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1 Introduction and Preliminaries

Njastad [1] initiated the study of α-open sets in a topological space. Further,
Ibrahim [2] defined the concept of an operation on the family of α-open sets and he
introduced the concept of αγ-open sets and also investigated the basic properties
of this set.

Let A be a subset of a topological space (X, τ). We denote the interior and the
closure of a set A by Int(A) and Cl(A) respectively. A subset A of a topological
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space (X, τ) is said to be α-open [1] if A ⊆ Int(Cl(Int(A))). The complement of an
α-open set is said to be α-closed. The intersection of all α-closed sets containing
A is called the α-closure of A and is denoted by αCl(A). The family of all α-
open sets in a topological space (X, τ) is denoted by αO(X, τ). An operation
γ : αO(X, τ) → P (X) [2] is a mapping satisfying the condition, V ⊆ V γ for each
V ∈ αO(X, τ). We call the mapping γ an operation on αO(X, τ). A subset A of
X is called an αγ-open set [2] if for each point x ∈ A, there exists an α-open set U
of X containing x such that Uγ ⊆ A. The complement of an αγ-open set is said
to be αγ-closed. We denote the set of all αγ-open (resp., αγ-closed) setsof (X, τ)
by αO(X, τ)γ (resp., αC(X, τ)γ). The αγ-closure [2] of a subset A of X with an
operation γ on αO(X) is denoted by αγCl(A) and is defined to be the intersection
of all αγ-closed sets containing A. A point x ∈ X is in αClγ-closure [2] of a set
A ⊆ X, if Uγ ∩ A 6= φ for each α-open set U containing x. The αClγ-closure of
A is denoted by αClγ(A). An operation γ on αO(X, τ) is said to be α-regular [2]
if for every α-open sets U and V of each x ∈ X, there exists an α-open set W of
x such that W γ ⊆ Uγ ∩ V γ . An operation γ on αO(X, τ) is said to be α-open
[2] if for every α-open set U of x ∈ X, there, exists an αγ-open set V of X such
that x ∈ V and V ⊆ Uγ . The operation id : αO(X, τ) → P (X) is defined by
id(V ) = V for any set V ∈ αO(X, τ) this operation is called the identity operation
on αO(X, τ) [2]. An operation γ : αO(X) → P (X) is said to be α-monotone on
αO(X) [3] if for all A,B ∈ αO(X), A ⊆ B implies Aγ ⊆ Bγ .

2 Some Operations on Subspaces

In the present section, we consider the subspace (H,α|H) of a topological space
(X, τ), where H is any non-empty subset of X and α|H = {V = U ∩ H : U ∈
αO(X)}. For a given operation γ : αO(X) → P (X) we introduce two subspace-
operations denoted by γαH and γαH . In general we assume that H ∈ αO(X)
whenever γ 6= id. Also, we introduce the concept of αγ-open sets relative to a
subset H and we investigate general properties of them. In the end of the section,
we investigate some forms of operation closures in a subspace.

Definition 2.1. An operation γαH : α|H → P (H) is defined as follows: γαH(V ) =
V γ ∩ H for every V ∈ α|H, where V γ = γ(V ) is the value of γ at V ∈ αO(X).
Whenever γ 6= id we have to assume that H ∈ αO(X) and if γ = id, then H may
not α-open and we have γαH(V ) = V for every V ∈ α|H.

This operation γαH is said to be the restriction of γ on α|H.

Remark 2.2. When we consider the operation γαH : α|H → P (H), we assume
H ∈ αO(X) if γ 6= id. And, if γ = id : αO(X) → P (X), then we do not assume
that H ∈ αO(X). Namely, even if H /∈ αO(X) by definition, for any subset H of
(X, τ), idαH : α|H → P (H) is the identity operation on α|H. Indeed, idαH(V ) = V
for any V ∈ α|H.

Definition 2.3. Let H be any subset of the space X and let αO(X)H denotes
the following family of subsets of H:
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αO(X)H = {U : U ⊆ H,U ∈ αO(X)}. An operation γαH : αO(X)H → P (H)
is defined by γαH(U) = Uγ ∩H ∈ P (H) for every U ∈ αO(X)H , where Uγ = γ(U)
(the value of γ at U ∈ αO(X)H ⊆ αO(X)).

