)6n+1

− 1√
5

(
1−
√

5

2

)6n+1


= ± (
√

5 + 1)(9 + 4
√

5)n + (
√

5− 1)(9− 4
√

5)n

2
√

5

= ±y2n.

For m = 6n+ 3;n ∈ N, one has

±F6n+3 = ±

 1√
5

(
1 +
√

5

2

)6n+3

− 1√
5

(
1−
√

5

2

)6n+3


= ± (4 + 2
√

5)(9 + 4
√

5)n + (−4 + 2
√

5)(9− 4
√

5)n

2
√

5

= ±y3n.
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Since 5k2 − 4 = r2 , it follows that (r, k) is a solution of the equation (2.6) and
hence k = ±ysn for some s ∈ {1, 2, 3}. This implies that x = ±dF2l+1 for some
l.

For Lemma 2.3, if x is not divisible by d, then it is not necessary that x =
dF2k+1. For example if d = 11 and x = 13, then it is obvious that 5(13)2−4(11)2 =
192 which is a perfect square but x 6= 11F2k+1 for all k.

Now we are ready to prove the main theorem.

Theorem 2.4. Let d ∈ Z and a, b, c, d ∈ N be such that (a, b, c) is in arithmetic
progression with the common difference d. If d| gcd(a, b, c) then p2(x) = ax2 +bx−
c = 0 has rational roots if and only if b = ±dF2k+1 for some k where Fn is a
Fibonacci number.

Proof. The converse part is true via Corollary 2.2. Now assume that p2(x) =
ax2 + bx− c = 0 has rational roots. Then the discriminant D is a perfect square.
That is, D = b2 + 4ac = 5n2 + 10dn + d2 = M2 for some M,n ∈ N. From the
equation (2.3), we have 5b2 − 4d2 = M2, a perfect square. Since d| gcd(a, b, c) it
implies that d|b. Thus by Lemma 2.3, b = ±dF2k+1 for some k.

2.2 Rational Roots of p1(x) = 0

Similarly, the roots of the p1(x) = 0 are rational if and only if the discriminant
of p1(x) is a perfect square. In fact,

D = (n+ d)2 − 4n(n+ 2d) = N2 or 3n2 + 6nd− d2 +N2 = 0 (2.7)

for some N ∈ N. Observe that the discriminant D depending on n can be negative.
Hence, first we have to figure out the possible value of n for a given d such that
D is positive. In this case, it is easy to show that

−d− 2√
3
|d|+ 1 ≤ n ≤ −d+

2√
3
|d|.

Solving equation (2.7) for n yields

n = −d±
√

4d2 −N2

3
. (2.8)

In orter to get an integer radicand in equation (2.8), it is necessary to have

4d2 −N2 ≡ 0 mod 3

N2 ≡ d2 mod 3

N ≡ ±d mod 3.

(2.9)

Unfortunately, the condition (2.9) on N is necessary to have an integer radicand
but not sufficient to guarantee whether the radicand is perfect. Now, for each d,
let us consider the sets

Nd =

{
N ∈ N | N ≡ ±d mod 3 &

4d2 −N2

3
is a perfect square

}
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and

Pd = {(a, b, c) ∈ A | q(x) = ax2 + bx+ c = 0 has rational roots}.

Note that Nd 6= ∅ if and only if Pd 6= ∅. Since

−d− 2√
3
|d|+ 1 ≤ n ≤ −d+

2√
3
|d|,

it follows that n(Nd) < ∞ and n(Pd) < ∞. From this fact, we know that for a
given d, it is not necessarily that Pd 6= ∅. For example, Pd = ∅ if d = 1, 2, 3, 4, 5, 6.
So, it is quite interesting to find the integer d such that Pd is always non-empty.
The following lemma gives such integers d but not all.

Lemma 2.5. Let N ∈ N. For each k ∈ N, define dk and nk as follow

dk =
N

4

(
(2 +

√
3)(7 + 4

√
3)k + (2−

√
3)(7− 4

√
3)k
)

nk =
N

4
√

3

(
(7 + 4

√
3)k − (7− 4

√
3)k
)
.