Remark 2.4. The following properties are easy to prove for any subset H of X
and any operation γ : αO(X)→ P (X).

1. αO(X)H ⊆ α|H ⊆ P (H) and αO(X)H = α|H is a topology on H whenever
H is α-open in (X, τ).

2. If H is α-open in (X, τ), then γαH = γαH : α|H → P (H).

3. In general if f : α|H → P (H) defined by f(W ∩H) = W γ ∩H, then it is
not well defined, where W ∈ αO(X) even if H is an α-open subset of X.

Indeed, for some topological space (X, τ) and a subset H of X, we can take two
α-open sets W and S of (X, τ) such that W ∩H = S ∩H and W γ ∩H 6= Sγ ∩H,
thus f is not well defined as we can see in the following example:

Example 2.5. Let X = {a, b, c}, τ = {X, {a}, {b}, {a, b}, {a, c}} and H = {a, c}.
And let γ : αO(X)→ P (X) be a given operation defined by

Uγ =

{
U if b ∈ U
Cl(U) if b /∈ U.

Then, we take W = {a, b} ∈ αO(X) and S = {a} ∈ αO(X), then W ∩ H =
{a} = S ∩ H and W γ ∩ H = {a, b}γ ∩ H = {a, b} ∩ H = {a} and Sγ ∩ H =
{a}γ ∩H = Cl({a}) ∩H = {a, c} ∩H = {a, c}. Thus, W γ ∩H 6= Sγ ∩H and so
f(W ∩H) 6= f(S ∩H).

Definition 2.6. Let H be any subset of X and operation γ from αO(X) to P (X)
is α-stable with respect to H if γ induces an operation γH : α|H → P (H) satisfying
the following two properties:

1. (U ∩H)γH = Uγ ∩H for every U ∈ αO(X) and

2. W ∩H = S ∩H implies that W γ ∩H = Sγ ∩H for every W,S ∈ αO(X).

Proposition 2.7. Let γ an operation on αO(X) such that φγ = φ. If γ is α-stable
with respect to all of proper α-closed set of X, then γ is the identity operation.

Proof. Let U ∈ αO(X) and U 6= φ. Then X \ U = F , is a proper α-closed set.
By hypothesis γ is α-stable with respect to F , so we have Uγ ∩ F = (U ∩ F )γF =
φγF = (φ ∩ F )γF = φγ ∩ F = φ ∩ F = φ. Then we have Uγ ∩ (X \ U) = φ and
hence Uγ ⊆ U . Therefore, U = Uγ for any U ∈ αO(X). Since φγ = φ, hence
Uγ = U for every U ∈ αO(X).

The following example shows that there exists an α-stable operation with
respect to a subset H which is not α-identity operation.
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Example 2.8. Let H be any subset of the space X. The operations γ : αO(X)→
P (X) and γH : α|H → P (H) are defined by Uγ = X and (U ∩ H)γH = H for
every U ∈ αO(X). Then, it is clear that γ is α-stable with respect to H which is
not an α-identity operation.

Definition 2.9. Let H be any subset of the space X and γ : αO(X) → P (X)
be an operation on αO(X). A nonempty subset A of a subspace H is said to be
αγ-open relative to H, if for each point x ∈ A there exists a subset U ∈ αO(X)
such that x ∈ U and Uγ ∩ H ⊆ A. It is assumed that the empty set φ is also
αγ-open relative to H.

A subset F of H is said to be αγ-closed relative to H, if H \ F is αγ-open
relative to H. The collection of all αγ-open sets relative to H is denoted by
αO(X)γH .

Remark 2.10. Let H be any subset of the space X. Then, we have the following
properties:

1. αO(X)id = αO(X).

2. αO(X)idH = α|H.

Theorem 2.11. Let γ : αO(X) → P (X) be an operation on αO(X) and H a
subset of X.

1. The union of any family of αγ-open sets relative to H is an αγ-open set
relative to H.

2. If γ is α-regular on αO(X), then the family αO(X)γH forms a topology on
H.

Proof. 1. Let {Ai|i ∈ I} be a family of αγ-open sets relative to H, where I is
an index set. Put A = ∪{Ai|i ∈ I}. Let x ∈ A. There exists an αγ-open set
Ai relative to H such that x ∈ Ai, where i ∈ I. Then, there exists a subset
U(i) ∈ αO(X) such that x ∈ U(i) and U(i)γ ∩H ⊆ Ai ⊆ A. We prove that
A is αγ-open relative to H.

2. LetB and E be αγ-open sets relative toH. Let x ∈ B∩E. There exist two α-
open sets U and V of X containing x such that Uγ∩H ⊆ B and V γ∩H ⊆ E.
Since γ is α-regular on αO(X), there exists an α-open set W of X containing
x such that W γ ⊆ Uγ ∩ V γ , then W γ ∩H ⊆ (Uγ ∩H)∩ (V γ ∩H) ⊆ B ∩E.
Therefore, B ∩E is αγ-open relative to H. Since for any point x ∈ H, X is
α-open set containing x such that Xγ ∩H ⊆ H, so H ∈ αO(X)γH and also
φ ∈ αO(X)γH by definition. Therefore, αO(X)γH is a topology on H.

Remark 2.12. Let us consider the following two families of subsets in the subspace
H of the topological space X.

1. For an operation γ : αO(X)→ P (X), let
αO(X)γ |H = {V ∩H ∈ P (H) : V is αγ-open in X}.
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2. Suppose that H is α-open in (X, τ) if γ 6= id. For an operation γαH : α|H →
P (H), let
(α|H)γ

α
H = {A ∈ P (H) : A is γαH-open in (H,α|H)}.

Remark 2.13. From Remark 2.12, we have the following properties:

1. αO(X)id|H = α|H.

2. (α|H)id
α
H = {A ∈ P (H) : A is idαH-open in (H,α|H)} = {A ∈ P (H) : A is

id-open in (H,α|H)} = α|H.

Hence both the families are the same whenever γ is the identity operation.

More relations and properties among the families αO(X)γ |H, αO(X)γH , (α|H)γ
α
H

and α|H under some assumptions are given in the next theorems.

Theorem 2.14. Let γ : αO(X) → P (X) be an operation on αO(X) and H be
any subset of X.

1. If a subset B of (X, τ) is αγ-open in (X, τ), then B ∩H is αγ-open relative
to H

2. Every αγ-open set relative to H is open in (H,α|H).

3. αO(X)γ |H ⊆ αO(X)γH ⊆ α|H.

Proof. 1. Let x ∈ B∩H. It follows from assumption that there exists an α-open
subset U of (X, τ) such that x ∈ U and Uγ ⊆ B and hence Uγ ∩H ⊆ B∩H.
Thus, B ∩H is αγ-open relative to H. Let V ∈ αO(X)γ |H. There exists a
subset B ∈ αO(X)γ such that V = B ∩H and so V ∈ αO(X)γH . Thus we
have the implication αO(X)γ |H ⊆ αO(X)γH .

2. Let V be a nonempty αγ-open set relative to H. For each point x ∈ V , there
exists a subset U(x) ∈ αO(X) such that x ∈ U(x) and U(x)γ ∩ H ⊆ V .
Taking the union over all points x ∈ V , we obtain that
V =

⋃
x∈V {U(x) ∩ H : U(x) ∈ αO(X), U(x)γ ∩ H ⊆ V }. Therefore, V =

U ∩H were U =
⋃
x∈V {U(x) : U(x) ∈ αO(X), U(x)γ ∩H ⊆ V }. Hence, V

is open in (H,α|H) and by Definition 2.9, we have αO(X)γH ⊆ α|H.

3. Follows from (1) and (2).

Theorem 2.15. Suppose that γ 6= id and H is α-open in (X, τ). Then we have
the following properties:

1. Every γαH-open set in (H,α|H) is αγ-open relative to H, and hence, (α|H)γ
α
H

⊆ αO(X)γH .

2. Moreover, if γ is an α-monotone operation, then every αγ-open set rela-
tive to H is γαH-open in (H,α|H) and hence αO(X)γH ⊆ (α|H)γ

α
H so that

αO(X)γH = (α|H)γ
α
H .
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3. If A is any subset of H which is αγ-open in (X, τ), then it is γαH-open in
(H,α|H) that is, A ∈ (α|H)γ

α
H .