Then p(x) = nkx
2 + (nk + dk)x+ (nk + 2dk) = 0 has rational roots.

Proof. It suffices to show that for each k, dk and nk are integers and satisfied

3n2k + 6nkdk − d2k +N2 = 0.

Note that the pair of

dk − 3nk
N

=
(7 + 4

√
3)k + (7− 4

√
3)k

2

and
nk
N

=
(7 + 4

√
3)k − (7− 4

√
3)k

4
√

3

are all integer solutions of the Pell’s equation x2 − 12y2 = 1, [3]. That is, (dk −
3nk)2 − 12n2k = N2 and so it implies that 3n2k + 6nkdk − d2k +N2 = 0.

2.3 Interesting Properties

Besides, we have found that with some transformations, the product of the
roots of both cases, p1(x) = 0 and p2(x) = 0 are constants, as shown in the
following lemmas.

Lemma 2.6. If α and β are the roots of p2, then (α−2)(β−2) = 5. Consequently,
if α and β are integers, then (α, β) ∈ {(3, 7), (7, 3), (1,−3), (−3, 1)}.
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Proof. Assume that α and β are the roots of p2(x) = nx2 +(n+d)x− (n+2d) = 0

for some d and n. Then α+ β = −(
n+ d

n
) and αβ = −n+ 2d

n
. And so,

(α− 2)(β − 2) = αβ − 2(α+ β) + 4

= −(
n+ 2d

n
)− 2(−n+ d

n
) + 4

= 5.

Furthermore, if α and β are integers, then both α − 2 and β − 2 are in {±1,±5}
and hence (α, β) ∈ {(3, 7), (7, 3), (1,−3), (−3, 1)}.

Lemma 2.7. If α and β are the roots of p1, then (α+2)(β+2) = 3. Consequently,
if α and β are integers, then (α, β) ∈ {(−1, 1), (1,−1), (−3,−5), (−5,−3)}.

Proof. Assume that α and β are the roots of p2(x) = nx2 +(n+d)x+(n+2d) = 0

for some d and n. Then α+ β = −(
n+ d

n
) and αβ =

n+ 2d

n
. And so,

(α+ 2)(β + 2) = αβ + 2(α+ β) + 4

=
n+ 2d

n
+ 2(−n+ d

n
) + 4

= 3.

Furthermore, if α and β are integers, then both α + 2 and β + 2 are in {±1,±3}
and hence (α, β) ∈ {(−1, 1), (1,−1), (−3,−5), (−5,−3)}.

Lemma 2.8. Let d ∈ Z. For each i ∈ N, let ni be a positive integer such that
p2,i(x) = nix

2 + (ni + d)x− (ni + 2d) = 0 has rational roots. If αi and βi are such

rational roots of p2,i(x) = 0 with αi < βi then {αi} converges to
−1−

√
5

2
and

{βi} converges to
−1 +

√
5

2
.

Proof. Note that αi + βi = −ni + d

ni
and αiβi = −ni + 2d

ni
and hence as ni ap-

proaches infinity, both αi+βi and αiβi converge to -1. Moreover, αi and βi are the
two solutions of the quadratic equation x2 − (αi + βi)x+ αiβi = 0. Since αi < βi,
it follows that

βi =
(αi + βi) +

√
(αi + βi)2 − 4(αiβi)

2
→ −1 +

√
5

2

and

αi =
(αi + βi)−

√
(αi + βi)2 − 4(αiβi)

2
→ −1−

√
5

2
.

This completes the proof.
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3 Algorithms

Finally, we complete this study by giving algorithms in scilab codes. A simple
yet important reason to choose scilab because it is a freeware.