Proof. 1. Let A be a γαH -open set in (H,α|H) that is, A ∈ (α|H)γ
α
H , where

γαH : α|H → P (H) is an operation on α|H. Let x ∈ A, then there exists a
subset W ∈ α|H such that x ∈ W and γαH(W ) = W γ ∩H ⊆ A . Since H
is α-open, we have W ∈ αO(X). Thus, for the point x ∈ A, W ∈ αO(X)
such that W γ ∩H ⊆ A. This shows that A is αγ-open relative to H, that
is, A ∈ αO(X)γH .

2. Let A be an αγ-open set relative to H that is, A ∈ αO(X)γH . Let x ∈ A, then
there exists a subset U(x) ∈ αO(X) such that x ∈ U(x) and U(x)γ∩H ⊆ A.
Since H ∈ αO(X) and γ is α-monotone, we have γαH(U(x) ∩H) = (U(x) ∩
H)γ ∩ H ⊆ U(x)γ ∩ H ⊆ A. This shows that for the point x ∈ A, we
have γαH(U(x) ∩ H) ⊆ A and U(x) ∩ H ∈ α|H, and so A is γαH -open in
(H,α|H) that is, A ∈ (α|H)γ

α
H . Hence, combining to (1), we obtain that

αO(X)γH = (α|H)γ
α
H .

3. Let x ∈ A, then there exists a subset U of X such that x ∈ U , U ∈ αO(X)
and Uγ ⊆ A. We have x ∈ U ∩ H = U and U ∈ α|H and so γαH(U) =
Uγ ∩H ⊆ A ∩H = A. Thus, we show A ∈ (α|H)γ

α
H .

Theorem 2.16. Let H ⊆ X and γ : αO(X) → P (X) be an α-regular operation
on αO(X) such that γ 6= id. Then the following properties are true:

1. If A is γαH-open in (H,α|H) and H is αγ-open in (X, τ), then A is αγ-open
in (X, τ) that is, A ∈ αO(X)γ .

2. If H is αγ-open in (X, τ), then (α|H)γ
α
H = αO(X)γ |H.

Proof. 1. Let x ∈ A. There exists a subset U ∈ αO(X) such that x ∈ U ,
γαH(U ∩H) = (U ∩H)γ∩H ⊆ A because A ∈ (α|H)γ

α
H , γ 6= id, U ∩H ∈ α|H

and U ∩ H ∈ αO(X). Since H ∈ αO(X)γ and x ∈ A ⊆ H, for the point
x ∈ H, there exists a subset V ∈ αO(X) such that x ∈ V and V γ ⊆ H. By
the α-regularity of γ, for two α-open subsets U ∩ H and V containing x,
there exists a subset W ∈ αO(X) such that x ∈W and W γ ⊆ (U∩H)γ∩V γ
and so W γ ⊆ (U ∩H)γ ∩H ⊆ A. Therefore, for each point x ∈ A, we have a
subset W such that W ∈ αO(X), x ∈W and W γ ⊆ A and so A is αγ-open
in (X, τ) (that is, A ∈ αO(X)γ).

2. Let A ∈ αO(X)γ |H, then there exists a subset B of X such that B ∈
αO(X)γ and A = B ∩H. Since γ is α-regular, αO(X)γ forms a topology of
X ([2, Remark 2.19]). Thus, we have B∩H ∈ αO(X)γ and so A ∈ αO(X)γ
because B ∈ αO(X)γ and H ∈ αO(X)γ . Since, αO(X)γ ⊆ αO(X) in
general and so H ∈ αO(X)), so by Theorem 2.15 (3), it is obtained that
A ∈ (α|H)γ

α
H . Thus, we prove αO(X)γ |H ⊆ (α|H)γ

α
H .

On the other hand if A ∈ (α|H)γ
α
H , then it follows from (1) above that

A ∈ αO(X)γ and A = A ∩H ∈ αO(X)γ |H. Thus, we have the implication
(α|H)γ

α
H ⊆ αO(X)γ |H. Hence we obtain that (α|H)γ

α
H = αO(X)γ |H.
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Since α-monotone operation is α-regular and any αγ-open set is α-open for any
operation γ, the following corollary is obtained from Theorem 2.15 and Theorem
2.16.