Let us first consider the quadratic equation p2(x) = 0. Recall that once d is
chosen we want to fine M such that

n = −d±
√

4d2 +M2

5

is integer and hence the quadratic equation p2(x) = nx2 + (n+ d)x− (n+ 2d) = 0
has rational roots. For a given d, the function findm (Table 1., left) is searching
for those M such that 5|(4d2 +M2). After that the function getperfect (Table 1.,

right) will screen out these M for only 4d2+M2

5 is perfect. Recall that Md is an
infinite set so that in the input argument, d, of the function findm represents the
common difference while q restricts the number M we desire. For example, for
d = 1 and the first 1500 numbers of M (q = 1500) there are only seven of M which

are the output md including 4, 11, 29, 76, 199, 521 and 1364 forcing 4d2+M2

5 perfect.
Now, in this case, with d = 1 and M ∈ {4, 11, 29, 76, 199, 521, 1364}, we obtain
the coresponding leading coefficients n ∈ {1, 4, 12, 33, 88, 232, 609}, respectively.
With these leading coefficients n, the equation p2(x) = 0 has rational roots. For
examples, for n = 232 and n = 609, one has 232x2+233x−234 = (8x−13)(29x+18)
and 609x2 + 610x− 611 = (21x− 13)(29x+ 47), respectively.

function [m]=findm(d, q), function [md]=getperfect(m, d)
i = 1; n = max(size(m));
if d <> 5 then i = 1;
k = 1; i = 1;
while i < q, md = 0;
m(i) = 5 ∗ k − d; for k = 1 : n,
m(i+ 1) = 5 ∗ k + d; c = (4*d∧2 + m(k)∧2)/5;
k = k + 1; if (c == (floor(sqrt(c))∧2) ) then
i = i+ 2; md(i) = m(k);

end i = i+ 1;
else for k = 1 : q, end

m(k) = 5 ∗ k; end
end endfunction

end
endfunction

Table 1: Left: codes for findm Right: codes for getperfect
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It would be useful to note here that for d > 1 the coefficient we get are
actually the multiple of the case d = 1. For example with d = 2, the first several
leading coefficients n are 2, 8, 24, 66, 176 and 464. For examples, for 176 and
464, one has 176x2 + 178x− 180 = 2(88x2 + 89x− 90) = 2(8x+ 5)(11x− 18) and
464x2 + 466x− 468 = 2(232x2 + 233x− 234) = 2(8x− 13)(29x+ 8), respectively.

Next, let us turn to the quadratic equation p1(x) of the form nx2 + (n+ d)x+
(n+ 2d) = 0. The first difference made by the condition on n:

−d− 2√
3
|d|+ 1 ≤ n ≤ −d+

2√
3
|d|.

In this study, only the positive leading coefficients are of interest. So that the
above condition forces d to be greater than 7. With the quite similar algorithms

we can obtain the integer N such that 4d2−N2

3 is integer and perfect. For example,
the case d = 7 all the possible leading coefficients are shown in Table 2. They are
actually within the interval [-16,1] confirmed by

n p1(x)

1 x2 + 8x+ 15 = (x+ 3)(x+ 5)
-2 −2x2 + 5x+ 112 = (2x+ 3)(−x+ 4)
-4 −4x2 + 3x+ 10 = (4x+ 5)(−x+ 2)
-7 −7x2 + 7 = −7(x+ 1)(x− 1)

-10 −10x2 − 3x+ 4 = (5x+ 4)(−2x+ 1)
-12 −12x2 − 5x+ 2 = (3x+ 2)(−4x+ 1)
-15 −15x2 − 8x− 1 = −(3x+ 1)(5x+ 1)

Table 2: All possible leading coefficients for d = 7 so that p1(x) = 0 has
rational roots

However, since our interest is restricted only on the positive leading coefficient,
so that in this case, d = 7, the eligible leading coefficient is only n = 1. In
particular, we have x2 + 8x+ 15 = (x+ 3)(x+ 5).

4 Conclusions

In this study, it was shown that the quadratic equation of the form p2(x) =
ax2 + bx− c = 0 has infinitely many (a, b, c) ∈ A such that p2(x) = 0 has rational
roots. While for the quadratic equation of the form p1(x) = ax2 + bx + c = 0
has only a finite number of (a, b, c) ∈ A such that p1(x) = 0 has rational roots.
Furthermore, for 0 < d < 7 and n > 0, we found that there is no rational solution
to p1(x) = 0. However, if the condition n > 0 is neglected, it turns outs out that
the rational solution of p1(x) = 0 does exist! In fact, with the leading coefficient
n = −d, one always has p1(x) = −dx2 + d = −d(x2 − 1). In which case, the
solutions are ±1.
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