Corollary 2.17. If γ : αO(X) → P (X) is an α-monotone operation on αO(X)
such that γ 6= id and H is αγ-open in (X, τ), then (α|H)γ

α
H = αO(X)γ |H =

αO(X)γH .

Corollary 2.18. If H is any subset of X and γ = id, then αO(X)γ |H =
αO(X)γH = (α|H)γ

α
H = α|H.

Proof. Follows from Remark 2.10 and Remark 2.13.

Let H be a subspace of a topological space (X, τ), and B be any subset of
H. We introduce some closure operation with respect to the subspace H and the
α-open sets of X.

Recalling that, for a subset E of X and x ∈ X, we say that x ∈ αCl(E) if and
only if U ∩ E 6= φ holds for every α-open set U of (X, τ) such that x ∈ U and for
a point y ∈ H and a subset B of (H,α|H), y ∈ ClH(B) if and only if V ∩ B 6= φ
holds for every open set V of (H,α|H) such that y ∈ V .

Let γ : αO(X) → P (X) be a given operation. Let (H,α|H) be a subspace
of (X, τ). Suppose that H is α-open in (X, τ) if γ 6= id. For the restriction
γαH : α|H → P (H) of γ, we define the following concepts of operation-closure in
the subspace (H,α|H).

Definition 2.19. Let B be any subset of H, then

• ClH(B) = H ∩ αCl(B), where αCl(B) =
⋂
{F : B ⊆ F, F is α-closed in

(X, τ)}.

• (α|H)-Cl(B) =
⋂
{F : B ⊆ F, F is closed in (H,α|H)}.

• ClγαH (B) = {x ∈ H : γαH(U)∩B 6= φ holds for every open set U of (H,α|H)
with x ∈ U}.

• (α|H)γ
α
H -Cl(B) = ∩{F : B ⊆ F, F is γαH -closed in (H,α|H)}.

Remark 2.20. Let (H,α|H) be a subspace of a topological space (X, τ) and γ :
αO(X) → P (X) be an operation on αO(X). Suppose that H is α-open in (X, τ)
if γ 6= id and A a subset of H. Then

1. For a point x ∈ X, x ∈ (α|H)γ
α
H -Cl(A) if and only if for every γαH-open set

V of (H,α|H) containing x such that A ∩ V 6= φ.

2. A ⊆ ClγαH (A) ⊆ (α|H)γ
α
H -Cl(A).

It is known that the identity operation id : αO(X) → P (X) is α-open on
αO(X) and hence if H is a subset of X, then idαH : α|H → P (H) is the identity
operation on α|H, so it is α-open on α|H.

In general, if γ 6= id, we give the following result.
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Lemma 2.21. Let γ : αO(X)→ P (X) be an α-regular operation on αO(X) such
that γ 6= id and H be an αγ-open set of (X, τ). If γ is α-open on αO(X), then
γαH : α|H → P (H) is α-open on α|H.

Proof. Let x ∈ H and V be an open set of (H,α|H) with x ∈ V . We show that
there exists a γαH -open set S in (H,α|H) such that x ∈ S and S ⊆ γαH(V ). Since
H ∈ αO(X) so V ∈ αO(X), by the α-openness of γ, there exists an αγ-open set,
say G in (X, τ) such that x ∈ G and G ⊆ V γ . We put S = G ∩H, then x ∈ S,
S ⊆ V γ ∩H and by definition, γαH(V ) = V γ ∩H. Hence, S ∈ αO(X)γ |H. Since γ
is α-regular and H ∈ αO(X)γ , by Theorem 2.16, we have αO(X)γ |H ⊆ (α|H)γ

α
H .

Thus, we have S ∈ (α|H)γ
α
H . Therefore, for any point x ∈ H and an open set

V containing x in (H,α|H), the subset S is a γαH -open set of (H,α|H) such that
x ∈ S and S ⊆ γαH(V ). Hence, γαH : α|H → P (H) is an α-open operation on
α|H.

If γ = id, then we have idαH : α|H → P (H) is the identity operation on α|H,
and so ClidαH (B) = ClH(B) = (α|H)-Cl(B) = αCl(B) ∩H = αClid(B) ∩H.

If the operation γ is not the identity operation on αO(X), we have the following
result:

Theorem 2.22. Let γ 6= id be a given operation on αO(X) and B ⊆ H ⊆ X. If
H is α-open in (X, τ), then ClγαH (B) ⊇ αClγ(B) ∩H.
Moreover if γ is α-monotone, then ClγαH (B) = αClγ(B) ∩H.

Proof. Let x ∈ αClγ(B) ∩H. In order to prove x ∈ ClγαH (B), let U be an open
set of (H,α|H) with x ∈ U . Since H is α-open in (X, τ) and x ∈ αClγ(B),
we have U ∈ αO(X) and so Uγ ∩ B 6= φ. By definition, it is obtained that
γαH(U) ∩B = (Uγ ∩H) ∩B = Uγ ∩ (H ∩B) = Uγ ∩B 6= φ and so x ∈ ClγαH (B).

On the other hand, let x /∈ αClγ(B)∩H. We have to show x /∈ ClγαH (B). For
the point x, if x /∈ H, then we have x /∈ ClγαH (B) and hence the proof. Suppose
that x ∈ H, so we have x /∈ αClγ(B). Then, there exists a subset U ∈ αO(X) such
that x ∈ U and Uγ ∩B = φ. Since γ is α-monotone, we have (U ∩H)γ ⊆ Uγ and
so γαH(U ∩H)∩B = ((U ∩H)γ ∩H)∩B ⊆ Uγ ∩B = φ (indeed, U ∩H ∈ αO(X)).
Thus, the subset U ∩ H is an open set of (H,α|H) such that x ∈ U ∩ H and
γαH(U ∩H)∩B = φ and so x /∈ ClγαH (B). Therefore, ClγαH (B) = αClγ(B)∩H.

Theorem 2.23. Suppose that H is αγ-open in (X, τ) and B is any subset of
H. If γ : αO(X) → P (X) is α-regular and α-open on αO(X), then we have the
following properties:

1. ClγαH (B) ⊆ αClγ(B) ∩H and so ClγαH (B) = αClγ(B) ∩H.

2. ClγαH (B) = (α|H)γ
α
H -Cl(B).

Proof. 1. Let x /∈ αClγ(B) ∩H. If x /∈ H, then it is clear that x /∈ ClγαH (B)
because ClγαH (B) ⊆ H. If x ∈ H, then, we have x /∈ αClγ(B). Hence, there
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exists a subset U ∈ αO(X) such that x ∈ U and Uγ ∩ B = φ. Since γ is
α-open on αO(X), so there exists an αγ-open set S such that x ∈ S and
S ⊆ Uγ and so S∩B ⊆ Uγ ∩B = φ which implies that, S∩B = φ. Thus we
have S ∩H ∈ αO(X)γ |H and x ∈ S ∩H. By Theorem 2.16 (2), it is proved
that αO(X)γ |H ⊆ (α|H)γ

α
H and so we have S ∩H ∈ (α|H)γ

α
H . Therefore,

the subset S ∩ H is a γαH -open set of (H,α|H) such that x ∈ S ∩ H and
(S ∩ H) ∩ B = S ∩ B = φ. From Remark 2.20 (1), we obtain that x /∈
(α|H)γ

α
H -Cl(B) and from Remark 2.20 (2), we have ClγαH (E) ⊆ (α|H)γ

α
H -

Cl(E) holds for any subset E of (H,α|H). Hence, we have x /∈ ClγαH (B).
Therefore, we obtained that ClγαH (B) ⊆ αClγ(B) ∩H.

Moreover, since any αγ-open set of (X, τ) is α-open in (X, τ), and applying
Theorem 2.22, we conclude that ClγαH (B) = αClγ(B) ∩H.

2. By Lemma 2.21, γαH : α|H → P (H) is α-open on α|H. Using [[2], Theorem
2.26 (2)] for the topological space (H,α|H), the subset B of H and the
operation γαH : α|H → P (H), we obtain that ClγαH (B) = (α|H)γ

α
H -Cl(B).
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